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Preface

Psychotic illness presents many challenges because of 
its complex life course and multifactorial origins; these 
involve contributions from diverse genetic, epigenetic, 
and environmental factors that result in a disorder of 
abnormal brain development and disconnectivity. For 
model systems to advance in their heuristic import, 
they must reflect these evolving concepts, with a par-
ticular focus on: (1) Psychotic illness as a dimensional 
construct that involves several domains of psychopa-
thology and dysfunction that are disrespectful to our 
current nosology; these intersect with a yet broader 
range of psychopathologies and dysfunctions that are 
associated with a range of other neurodevelopmental 
disorders classically considered outside the psychosis 
spectrum. (2) Increasing evidence for not only psy-
chopathological, but also genetic, environmental and 

pathobiological overlap between schizophrenia, bipo-
lar disorder, and other neuropsychiatric disorders in 
which psychosis can occur. (3) Psychotic illness not as a 
point of onset of a disorder but rather as a stage in the 
trajectory of a disorder that is manifested throughout 
the lifespan, including prediagnostic manifestations 
that may be the harbingers of a psychotic diagnosis. 
Preclinical and clinical scientists who work in the area 
of model systems for psychotic illness need to factor 
these challenges into their approaches. This volume 
is the first comprehensive review of such models that 
reflects this new perspective.

Mikhail V. Pletnikov, Baltimore, USA
John L. Waddington, Dublin, Ireland

May 2015
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THE INADEQUACY OF DIAGNOSTIC 
CATEGORIES

The purpose of diagnosis in psychiatry, as in any other 
medical specialty, is to encapsulate clinical information in 
a most concise way, shed light on the underlying etiology 
and pathophysiology of the disorder, and form the basis 
for treatment guidance. The importance of an accurate 
diagnostic system is particularly relevant to psychiatry 
where diagnostic tests or precise biological markers are 
nonexistent, and consequently clinicians have to rely on 
descriptive psychopathology and its interpretation to 
diagnose patients. For most of the nineteenth century, 
psychiatrists mostly regarded psychosis as a unitary 
disorder (Griesinger, 1882). However, in the center of 
psychiatry, early German academic clinicians delineated 
catatonia, hebephrenia, and paranoid psychoses on the 
basis of their different clinical presentations (Kahlbaum, 
1863). Out on the periphery, Thomas Clouston, the first 
clinical lecturer in the University of Edinburgh, took a dif-
ferent approach, describing adolescent psychosis on the 
basis that it had neurodevelopmental origins (Clouston,  
1892). Nevertheless, it was Kraepelin’s work on the 
dementia praecox and manic depression dichotomy that 
led to the categorical approach to diagnosis and accord-
ingly classifying patients in distinct and mutually exclu-
sive groups (Kraepelin, 1971). However, clinicians know, 
only too well, that frequently patients do not fall precisely 
into either category and over the decades it became clear 
that classifying schizophrenia into distinct subcategories 
does not fully capture the phenomenological complexity 
of the disorder. Moreover, these categories are not heri-
table, lack diagnostic stability and validity (Tandon et al., 
2013), and clear demarcation is complicated by evident 
clinical, genetic, neurobiological, and biological overlap 

(Demjaha et al., 2012), which hinders progress in elucidat-
ing the precise mechanisms underlying schizophrenia. 
Thus, the adequacy of categorical conceptual models that 
have dominated the classification systems of psycho-
sis has been increasingly questioned with an increasing 
view that the phenomenology of psychosis may be best 
conceptualized by several symptom dimensions, known 
also as “factors” (Arndt, Alliger, & Andreasen, 1991; 
Crow, 1980; Liddle, 1987; Lindenmayer, Grochowski, & 
Hyman, 1995; Malla, Norman, Williamson, Cortese, & 
Diaz, 1993; van Os et al., 1996).

Interestingly, before statistical identification of under-
lying dimensions, Carl Schneider (1942), in line with 
modern psychopathologists, took a different approach to 
diagnosis advocating the use of “symptom complexes” 
that represent constellations of symptoms that tend to 
naturally occur together, have different pathophysiolog-
ical underpinning, can cooccur or exist independently, 
and are not necessarily specific to schizophrenia. He pro-
posed three symptom complexes akin to the “psychosis,” 
“disorganization,” and “negative” modern dimensions 
described in a later section.

PSYCHOPATHOLOGICAL 
DIMENSIONS—A CHALLENGE TO 

CATEGORICAL APPROACH  
TO DIAGNOSIS

The dimensional model suggests that psychotic 
symptoms are likely to cluster in certain symptom 
groups more often than by chance alone, but unlike 
distinct categories, they do not impose boundaries, 
but can coexist in the same patient (Allardyce, Gaebel, 
Zielasek, & van Os, 2007). Further, dimensions, classify 

C H A P T E R 
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symptoms and not patients, as is the case with catego-
ries, and are empirically derived using sophisticated 
statistical methods such as factor analysis. Many fac-
tor analytic studies of symptom profiles have identi-
fied multidimensional models within schizophrenia 
(Bilder, Mukherjee, Rieder, & Pandurangi, 1985; Brown 
& White, 1992; Liddle, 1987; Peralta & Cuesta, 2001). 
The introduction of the positive and negative syn-
dromes (Andreasen & Olsen, 1982; Crow, 1980; Strauss, 
1973) not only attracted major attention in clinical set-
tings, but also became a focus of both biological and 
clinical research, particularly stimulating extensive 
research in schizophrenic phenomenology and iden-
tifying underlying dimensional structure. The posi-
tive–negative model, even though radical in its own 
right and instrumental in the development of impor-
tant assessing scales, was soon criticized for lacking 
stability over time (Marneros, Diester, & Rohde, 1991); 
in addition, for being categorical in nature hence not 
accounting for a patient group presenting with mixed 
symptoms (Peralta & Cuesta, 2004; Peralta, de Leon, & 
Cuesta, 1992), highlighting a need for a shift to a more 

adequate multidimensional approach. Thus, the fac-
tor analysis of positive and negative symptoms led to 
emergence of the popular three syndromic model of 
schizophrenia that, in addition to negative (avolition, 
affective flattening, and alogia) and psychotic (delu-
sions and hallucinations) symptom domains, identified 
also a disorganized symptom dimension comprising 
thought disorder, bizarre behavior, and often inap-
propriate affect (Bilder et al., 1985; Liddle, 1987). The 
disorganization dimension has been considerably less 
replicated or stable, particularly in studies considering 
a wider range of symptoms, but it has often emerged, 
and its existence confirmed in meta-analytic work 
(Grube, Bilder, & Goldman, 1998; Smith, Mar, & Turoff, 
1998). Those faithful to the positive–negative dichot-
omy held that disorganization dimension is a part of 
positive symptomatology (Andreasen, Arndt, Alliger, 
Miller, & Flaum, 1995), whereas some others demon-
strated its strong correlations with negative syndrome 
(Dollfus & Everitt, 1998; Peralta & Cuesta, 1994). The 
model, although highly reproducible (Table 1), was 
further criticized for being too simplistic, in particular, 

TABLE 1 Factor Analysis Studies That Have Identified Three-Dimensional Modelsa

Study No. of Patients Rating Scale Diagnosis/Stage of Illness FA Method Dimensions Identified

Minas et al. (1992) 114 SAPS-SANS Chronic Sz Multidimensional 
scaling

Psychosis, disorganization, 
negative

Malla et al. (1993) 155 SAPS-SANS Chronic Sz EFA Psychosis, disorganization, 
negative

Murphy, Burke, Bray, 
Walsh, and Kendler (1994)

169 SCID-SANS Chronic Sz EFA Psychosis, disorganization, 
negative

Bell et al. (1994) 149 SAPS-SANS Chronic Sz CFA Psychosis, disorganization, 
negative

Andreasen et al. (1995) 243 SAPS-SANS Chronic Sz 
schizophreniform disorder

EFA Psychosis, disorganization, 
negative

Maziade et al. (1995) 138 SAPS-SANS Chronic Sz EFA Psychosis, disorganization, 
negative

Gureje, Aderibigbe, and 
Obikoya (1995)

60 SANS-BPRS Recent onset psychosis EFA Psychosis, disorganization, 
negative

Johnstone and Frith (1996) 329 Krawiecka scale Chronic Sz PCA Poverty, disorganization, 
positive

Peralta, Cuesta, and Farre 
(1997)

314 SAPS-SANS Chronic Sz EFA Psychosis, disorganization, 
negative

Ratakonda et al. (1998) 221 SAPS-SANS Chronic Sz EFA Psychosis, disorganization, 
negative

Hori et al. (1999) 258 Manchester scale Chronic Sz EFA Psychosis, disorganization, 
negative

Peralta and Cuesta (2000) 159 SAPS-SANS Recent-onset psychosis EFA Psychosis, disorganization, 
negative

BPRS, brief psychiatric rating scale; CFA, confirmatory factor analysis; EFA, exploratory factor analysis; FA, factor analysis; SAPS, scale for the assessment of positive 
symptoms; SANS, scale for the assessment of negative symptoms; SCID, structured clinical interview for DSM-III-R; Sz, schizophrenia.
aOnly studies that have included number of patients (n ≥ 100) were included.
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for failing to account for the whole range of psychotic 
symptoms and consisting of roughly delineated and 
narrow dimensions. Subsequent studies have investi-
gated samples of patients with all forms of psychosis 
yielding more complex, but also conflicting dimen-
sional patterns with varied structures across studies, 
incorporating manic, depressive, anxiety, social dys-
function, and cognitive dimensions (Dollfus & Everitt, 
1998; Kitamura, Okazaki, Fujinawa, Yoshino, & Kasahara, 
1995; Lindenmayer et al., 1995; McGorry, Bell, Dudgeon, & 
Jackson, 1998; Peralta & Cuesta, 2001).

The identified dimensions have proved to be stable in 
terms of several demographic and clinical parameters. 
Thus, the stability of individual psychopathological  
dimensions in both patients who received antipsy-
chotic treatment and the un-medicated ones as well as 
in responders and nonresponders was demonstrated 
(Czobor & Volavka, 1996; Lindenmayer et al., 1995). In 
addition, it was shown that the underlying structure of 
symptoms did not differ as a function of the age, gender, 
severity of illness, chronicity, or cognitive impairment 
status (Leonard White, Harvey, Opler, & Lindenmayer, 
1997; Peralta & Cuesta, 2005; White, Harvey, Parrella, &  
Sevy, 1994). Finally, the multidimensional model emerged 
in all stages of psychotic illness ranging from the at-risk 
mental state (Demjaha, Mccabe, & Murray, 2012; 
Hawkins et al., 2004), FEP (Demjaha et al., 2009; McGorry 
et al., 1998; Russo et al., 2014) to chronic schizophrenia 
(Liddle, Ngan, Duffield, Kho, & Warren, 2002; Linden-
mayer et al., 1995).

Although empirically established, the dimensional 
approach has also attracted criticism, raising concerns 
about its validity, particularly in terms of the lack of a con-
sensus on a precise dimensional model, the chronological 
stability of dimensions, specificity to a certain disorder, and 
whether there is a clear demarcation between dimensions 
regarding etiology, pathophysiology, treatment response, 
and clinical outcome.

THE NEED FOR A PRECISE 
DIMENSIONAL MODEL

The main issue with the dimensional representa-
tion of psychopathology pertains to the lack of a single 
precise dimensional model (i.e., there is no as yet con-
sensus in the field regarding the number and composi-
tion of specific dimensions as importantly emphasized 
by Peralta and Cuesta in their comprehensive review  
(Peralta & Cuesta, 2001), which impedes their effective 
use in both clinical and research settings. A decade on, 
studies continue to yield varied dimensional structures 
that is a consequence of sampling different patient popu-
lations and the use of different rating scales, factor analy-
sis methods, and varying definitions for depression and 

negative symptoms across different studies, which will 
invariably affect the number and the internal structure 
of distinct dimensions.

The use of different rating scales has a particular 
effect on a number of identified dimensions. Thus, the 
factor analysis of Scale for Assessing Positive Symptoms 
and Scale for Assessing Negative Symptoms one of the 
most frequently used scales comprising more than 50 
items, yielded large factorial solutions often compris-
ing 9 (Minas et al., 1992), 10 (Toomey et al., 1997), and 
even 11 dimensions (Peralta & Cuesta, 1999). The emer-
gence of large factorial solutions (i.e., large number of 
dimensions) prompted phenomenologists to examine 
whether the dimensional model assumes hierarchical 
order, in other words, whether these dimensions are 
correlated or can further be divided into more basic 
components. Accordingly, the dimensional structure 
could be organized hierarchically where elementary 
or big and clear dimensions assume higher order but 
more complex ones or “fine grained dimensions” 
are assigned a lower order. This is well-illustrated 
in Peralta and Cuesta’s work, which proposed that  
hierarchical approach may assist with organizing emerg-
ing complex dimensional structures (Cuesta & Peralta, 
2001) (see Figure 1). Most recently, Russo et al. (2014) 
have replicated a hierarchical structure of dimensions 
and thus identified six first-order factors: mania, nega-
tive, disorganization, depression, hallucinations, and 
delusions (Russo et al., 2014). The division of positive 
symptoms into delusions and hallucinations is neuro-
biologically intriguing. It has been shown that different 
types of positive symptoms are related to different pat-
terns of regional cerebral blood flow (Sabri et al., 1997), 
and more specifically that hallucinations but not delu-
sions are associated with reduced left superior temporal 
lobe gyrus volume (Flaum et al., 1995). These studies 
illustrate that by using symptom dimensions at a more 
fine-grained level, external correlates of dimensions 
could be more precisely detectable (Cuesta & Peralta, 
2001).

Overall, accumulating evidence suggests that a pen-
tagonal model comprising positive (reality distortion), 
negative (psychomotor retardation), disorganization, 
and depressive and manic dimensions, which is highly 
replicated, best encapsulates the constellation of psy-
chotic symptoms and unique patient’s manifestation of 
illness (Demjaha et al., 2009; Lindenmayer et al., 1995) 
(Table 2). However, this model has failed to show an ade-
quate fit by confirmatory factor analysis (van der Gaag, 
Cuijpers, et al., 2006; Lykouras et al., 2000).

Not only the composition, but also the terminology 
of individual psychopathological dimensions, differs 
greatly across the studies. For instance, authors have 
called the same dimension “psychomotor poverty” 
and “negative,” or “positive” and “reality distortion.” 
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High-order Intermediate-order Low-order

Poverty of affect and speech

Avolition

Social inappropriateness

Social isolation

Stereotypy/mannerisms

Agitation

Negativism

Motor poverty

Auditory hallucinations

Non-auditory hallucinations

Paranoid delusions

Bizarre delusions

Pychomotor poverty 

Social dysfunction

Positive catatonia

Negative catatonia

Hallucinations

Delusions

Negative

Catatonic

Psychosis

FIGURE 1 Simplified illustration of hierarchical ordering of dimensions. Reproduced with kind permission from Schizophrenia Research  
(Cuesta & Peralta, 2001).

TABLE 2 Factor Analysis Studies That Have Identified Five-Dimensional Modelsa

Study
No. of 
Patients

Rating 
Scale

Diagnosis/Stage of 
Illness

FA 
Method Dimensions Identified

Lindström and Knorring (1993) 120 PANSS Chronic Sz PCA Negative, positive, excitement, cognitive, 
depression/anxiety

Lindenmayer, Bernstein-
Hyman, and Grochowski (1994)

240 PANSS Chronic Sz PCA Negative, positive, excitement, cognitive, 
depression/anxiety

Kitamura et al. (1995) 584 Checklist Chronic Sz EFA Psychosis, negative, catatonia, mania, depression

Lindenmayer et al. (1995) 517 PANSS Chronic Sz PCA Negative, positive, cognitive, excitement and 
depression

Cardno et al. (1996) 102 OCPPI Chronic Sz EFA paranoid, disorganization, negative. bizarre 
delusions, hallucinations

Marder, Davis, and Chouinard 
(1997)

513 PANSS Chronic Sz PCA Negative, positive, disorganized, uncontrolled 
hostility/excitement, anxiety/depression

White et al. (1997) 1233 PANSS Chronic Sz PCA Positive, negative, dysphoric mood, activation, 
and autistic preoccupation

Lancon, Aghababian, Llorca, 
and Auquier (1998)

205 PANSS Chronic Sz PCA Negative, positive, excited, depressive, cognitive

Nakaya et al. (1999) 100 PANSS Chronic Sz, 
schizophreniform 
disorder

CFA Positive, negative, disorganization, excitement, 
and relational dimensions

Jim van Os et al. (1999) 706 OCPPI Chronic Sz PCA Psychosis, disorganization, negative, mania, 
depression

Lancon, Auquier, Nayt,  
and Reine (2000)

324 PANSS Chronic Sz PCA Negative, positive, excitation, depression, 
cognition
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Study
No. of 
Patients

Rating 
Scale

Diagnosis/Stage of 
Illness

FA 
Method Dimensions Identified

Lykouras et al. (2000) 258 PANSS Chronic Sz PCA Negative, excitement, depression, positive, 
cognitive impairment

Mass, Schoemig, Hitschfeld, 
Wall, and Haasen (2000)

253 PANSS Chronic Sz PCA Hostile excitement; negative, cognitive, positive 
depression

Wolthaus et al. (2000) 138 PANSS Recent-onset 
schizophrenia

PCA Positive, negative, depression, agitation-
excitement and disorganization component

Wickham et al. (2001) 155 OCPPI Chronic Sz 
schizoaffective, PUO

EFA Depressive, manic, reality distortion, 
disorganization, psychomotor poverty

Liddle et al. (2002) 155 SSPI Acute or persistent 
psychotic illness

PCA Negative, psychomotor excitation, 
disorganization, reality distortion, anxiety and 
depression

Emsley, Rabinowitz, and 
Torreman (2003)

535 PANSS Recent-onset SZ, 
schizophreniform 
disorder 
schizoaffective 
disorder

PCA Negative, positive, disorganized (or cognitive), 
excited, anxiety/depression

Lee, Harris, Loughland, and 
Williams (2003)

105 PANSS Chronic Sz PCA Psychomotor poverty, disorganization, reality 
distortion, excitement, and depression

Dikeos et al. (2006) 191 OPCRIT Chronic Sz, 
mood disorders 
with psychosis, 
schizoaffective 
disorder, OPI

PCA Mania, reality distortion, depression, 
disorganization, negative

van der Gaag, Hoffman, et al. 
(2006)

5769 PANSS Chronic Sz FEP CFA Positive symptoms, negative symptoms, 
disorganization, excitement, emotional distress

Allardyce et al. (2007) 464 OPCRIT Schizophrenia, 
schizoaffective 
disorder, delusional 
disorder, mania, 
DIPD, UPD

EFA Manic, disorganization, depressive, delusional, 
hallucinations

Demjaha et al. (2009) 536 SCAN FEP EFA Reality distortion, negative, disorganization, 
mania, depression

Demjaha et al. (2012) 122 CAARMS ARMS EFA Negative, anxiety, disorganization/cognitive, self-
harm, manic

CAARMS, comprehensive assessment of the at-risk mental state; CFA, confirmatory factor analysis; DIPD, drug-induced psychotic disorder; EFA, exploratory factor 
analysis; FA, factor analysis; FEP, first-episode psychosis; OCCPI, operational criteria checklist for psychotic illness; OPCRIT, operational checklist for psychotic 
symptoms; OPI, other psychotic illnesses; PANSS, positive and negative syndrome scale; PCA, principal component analysis; SCAN, schedules for clinical  
assessment in neuropsychiatry; UPD, unspecified psychotic disorder; Sz, schizophrenia.
aOnly studies that have included number of patients (n ≥ 100) were included.

TABLE 2 Factor Analysis Studies That Have Identified Five-Dimensional Modelsa—cont’d

Obviously, this warrants some attention, clarification, 
and ultimately consensus on the most adequate nosol-
ogy. It is clear, therefore, that an adequate dimensional 
model describing more accurately the underlying struc-
ture of psychotic psychopathology is missing.

SPECIFICITY TO DISORDER

Several studies have examined whether the identified  
schizophrenic dimensions are specific to this disorder, 
which is of crucial importance to both research and 

clinical domains. The majority of studies have dem-
onstrated the presence of three-dimensional model in 
affective psychosis, schizophreniform, and schizoaf-
fective disorder (Klimidis, Stuart, Minas, Copolov, & 
Singh, 1993; Maziade et al., 1995; Peralta, Cuesta, & 
Farre, 1997; Ratakonda, Gorman, Yale, & Amador, 1998). 
Further, Peralta and Cuesta (2001) have established the 
same symptom structure in schizophrenia and in a 
variety of other psychotic disorders, which led them to 
suggest that dimensions could be studied irrespective 
of diagnostic category and should be examined in rela-
tion to psychosis. Additionally, Demjaha et al. (2009) 
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have demonstrated that the symptom dimensions 
are evident in several diagnostic groups, specifically 
broad schizophrenia, manic psychosis, and depressive  
psychosis (Figure 2).

CHRONOLOGICAL STABILITY  
OF DIMENSIONS

Establishing the stability of factor structure across 
time is essential to demonstrate their validity and 
has relevant theoretical and clinical implications. The 
evidence supporting the stability of symptom dimen-
sions is conflicting, which again could be related 
to rating scales used or inherent to longitudinal 
designs. Although several studies, particularly those 
of a shorter follow-up (Goldman, Tandon, Liberzon,  
Goodson, & Greden, 1991; Nakaya, Suwa, Komahashi, &  
Ohmori, 1999), but also a few more long-term ones 
(Salokangas, 1997), found that dimensional structure 
varied over time, there are several studies that sup-
port longitudinal stability of symptom dimensions 
(Arndt, Andreasen, Flaum, Miller, & Nopoulos, 1995; 
Dingemans, Linszen, Nugter, & Scholte, 1995; Rey 
et al., 1994). A recent large first-episode psychosis 
study, which was the first to examine the stability of 
dimensional structure in patients from the outset of 
their illness over the 5- to 10-year follow-up, demon-
strated that the structure of identified dimensions at 
the baseline remained consistent and did not change 
over time (Russo et al., 2014). The evidence, however, 
regarding stability of specific dimensions is more con-
sistent. Thus, from all identified dimensions, the nega-
tive one appears to chronologically be the most stable, 
whereas the disorganization dimension, on the other 
hand, is particularly unpredictable (Arndt et al., 1995; 
Dollfus & Petit, 1995; Nakaya et al., 1999).

DIFFERENTIAL ASSOCIATIONS OF 
DIMENSIONS WITH BIOLOGICAL AND 

CLINICAL PARAMETERS

The validity of a new diagnostic classificatory system 
is best determined by investigating whether this system 
can discriminate satisfactory between various neurobio-
logical and clinical factors (Robins & Guze, 1970).

A growing amount of literature provides evidence for 
distinct cerebral correlates of each symptom dimension 
(Chua et al., 1997; Liddle, Friston, Frith, & Frackowiak, 
1992). Chua et al. (1997) have thus shown that psycho-
motor poverty (negative) dimension was negatively cor-
related with the relative volume of the left ventro-medial 
prefrontal gray matter, whereas disorganization was 
positively correlated with the volumes of both the hip-
pocampus and the parahippocampal gyrus bilaterally. 
More recently, Koutsouleris and colleagues using cross-
sectional and conjunctional voxel-based morphometry 
examined gray matter density differences between 175 
schizophrenic patients and 177 matched healthy controls 
and found distinct pattern of neuroanatomical correla-
tions. In their study, negative symptoms were charac-
terized by alterations in frontal and temporal regions as 
well as limbic and subcortical structures. The disorga-
nized symptom dimension was associated with bilateral 
gray matter changes in temporal, medial prefrontal, and 
insular cortices, whereas positive symptoms scores were 
correlated with left perisylvian regions and extended 
thalamic gray matter losses (Koutsouleris et al., 2008). 
Further, the negative dimension has been in several 
studies clearly associated with an excess of neurological 
soft signs (Arango, Kirkpatrick, & Buchanan, 2000; Boks, 
Liddle, Burgerhof, Knegtering, & Bosch, 2004; Demjaha 
et al., 2009; Wong, Voruganti, Heslegrave, & Awad, 1997) 
and minor physical anomalies (O’Callaghan et al., 1995), 
but no other dimensions.

FIGURE 2 Symptom dimension scores cut across, and are evident in all diagnostic groups. , manic; , reality distortion; , negative; ,  
depressive; , disorganization. Reproduced with kind permission from Psychological Medicine (Demjaha et al 2009).
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Furthermore, genetic twin studies have revealed 
that the greater the number of negative symptoms in a 
twin with schizophrenia, the greater the likelihood that 
another twin will be affected with the illness (Dworkin &  
Lenzenweger, 1984). Family studies have confirmed that 
the negative, disorganization, and manic dimensions were 
familial, which supports their use in the demarcation of 
homogeneous subsets for genetic studies (Wickham et al., 
2001). However, in their meta-analytic work of the studies 
on affected sibling pairs, Rietkerk et al. (2008) documented 
genetic contribution to disorganization dimension only, 
and neither to negative or reality distortion dimensions, 
and consequently concluded that: “only the disorganiza-
tion symptom dimension may provide an useful alterna-
tive phenotype for genetic research” (Rietkerk et al., 2008).

Studies that have examined neurocognitive deficits in 
schizophrenia have also observed distinct correlations with 
specific dimensions. Accordingly, the negative dimension  
has been shown to be associated with neurocognitive 
deficits, but affective and the positive dimensions have 
not. Specifically, the negative symptom dimension was 
found to be associated with generally poor cognitive 
function, and intelligence, executive function, memory, 
sustained-attention and sensory-motor function as well 
as poor premorbid functioning, whereas disorganized 
symptom dimension correlated with decreased intel-
ligence, attention span, and sensory-motor function 
(Basso, Nasrallah, Olson, & Bornstein, 1998; Brown & 
White, 1992; Kravariti et al., 2012; Norman et al., 1997). 
The positive symptom dimension, on the other hand, 
was not related to any deficits (Nieuwenstein, Aleman, &  
de Haan, 2001).

The negative and positive symptom dimensions 
appeared in one study to follow independent clinical 
course over time (Eaton, Thara, Federman, Melton, & 
Liang, 1995). However in another, both negative and 
positive as well as disorganization dimensions were 
associated with chronic course and deterioration from 
premorbid functioning (Wickham et al., 2001). Manic 
dimension has been consistently across studies associ-
ated with an acute mode of onset, compulsory admis-
sion, and shorter duration of untreated psychosis (DUP) 
(Demjaha et al., 2009), whereas negative dimension has 
been associated with insidious onset (Dikeos et al., 2006; 
Fenton & McGlashan, 1991; Ratakonda et al., 1998), 
longer DUP (Edwards, McGorry, Waddell, & Harrigan, 
1999; Larsen, Moe, Vibe-Hansen, & Johannessen, 2000; 
Malla et al., 2002), and poor functional outcome (Milev, 
Ho, Arndt, & Andreasen, 2005).

Reality distortion was associated in a number of stud-
ies with a longer DUP (Edwards et al., 1999; Larsen et al., 
2000; Malla et al., 2002). Moreover, reality distortion 
along with depressive symptoms was associated with 
higher level of urbanicity, which was not observed for 
disorganization (Oher et al., 2014). Disorganization, on 

the other hand, was shown to be related to compulsory 
admission (Demjaha et al., 2009), but insignificant or no 
associations with depressive dimension were reported 
(Demjaha et al., 2009; Dikeos et al., 2006; Guerra et al., 
2002). Finally, no dimension in particular has been asso-
ciated with gender or age (Demjaha et al., 2009; Guerra 
et al., 2002; McIntosh et al., 2001).

Taken together, although there is evidence to show 
differential associations of specific dimension’s scores 
and various biological and clinical variables, the find-
ings across studies lack consistency; therefore, further 
research is needed to make any definitive conclusions 
regarding the true external validity of dimensional 
representation of psychosis.

CATEGORIES OR DIMENSIONS,  
OR BOTH?

In spite of these limitations to the use of dimensions, 
in an attempt to best conceptualize psychopathological 
classification, phenomenologists have focused on the 
comparative clinical utility of traditional diagnostic con-
structs and psychopathological dimensions. Although 
several studies have assumed the superiority of dimen-
sional approach (van Os et al., 1996; Strauss, 1973), most 
recent studies have concluded that the concomitant use 
of both approaches may best conceptualize the richness 
of psychopathology and provide the most useful descrip-
tion of psychotic patients; hence, this approach may 
be most clinically useful. For example, Demjaha et al. 
(2009), in their large first-episode study, demonstrated 
that both diagnostic categories and dimensions indepen-
dently explained various clinical characteristics and risk 
factors for psychosis, with dimensions performing mar-
ginally better. However, when dimensions were added 
to diagnosis, a significant increase in the amount of vari-
ability explained was observed, indicating that psycho-
pathological dimensions provide additional information 
to that contained in diagnostic categories, particularly 
with regard to clinical parameters. Two earlier studies 
have concordantly concluded that the simultaneous 
use of both models could be most clinically informa-
tive (Allardyce, McCreadie, Morrison, & van Os, 2007; 
Dikeos et al., 2006). Thus, in later years, the trend from 
viewing diagnostic categories and dimensional model as 
competing diagnostic systems has moved to regarding 
them both as complementary suggesting that because 
dimensions provide additional quantitative measures, 
their use in clinical practice would facilitate appropri-
ate intervention at a more appropriate time (Jablensky &  
Kendell, 2002). It has been proposed that dimensional 
measures can be derived from rating scales such as 
the Positive and Negative Syndrome Scale (Allardyce, 
McCreadie, et al., 2007; Kay, Flszbein, & Opfer, 1987).
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CONCLUSION

More than 30 years of extensive research has no doubt 
provided evidence of existence of several psychopatho-
logical dimensions that, particularly when added to 
diagnostic categories, hold promise of encapsulating the 
whole range of psychotic symptoms. Despite, consecu-
tive evidence indicating the simultaneous use of both 
diagnostic models, the Diagnostic and Statistical Manual 
of Mental Disorders, 5th edition, does not denote such 
a paradigm shift. This is in part because we still do not 
have a precise dimensional model, which precludes its 
more prominent integration in new diagnostic manuals 
and clinical practice as well as its use in research. And, 
although studies have provided evidence in support 
of validity of dimensions, the findings are inconsistent 
and conflicting, and more research is needed to establish 
equal or a greater validity than that of existing nosologi-
cal symptoms.

Therefore, there is an urgent need in the field to 
develop a precise and uniform dimensional model. One 
of the major challenges in psychiatry is the attempt to link 
psychopathological dimensions to underlying neurobio-
logical mechanisms. If we disentangle the complex het-
erogeneity of psychotic symptoms and provide refined 
and accurate constructs of psychopathology, we will be 
more likely to solve the etiological and pathophysiologi-
cal heterogeneity of schizophrenia, which in turn will 
lead to more effective treatment and better outcome for 
our patients. In doing so, we do not need another study 
that yielded yet another dimensional structure the way 
it is currently done; instead, we need a consensus from 
the leaders in the field on first which rating scale to use 
or even to develop a new one first, which hopefully 
will account for all psychopathology, unlike the Posi-
tive and Negative Syndrome Scale and some others that 
omit important symptoms. This is perquisite in deriv-
ing dimensions that are more theoretically and clinically 
meaningful. Second, the same methodology in extracting 
factors at the same stage of illness should be universally 
used, which would hopefully yield more consistent facto-
rial structure and help to establish its validity.

Important issue pertains to the level at which dimen-
sions can be incorporated into diagnostic categories. 
Unsurprisingly, as rightly emphasized by Peralta and 
Cuesta, the accurately delineated dimensions would 
generate the data needed to formulate a “bottom-up” 
structural organization for the diagnostic categories 
(Peralta & Cuesta, 2007). For instance, patients scoring 
high on the dimensions of positive, negative, and dis-
organization symptoms, may qualify more for a schizo-
phrenia diagnosis, whereas those scoring high on the 
positive and manic symptom dimensions are more likely 
to be given a diagnosis of bipolar disorder (van Os & 
Kapur, 2009).

Overall, more and urgent research is required to dis-
entangle accurately the underlying nature of psycho-
pathological symptoms. Once we generate a precise 
and valid dimensional model, we can have confidence 
in accelerating neurobiological research and ultimately 
develop effective intervention for both prevention and 
cure of devastating illnesses such as schizophrenia and 
other psychotic disorders.
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INTRODUCTION

Schizophrenia is a globally pervasive neuropsychi-
atric disorder with an approximate prevalence of 1% in 
any given adult population (Lauriello, Bustillo, & Keith, 
2005) and a mean annual incidence rate of 0.2 per 1000 
with a range of 0.04–0.58 per 1000 people (Eaton, 1999). 
In terms of incidence across countries, a study conducted 
by the World Health Organization has found contrasting 
results. In studies of narrowly defined schizophrenia, the 
incidence rate did not differ significantly across societies, 
but when schizophrenia was more broadly defined, the 
highest incident rates occurred in developing countries 
compared to industrialized countries (Jablensky et al., 
1992). In addition, this study found a higher incidence of 
catatonic schizophrenia in developing countries.

Schizophrenia is characterized by cognitive, behavioral, 
and emotional abnormalities, including positive symp-
toms (e.g., delusions, hallucinations, catatonic behavior, 
disorganized speech) and negative symptoms (e.g., alogia, 
affective flattening, amotivation) (Buchanan & Carpenter, 
2005). Furthermore, chronically disturbed cognition has 
been observed in several domains such as executive func-
tion, attention, and verbal fluency and causes considerable 
impairment in level of functioning (Gold & Green, 2005). 
Although research on the etiologies of this neuropsychiat-
ric disorder is still in an early phase, the general consen-
sus is that environmental risk factors, susceptibility genes, 
and their interaction lead to the eventual development 
of schizophrenia, and that much of the liability to schizo-
phrenia is initiated by insults that occur during different 
windows of brain development, from the prenatal period 
up to adolescence. The neurodevelopmental hypoth-
esis of schizophrenia suggests that these insults are most  

detrimental during certain critical periods of vulnerability 
(Piper et al., 2012). These insults’ origins are believed to alter 
the neurodevelopmental trajectory of specific neurotrans-
mitters and other molecules, synapses, cells, brain regions, 
and neural circuits and networks, leading to pathophysi-
ologic and neuromorphologic alterations and ultimately 
behavioral outcomes characteristic of the disorder.

In this chapter, we review findings of specific envi-
ronmental factors that have been found to contribute to 
schizophrenia. We will primarily focus on environmen-
tal insults that play a significant role during the prenatal 
and childhood phases of life, examining in particular 
infection, nutrition, cannabis use, advanced paternal 
age, immigration, and childhood trauma. We will then 
consider the diathesis-stress model in which genetic and 
environmental factors interact to influence the devel-
opment of schizophrenia. Finally, we offer potential 
recommendations and interventions that are feasible 
at present which might help to prevent or mitigate the 
severity of schizophrenia and discuss future directions 
for research in this area of work.

EVIDENCE FOR ENVIRONMENTAL 
FACTORS IN SCHIZOPHRENIA

Schizophrenia is a heritable disorder. Early research 
on schizophrenia was dominated by twin, family, and 
adoption studies (Lowing, Mirsky, & Pereira, 1983; 
Reiss, 1976; Tienari et al., 1987). More recently, linkage 
and genome-wide association studies have identified 
chromosomal regions and genetic variants, both inher-
ited and de novo, which are related to an increased risk 
of the disorder (Fromer et al., 2014).
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Despite the importance that genetics has on the devel-
opment of schizophrenia, environmental risk factors 
have emerged as potentially important in the etiology 
of this disorder. Twin studies have found a concordance 
rate of approximately 50–60% in monozygotic (MZ) 
twins, which falls well short of complete concordance 
(McGuffin, Owen, & Farmer, 1995). Furthermore, this 
concordance rate is skewed by the fact that MZ twins 
generally share a similar in utero environment as well as 
greater similarities in the postnatal environment.

In a study that examined the difference in concor-
dance rates within only MZ twins, Davis, Phelps, and 
Bracha (1995) found that there was a difference in these 
rates when comparing monochorionic and dichorionic 
MZ twins, the latter of whom have separate placentae 
and fetal circulation. In monochorionic MZ twins, who 
share a greater in utero environment almost from con-
ception, the concordance rate of schizophrenia is 60%, 
whereas it is only 11% in dichorionic twins. Hence, this 
study supports an environmental role in the develop-
ment of schizophrenia, even within MZ twin pairs.

Next we discuss major environmental risk factors that 
have been identified to date for schizophrenia and the 
evidence supporting their relationship with the disorder.

Prenatal Infection

A role of prenatal infection in schizophrenia is sup-
ported by several lines of research. Initial studies have 
found an increased risk of schizophrenia in children 
born during the winter and spring months, potentially 
reflective of respiratory infections in particular, and birth 
in urban settings, where infections can spread more rap-
idly (for a review, see Brown & Derkits, 2010).

More recent studies have focused on birth cohorts 
comprising children all born within the same time 
period and in which records of maternal infection, psy-
chiatric illnesses, and related records were maintained 
throughout the pregnancy and during the early life of 
the child. These allow for long-term assessment to the 
diagnosis of schizophrenia; comparison of psychiatric 
and other outcomes among subjects with prospectively 
documented infection with those considered to be free of 
infection. Some cohorts capitalize on biological samples 
from the pregnancy and the fetus that were also stored. 
These samples have been used to serologically confirm 
antibodies to infection.

Next we review results of select studies of specific 
prenatal infections and schizophrenia (for a review, see 
Brown and Derkits, 2010).

Influenza
Because influenza is so prominent during the winter 

and the spring months, investigators began to exam-
ine the psychiatric outcomes of children born during 

influenza epidemics (Brown & Derkits, 2010). In the ear-
liest studies, some were able to find a link between being 
born during an influenza epidemic and developing 
schizophrenia during adulthood, whereas others failed 
to replicate these results. These studies were limited in 
that it was possible that a significant proportion of the 
mothers did not have influenza at the time of pregnancy 
because individuals in these studies were included 
merely because they were pregnant during the time of 
the influenza exposure rather than being confirmed with 
influenza during pregnancy.

Therefore, researchers used birth cohort studies to 
document maternal influenza exposure during the preg-
nancy by relying on documented records and biomark-
ers prospectively collected during pregnancy. These 
subjects were linked to registries that contained data on 
psychiatric outcome. In some studies, the patients were 
interviewed, whereas in others, the registry diagnoses 
were used. One such study was conducted by Brown 
et al. (2004) using the birth cohort of the Child Health 
and Development Study, born between 1959 and 1967 
in Alameda County, California, and followed by the 
Kaiser Foundation Health Plan. Strengths of this study 
included documentation and availability of maternal 
serum drawn during the pregnancy, psychiatric diagno-
ses based on structured interviews and reviews of psy-
chiatric records of the offspring, and regular follow-up of 
the cohort. Quantification of influenza antibody in these 
specimens led to the finding that among mothers who 
were exposed to influenza during the first half of gesta-
tion, there was a threefold elevation in the risk of devel-
oping schizophrenia. If the exposure occurred during 
the first trimester of pregnancy, the risk was increased 
sevenfold. However, if the exposure to influenza was in 
the second half of gestation, there was no increased risk 
for schizophrenia.

These results correspond with those that have emerged 
from an increasing number of animal studies, including 
those on rodents and rhesus monkeys, of influenza and 
of maternal immune activation. These studies demon-
strated that both of these immunologic exposures, par-
ticularly during early-to-middle gestation, were related 
to neurobiological and behavioral outcomes that are 
analogous to those found in schizophrenia or related 
psychoses (Bauman et al., 2014; Meyer, Yee, & Feldon, 
2007; Vuillermot, Webber, Feldon, & Meyer, 2010).

Rubella
Researchers have also tested the risk of schizophrenia 

in a birth cohort exposed to the rubella virus. Rubella 
was one of the first known teratogens, with a spectrum 
of effects on congenital development including mental 
retardation, deafness, and cataracts as well as a 20% 
risk of miscarriage (Siegel, Fuerst, & Guinee, 1971). 
These findings suggested that rubella might also lead to 
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long-term developmental consequences, such as schizo-
phrenia, that may not be immediately apparent at birth.

Brown et al. (2001) investigated a birth cohort in 
which pregnant women were diagnosed as having had 
prenatal exposure to the rubella virus by clinical signs 
and confirmatory serological testing. In a longitudi-
nal follow-up of the infants in this cohort, the authors 
found that more than 20% of the exposed children later 
developed schizophrenia or schizophrenia spectrum 
disorders. Much like the results found for influenza, the 
correlation was strongest when mothers were exposed to 
rubella during the first 2 months of pregnancy.

One hypothesis for how rubella affects the develop-
ing fetus is by altering the neurodevelopmental trajec-
tory of the child, as this study found that approximately 
90% of the rubella-exposed children who eventually 
developed schizophrenia spectrum disorders had 
increased neuromotor and/or behavioral abnormali-
ties during childhood as well as a decline in intelligence 
quotient over time. This finding was in contrast to a 
much smaller proportion of these childhood neuro-
developmental abnormalities in those whose mothers 
were exposed to rubella during pregnancy, but who did 
not eventually develop these disorders.

Herpes Simplex Virus Type 2
Another viral infection with detrimental effects on 

infants is herpes simplex virus type 2 (HSV-2), a sexually 
transmitted virus which is transmitted to the infant from 
the mother as the fetus passes through the birth canal. 
Similar to rubella, HSV-2 causes abnormal neurological 
development and other related developmental conse-
quences (Whitley, 2006).

One study that has examined the link between mater-
nal HSV-2 infection and schizophrenia in offspring was 
by Buka, Tsuang, Torrey, Klebanoff, Bernstein, et al. 
(2001). Elevated levels of maternal immunoglobulin G 
(IgG) antibody associated with HSV-2 were linked to a 
higher risk of psychosis in those mothers’ offspring. A 
larger follow-up study by Buka, Cannon, Torrey, and 
Yolken (2008) again found a higher risk of psychosis and 
an even higher risk of schizophrenia-related psychosis in 
offspring whose mothers tested positive for exposure to 
HSV-2 during pregnancy. This risk was particularly ele-
vated in mothers who engaged in risky sexual practices 
during pregnancy, such as frequent sexual encounters 
without contraception. This was a particular strength of 
the study (Brown & Derkits, 2010).

Cytokines and Other Inflammatory Biomarkers
Cytokines, which encompass a family of soluble 

polypeptides, represent markers of prenatal infection 
and inflammatory conditions. Cytokines orchestrate the 
immune response to the presence of infections and other 
noxious insults and therefore play an essential role as 

part of the immune system. Hence, cytokine elevations 
may indicate exposure to a number of different types of 
infections during pregnancy.

In examining the connection between elevated levels 
of maternal cytokines and the development of schizo-
phrenia in the offspring, Brown, Hooton, et al. (2005) 
found a twofold increase in levels of the pro-inflam-
matory cytokine interleukin-8 during the second and 
early third trimesters of pregnancies of offspring who 
later developed schizophrenia compared with control 
pregnancies. A second study by Buka, Tsuang, Torrey, 
Klebanoff, Wagner, et al. (2001) found that the mothers 
of children who developed psychosis later in life had 
higher levels of the pro-inflammatory cytokine tumor 
necrosis factor-α at the time of birth. Elevated cytokine 
levels have also been associated with other conditions 
such as a higher body mass index (BMI) (Schaefer et al., 
2000) and preeclampsia (Cannon, Jones, & Murray, 2002), 
both of which have also been associated with schizo-
phrenia (Brown, Michaeline, & Susser, 2005). Hence, 
cytokine levels may not necessarily indicate maternal 
prenatal infection, but can be an important indicator 
of other insults to the fetus and newborn. In the most 
recent study of a prenatal inflammatory biomarker and 
schizophrenia, Canetta et al. (2014) demonstrated that 
elevated maternal C-reactive protein measured during 
pregnancy in archived serum specimens is associated 
with an increased risk of schizophrenia in offspring from 
a Finnish national birth cohort.

Toxoplasma gondii
Nonviral or bacterial infections also have detrimen-

tal effects on fetal development. Toxoplasma gondii is an 
intracellular parasite that can increase the risk of schizo-
phrenia in infants whose mothers were exposed to this 
pathogen during pregnancy (Brown, Schaefer, et al., 
2005). Levels of T. gondii IgG antibody in archived mater-
nal sera were greater than twice as high in mothers of 
children who developed schizophrenia compared with 
mothers of control offspring. Toxoplasma gondii has also 
been linked to congenital central nervous system (CNS) 
abnormalities and delays in neurological development, 
which supports its biological plausibility for increasing 
the risk for schizophrenia (Dukes, Luft, Durack, Scheld, 
& Whitley, 1997).

In a second study, which used T. gondii IgG anti-
body measurements on filter paper blood spots col-
lected from newborns (first week of life), Mortensen 
et al. (2007) found that T. gondii IgG levels were higher 
in those who later developed schizophrenia compared 
with controls. This antibody most likely originated 
from the mother rather than the child, because the 
antibody crosses the placenta and T. gondii infection is 
highly unlikely in the first week of life. A more recent 
study of IgG levels measured in neonatal dried blood 
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spots by Blomstrom et al. (2012) again associated 
higher levels of T. gondii IgG with later schizophrenia. 
These findings support the original results of Brown, 
Schaefer, et al. (2005).

Maternal Infection and the Pathobiology  
of Schizophrenia

Evidence from our group indicates that prenatal infec-
tion can have pathobiological consequences that are 
observed in schizophrenia, including effects on neuro-
cognition. A study by Brown et al. (2009) investigated the 
relationship in schizophrenia patients between having had 
prenatal exposure to influenza or toxoplasmosis and subse-
quent performance on neurocognitive measures, including 
the Wisconsin Card Sorting Test and the Trail Making Test, 
part B. Schizophrenia patients who were exposed to mater-
nal infection during gestation committed significantly 
more errors on the Wisconsin Card Sorting Test and needed 
significantly more time to complete the Trail Making Test, 
part B test. Furthermore, the patients showed deficient abil-
ities on figural fluency, sequencing of letters and numbers, 
and backwards digit span, suggesting that prenatal infec-
tion may affect cognitive abilities, specifically set-shifting 
function, and that there may be associated abnormal physi-
ological changes in the brain.

A study by Ellman et al. (2012) linked mothers who 
had anemia to an increased deficiency in neuromotor 
functions and intellectual difficulties in schizophrenia 
patients but not in controls. Schizophrenia offspring 
of mothers with lower hemoglobin values throughout 
pregnancy had a significant decrease in scores on the 
Grooved Pegboard test, the Finger Tapping test, and the 
Wechsler Adult Intelligent Scales. These results suggest 
that having a liability to schizophrenia make offspring 
more vulnerable to the negative cognitive effects of 
decreased maternal hemoglobin values.

Prenatal Nutrition

Deficient prenatal nutrition has also been implicated 
as a leading candidate risk factor in the etiology of 
schizophrenia. Some of the first studies on the effects of 
prenatal nutrition on the later development of schizo-
phrenia were conducted on individuals who were born 
or in gestation during the Dutch Hunger Winter of 
1944–1945 (Hoek, Brown, & Susser, 1997). This was a 
severe famine resulting from a blockade of the Neth-
erlands by the Nazi regime. This led to thousands of 
deaths as well as deceased fertility and infant mortality. 
Because the caloric content of the rations and psychi-
atric outcomes were well documented and the famine 
was considered relatively time-limited, this was an 
opportunity to study the effects of prenatal nutrition 
on a cohort that was exposed to nutritional deficiency 
during specific periods of gestation.

This series of studies reported that the timing of the 
exposure may determine the type of psychiatric disorder 
that eventually develops, and that exposure to famine 
and malnutrition earlier in gestation may lead to more 
severe psychiatric disorders including schizophrenia 
and schizoid personality disorder (Hoek et al., 1997; 
Susser et al., 1996). Specifically, these studies found an 
increased risk of schizophrenia and schizophrenia spec-
trum disorders, as well as schizoid personality disorder, 
among those exposed to the peak of the famine dur-
ing conception and early gestation. The authors of the 
study suggest that these findings might be explained by 
direct effects of protein caloric malnutrition, by micro-
nutrient deficiency, or an unknown cooccurring factor. 
In a related study, Brown, van Os, Driessens, Hoek, and 
Susser (2000) demonstrated that the risk of developing 
unipolar or bipolar major affective disorder requiring 
hospitalization was higher in the subjects exposed to this 
famine during the second trimester and highest in those 
exposed during the third trimester. This study not only 
supports the earlier findings that prenatal malnutrition 
can have severe effects on psychiatric disorders, but also 
suggests that the timing of exposure to malnutrition may 
modify the type of psychiatric disorder that results.

The authors also found that early gestational expo-
sure to the Dutch famine was associated with congenital 
abnormalities of the CNS, which is concordant with ear-
lier work on this cohort and with the finding that expo-
sure to famine during this period was also related to an 
increased risk of schizophrenia. Specifically, researchers 
found an increased rate of neural tube defects among the 
children who were in gestation during the famine. Inter-
estingly, neural tube defects are related to prenatal folate 
deficiency, which is common during pregnancy, suggest-
ing that this micronutrient may be a viable candidate 
risk factor for schizophrenia. Other nutrients related to 
neural tube defects and the folate metabolic cascade are 
vitamins B12 and B6. The lack of folate and of these vita-
mins causes maternal hyperhomocysteinemia (Penner & 
Brown, 2007). In the birth cohort of the Child Health and 
Development Study, we found a significant elevation in 
maternal homocysteine during pregnancy in cases of 
schizophrenia compared with matched controls (Brown 
et al., 2007). Elevated homocysteine levels may lead to 
an increased risk of schizophrenia by interfering with 
the development of N-methyl-d-aspartate receptors and 
leading to glutamatergic deficits (Picker & Coyle, 2005).

Low levels of prenatal vitamin D in the pregnant 
mother have also been associated with schizophrenia 
(McGrath, Eyles, & Mowry, 2003). Although prenatal 
vitamin D deficiency can be caused by maternal malnu-
trition, it is also related to seasonal fluctuations result-
ing in daily length of light exposure or migration to 
geographical regions with colder climates and less sun-
light. Insufficient levels of vitamin D have been found in 
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animal models to correspond to biological abnormalities 
seen in schizophrenia, and it is hypothesized that lack 
of vitamin D affects cell growth and proliferation and 
alters the immune system response in both the develop-
ing fetus as well as in adult brain.

Iron is another important nutrient that is essential for 
brain development and functioning. Prenatal iron defi-
ciency or a lack of iron in the early stages of life may 
lead to permanent neurological and behavioral abnor-
malities from childhood, extending into adulthood. A 
study by Insel, Schaefer, McKeague, Susser, and Brown 
(2008) investigated the effect of maternal iron deficiency 
on the relative risk of developing schizophrenia or 
schizophrenia spectrum disorders during adulthood in 
the Child Health and Development Study birth cohort. 
The authors found that low maternal hemoglobin (in 
the anemic range), a robust marker of iron that was pro-
spectively documented in all members of the cohort, 
was associated with a nearly fourfold increased risk of 
schizophrenia spectrum disorders in their offspring, 
adjusting for many covariates.

In an attempt to replicate the findings of this study, 
Sorensen, Nielsen, Pedersen, and Mortensen (2011) exam-
ined a cohort of Danish births from 1978 to 1998. The 
authors found that the individuals whose mothers had 
been diagnosed with anemia during pregnancy had a 
1.60-fold increased risk for developing schizophrenia. 
Further research is required to identify plausible mecha-
nisms by which prenatal iron deficiency modulates the 
risk of schizophrenia. Finally, new research has found that 
maternal iron deficiency may interact with prenatal infec-
tion and immune activation to contribute to schizophre-
nia-like behavior in rat offspring (Harvey & Boksa, 2014).

Additional nutritional risk factors for schizophrenia 
include maternal vitamin A deficiency (Bao et al., 2012) 
and excess docosahexaenoic acid (Harper et al., 2011).

McClellan, Susser, and King (2006) have suggested 
that lack of proper prenatal nutrition could lead to de 
novo mutations in the genes responsible for promoting 
healthy brain development. A developing fetus requires 
proper nutrients, as they are responsible for protect-
ing, synthesizing, and repairing DNA (Ames, 2001). An 
excess of mutations in the genes that are critical to brain 
development could result in impairments in both brain 
structure and function. The timing of origin of these 
mutations is also essential because the fetus is most vul-
nerable during early gestation from the high cell divi-
sion rate at this time; mutations that appear during or 
around the time of conception can lead to an exponential 
growth of mutant cells (Paashuis-Lew & Heddle, 1998).

Malnutrition could also lead to epigenetic changes in 
genes responsible for proper fetal development. Nota-
bly, folate is a known methylator of genes, because 
gene methylation generally represses gene expression 
(Yu et al., 2014), its absence may act to increase gene 

expression. The consequences may depend upon the 
gestational time period of exposure. For example, in a 
study by Heijmans et al. (2008), infants who were in ges-
tation during the Dutch Hunger Winter displayed epi-
genetic changes in the insulin-like growth factor 2 gene 
compared with same-sex siblings who were unexposed 
during gestation. These and other epigenetic differences 
could be a mediator between prenatal malnutrition and 
the expression of genes related not only to fetal growth, 
but also neuropsychiatric development.

Prenatal and perinatal malnutrition may also modify 
fetal brain development through physiologic mecha-
nisms that are implicated in schizophrenia. As an 
example, maternal iron deficiency is known to diminish 
myelination (Wu et al., 2008), and animal, postmortem, 
and neuroimaging studies support myelin deficits in 
schizophrenia (Flynn et al., 2003; Zhang et al., 2012).

Another finding related to prenatal nutrition and 
schizophrenia is the association between high maternal 
BMI and schizophrenia among offspring. In this study, 
conducted on the Child Health and Development Study 
birth cohort, mothers with a BMI greater than 30 were 
three times as likely to give birth to offspring who later 
developed schizophrenia (Schaefer et al., 2000). Fur-
thermore, Solomon et al. (1997) found that gestational 
diabetes is correlated with high BMI as well as with the 
obstetric complications seen among infants who later 
develop schizophrenia. In addition, elevated BMI is 
associated with increased inflammation (Kitahara et al., 
2014), which has also been associated with schizophre-
nia (Canetta et al., 2014). Hence, high BMI may lead to 
obstetric complications (Crane, Wojtowycz, Dye, Aubry, 
& Artal, 1997), or inflammation, which then increase 
the risk of the development of schizophrenia in the off-
spring (Cannon et al., 2002). This work has particularly 
important implications for public health as the obesity 
epidemic has become an increasing problem in industri-
alized countries (Güngör, 2014).

Paternal Age

Advanced paternal age has been identified as a risk 
factor for schizophrenia. In a seminal study, Malaspina 
et al. (2001) reported this finding on a single large birth 
cohort in Israel, the Jerusalem Perinatal Cohort. The 
authors found that advanced paternal age was corre-
lated with the risk of schizophrenia beginning as early 
as 25 years of age. The risk of schizophrenia increased 
rapidly as paternal age advanced, with a relative risk of 
2 in offspring of men who were 45–49 years old at time of 
birth of the child and nearly 3 in offspring of men older 
than 50. Advanced maternal age was not associated with 
schizophrenia and the paternal age finding persisted 
following adjustment for maternal age. In addition, the 
finding persisted after accounting for length of marriage 
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as well as family history of schizophrenia and other 
psychiatric illnesses. The finding has been replicated by 
many groups throughout the world (Brown et al., 2002; 
Dalman & Allebeck, 2002; El-Saadi et al., 2004; Tsuchiya 
et al., 2005).

This finding has been hypothesized to result from de 
novo genetic mutations that are highly correlated with 
older paternal age (Kong et al., 2012; Malaspina et al., 
2001). Unlike ova, spermatogonia undergo an expo-
nentially rising number of cell divisions as paternal age 
increases. After a male experiences puberty, spermatogo-
nia experience approximately 23 divisions per year, lead-
ing to about 200 divisions by age 20 and 660 by age 40 
(Malaspina et al., 2001). This rapidly increasing number 
of cell divisions as paternal age advances, accompanied 
by deficits in DNA repair mechanisms, may be at least 
partially responsible for the increase in de novo muta-
tions. Indeed, many studies have identified a signifi-
cant excess of copy number variants in schizophrenia, 
including de novo mutations, and several are associated 
with very high risks of the disorder (Rippey et al., 2013; 
Merikangas et al., 2014; Luo et al., 2014). In an Icelandic 
cohort of fathers and offspring, Kong et al. (2012) found 
that the age of the father at conception of the offspring 
was the driving force behind the diversity in mutation 
rate of single nucleotide polymorphisms, with paternally 
derived mutations doubling every 16.5 years. Further-
more, they found that the father’s age explained nearly 
all of the de novo mutations remaining after accounting 
for random variation.

An excess of de novo mutations would at least par-
tially explain why schizophrenia persists in the popula-
tion despite a reduction in reproductive fitness in this 
disorder. Parenthetically, inherited genetic variants for 
schizophrenia are expected to have been subject to nega-
tive selection pressures. Consequently, it has been argued 
that if new genes for schizophrenia were not introduced, 
the disorder should have either disappeared, or become 
rarer over time.

Cannabis Use

Cannabis, a drug prepared from the plant Cannabis 
sativa (including marijuana, resin, and “skunk”), is used 
widely throughout the world and is especially popular 
in North America, Western Europe, West and Central 
Africa, and Oceania (United Nations Office on Drugs 
and Crime, 2009). Several studies within the past decade 
have investigated the effect of continuous use of can-
nabis on psychotic illnesses, specifically schizophrenia. 
Zammit, Allebeck, Andreasson, Lundberg, and Lewis 
(2002) in Sweden found that those who smoked canna-
bis had a twofold increased risk of developing schizo-
phrenia within 15 years. In addition, the researchers also 
found a dose–response relationship; subjects who used 

cannabis more heavily (over 50 reported occasions) were 
six times as likely to develop schizophrenia compared to 
those who did not use cannabis at all.

Subsequent studies were carried out in different coun-
tries, which confirmed the results found in the Zammit 
et al. (2002) study, showing that those clinically depen-
dent on cannabis by 18 years of age had an increased 
risk of later developing psychotic symptoms (Fergusson, 
Horwood, & Swain-Campbell, 2003). Cannabis users 
were also more likely to develop schizophreniform dis-
order (Arseneault et al., 2002), and the dose–response 
relationship found in the first study was confirmed 
(Henquet et al., 2005).

Experimental studies have also been conducted in 
order to assess the effect of cannabis use on schizo-
phrenia. D’Souza et al. (2004) administered varying 
levels of the main ingredient in cannabis to healthy 
individuals with a history of cannabis exposure (but 
not abuse) and found that the subjects in the study 
displayed both positive and negative symptoms asso-
ciated with schizophrenia, although all symptoms 
disappeared by about 3 h. D’Souza et al. (2005) con-
ducted a follow-up study in which they followed the 
same protocol, but with clinically stable schizophrenia 
patients. Again, they found brief increases in positive 
symptoms, even if the patients were already taking 
antipsychotics.

More recent studies have focused on the mecha-
nisms behind the schizophrenia–cannabis interaction. 
Epstein and Kumra (2014) tested the effect of canna-
bis on executive control of attention and cognitive 
function by comparing scores on the Attention Net-
work Test among people with early-onset schizophre-
nia (EOS) and cannabis use disorder, only EOS, only 
cannabis use disorder, and controls. They found that 
the first group in particular had less efficient execu-
tive control of attention compared with those who 
had only EOS. They also found a smaller right cau-
dal anterior cingulate cortex in subjects with EOS and 
cannabis use disorder. However, it is presently unclear 
whether this means that the smaller cortex surface 
leads to deficits in self-regulation and heavy cannabis 
use or if the direction of causation is in the opposite 
direction. More recent studies have suggested gene–
environment correlation between cannabis use and 
schizophrenia in that the increased risk of schizophre-
nia after heavy and consistent cannabis use may be 
moderated by a shared gene that may explain part of 
the association (Power et al., 2014).

In support of the previous study by Power et al. (in 
press), a second study by Giordano, Ohlsoon, Sundquist, 
Sundquist, and Kendler (2015) found that the relation-
ship between cannabis use or abuse and schizophrenia 
may not be as strong as believed. The authors found 
that as the degree of shared genetic and environmental 
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factors increased (beginning with first cousins to full sib-
lings), the relationship between schizophrenia and can-
nabis abuse decreased, although it remained significant 
even in full sibling pairs.

Immigration Status

First- and second-generation migrants have a higher 
risk of schizophrenia (Selten, Cantor-Graae, & Kahn, 
2007). This idea was originally presented in a paper by 
Odegaard (1932), who found that Norwegian immigrants 
in the United States were more likely to be admitted to 
the hospital for schizophrenia compared with Norwe-
gians born in the United States or those who still lived 
in Norway. Cantor-Graae and Selten (2005) followed up 
on this idea, finding a higher incidence of schizophrenia 
among subjects in the United Kingdom who originally 
had an African Caribbean background; individuals in 
the Netherlands with a Surinamese, Dutch Antillean, 
or Moroccan background; and subjects of various eth-
nic backgrounds in Denmark. In addition, subjects who 
immigrated from a developing country were more likely 
to develop schizophrenia than those from a developed 
country.

In the 2007 paper, Selten et al. reaffirmed this finding 
from the 2005 meta-analysis (Cantor-Graae & Selten, 
2005). The authors found a relative risk for schizo-
phrenia of 2.7 among first-generation migrants and a 
relative risk of 4.5 among second-generation migrants. 
They found an especially high risk of schizophrenia 
for migrants in Europe from countries with high black 
populations; this finding was replicated in further 
studies (Dealberto, 2010). Dealberto (2010) suggested 
that vitamin D deficiency in dark-skinned individu-
als might be responsible for this higher rate of schizo-
phrenia. Cantor-Graae and Selten (2005) proposed an 
alternative explanation for their findings, namely the 
experience of social defeat, which they define as a sub-
ordinate position in society or an outsider status. The 
authors suggested that the chronic experience of social 
defeat through high competition in jobs, housing, and 
other aspects of life leads to increased sensitivity in the 
mesolimbic dopamine system. In support of this the-
ory, the authors observed that immigrant groups who 
suffer from a low socioeconomic status in a highly com-
petitive atmosphere have the highest risks for schizo-
phrenia, although this association may be due to social 
selection rather than social causation. In addition, peo-
ple with dark skin often have to endure higher levels 
of racism and ethnic discrimination. Further proposed 
explanations or contributing factors involve an ethnic 
disadvantage in the immigrants’ new home countries, 
an increase risk of schizophrenia in those living in 
urban settings, unemployment, poor housing condi-
tions, and general social adversity.

Birthplace and Residence

The risk of schizophrenia is influenced by the place 
of birth and childhood residence, specifically in urban 
versus rural locations. Studies have consistently shown 
that being raised in an urban setting leads to a higher 
risk of developing schizophrenia and that this risk is 
related to the level of urbanicity in a dose–response rela-
tionship (March et al., 2008). In addition, a large study 
by Mortensen et al. (1999) found that birth in an urban 
setting is related to schizophrenia risk, with a twofold 
increased risk in those born in the capital of Denmark 
compared with those born in the rural regions. Pedersen 
and Mortensen (2001) also found that the timing of expo-
sure to urban settings was related to schizophrenia, but 
that being raised in an urban setting was a greater risk 
factor than being born in an urban area. Further evidence 
indicated that family-level and individual-level expo-
sure to urbanicity were important in the relationship 
between degree of urbanization and the development of 
schizophrenia (Pedersen & Mortensen, 2006). Finally, a 
recent study by Sariaslan et al. (2015) found that popula-
tion density as measured when the subject was 15 years 
of age was a predictor of later schizophrenia.

However, in a more recent meta-analysis of four stud-
ies by Vassos, Pedersen, Murray, Collier, and Lewis 
(2012), including the 1999 study by Mortensen et al., the 
authors found that the timing of exposure to urbanicity 
in an individual’s life did not change the relationship 
with schizophrenia. Potential explanations included 
individual or family characteristics, selective migration, 
a greater risk of being exposed to infections or pollut-
ants, an insufficient diet, or a poor social environment. In 
addition, the authors point to social fragmentation and 
deprivation as a possible explanation.

Socioeconomic Status

Two different hypotheses have been generated and 
tested to account for the relationship between low socio-
economic status and schizophrenia (Dohrenwend et al., 
1992). The first is social causation, which proposes that 
schizophrenia is due to the environmental disadvantages 
that people with a low socioeconomic must endure. An 
alternative hypothesis, social drift, argues that individ-
uals with schizophrenia tend to move from higher to 
lower socioeconomic status because of the debilitating 
symptoms that accompany the illness. A full discussion 
of this question has been well covered in other references 
(Dohrenwend et al., 1992; Kwok, in press) and will there-
fore be only briefly discussed here.

Studies have found conflicting evidence, ranging 
from no link between socioeconomic status and schizo-
phrenia (Hare, Price, & Slater, 1972; Timms, 1998) to the 
finding that those with schizophrenia are more likely to 
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originate from a higher social class (Makikyro et al., 1997; 
Mulvany et al., 2001). More recently, Wicks, Hjern, and 
Dalman (2010) and Wicks, Hjern, Gunnell, Lewis, and 
Dalman (2005) have examined the risk of developing 
psychosis resulting from social adversity. Several indica-
tors of low socioeconomic status during childhood were 
related to a greater risk for psychosis and schizophrenia, 
including rented apartments, single-parent households, 
unemployment, and social welfare benefits. The risks 
increased with the number of indicators present; indi-
viduals with four indicators of low social status had a 
2.7-fold higher risk of schizophrenia compared with 
individuals who did not have any. In a second study, on 
a group of children raised by adoptive parents, adop-
tees whose nonbiological families were disadvantaged, 
measured by unemployment, living in apartments, or a 
single-parent household, had an increased risk for psy-
chosis. Among those who also had a genetic liability for 
psychosis, the risk was much higher.

Childhood Abuse

Morgan and Fisher (2007), in a review of several 
studies, reported that subjects with psychotic disorders 
were more likely to have experienced childhood trauma. 
Although the work was important, the reviewed stud-
ies had certain limitations. The authors did not control 
for the various kinds of abuse (e.g., physical, sexual, 
psychological) and the studies generally had small 
numbers of subjects. Moreover, only a small number of 
studies examined subjects who were children or ado-
lescents at that time, and there was a mixture of inpa-
tient and outpatient samples of which there was only a 
minority with a diagnosis of psychosis. In addition, the 
studies that investigated subjects with a diagnosis of 
psychosis did not always focus specifically on schizo-
phrenia. Finally, there were variations between studies 
in how childhood trauma was defined and measured, 
and studies did not always account for comorbid disor-
ders and illnesses.

More recent studies have found a link between 
childhood sexual abuse and schizophrenia as well 
as positive symptoms in psychotic patients, specifi-
cally auditory hallucinations (Sheffield, Williams, 
Blackford, & Heckers, 2013). Patients with auditory 
hallucinations had the greatest level of abuse, spe-
cifically sexual abuse. A second study found that an 
overwhelming majority of patients with schizophre-
nia spectrum disorders had experienced at least one 
stressful or traumatic event in their lifetime, and the 
group had experienced a median of seven traumatic 
events (O’Hare, Shen, & Sherrer, 2013). Although this 
study examined schizophrenia specifically rather than 
psychotic symptoms in general, it did not distinguish 
abuse from other types of traumatic events.

Despite these initial findings, however, Spataro, Mul-
len, Burgess, Wells, and Moss (2004) noted that positive 
symptoms, including hallucinations, can be seen in cases 
of posttraumatic stress disorder, and for individuals who 
have experienced any kind of child abuse, schizophre-
nia symptoms may be confounded with symptoms of 
posttraumatic stress disorder, which can be a comorbid 
diagnosis. Therefore, although child abuse may be a risk 
factor for schizophrenia, there may not be a causal con-
nection between them.

INFECTIONS AFTER BIRTH

In addition to the large body of evidence suggesting 
that prenatal infections give rise to an increased risk 
of schizophrenia, some mixed evidence has suggested 
a link between certain infections in those who already 
have developed schizophrenia (Yolken & Torrey, 2008). 
Torrey, Bartko, Lun, and Yolken (2007) found a twofold 
increased risk of schizophrenia in those with T. gondii 
infections; these findings have been replicated by some 
other groups. The direction of causation, however, is 
unclear. One study that attempted to address this, by 
Niebuhr et al. (2008), found that toxoplasma IgG anti-
bodies in archived serum specimens of the US military 
drawn within 6 months of diagnosis were associated 
with a modest increase in risk of schizophrenia, although 
this relationship was not found in serum drawn before 
the 6 months leading up to diagnosis.

Amminger et al. (2007) found that subjects with more 
severe positive psychotic symptoms (although without a 
diagnosis of schizophrenia) were more likely to be sero-
positive for toxoplasma IgG, and the more severe the 
symptoms, the higher the level of IgG antibody. Finally, 
cytomegalovirus has been investigated as a possible risk 
factor for schizophrenia postnatally, but there have been 
mixed results (for a review, see Brown & Derkits, 2010).

Dalman et al. (2008) examined records of hospital 
admissions for CNS infections in children between birth 
and 12 years of age for nonaffective psychiatric illnesses 
from 14 years of age onwards for all the children born 
within a cohort in Sweden. These infections were further 
divided into bacterial versus viral infections and then 
divided more specifically into named illnesses such as 
the mumps virus and cytomegalovirus. A slightly higher 
risk for both nonaffective psychotic illnesses and schizo-
phrenia was found to be associated with viral CNS 
infections, specifically the mumps virus and cytomega-
lovirus, but not with bacterial infection.

Some studies have examined whether antibiotic or 
antiviral medications that treat cytomegalovirus or 
T. gondii improve the severity of psychotic symptoms 
(Dickerson, Boronow, Stallings, Origoni, & Yolken, 2003; 
Dickerson, Stallings, Boronow, Origoni, & Yolken, 2009). 
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These two studies have produced positive and negative 
results, respectively. One possible reason for these con-
flicting findings is that the neuropathology may have 
been treated too late to be reversible with antibiotics.

GENE–ENVIRONMENT INTERACTION

It is unlikely that the environmental exposures 
reviewed here act alone to cause psychopathology. 
Rather, many investigators have proposed integrative, 
or diathesis–stress models, that incorporate genetic 
influences, including interactions between genetic 
mutations and environmental factors. According to 
this model, by interacting with genetic influences, 
these environmental factors impact development of the 
brain during critical periods and trigger the onset of 
psychotic syndromes such as schizophrenia (Brown, 
2011; Brown & Derkits, 2010; van Os, Kenis, & Rutten, 
2010). Various environmental influences act on sensitive 
subgroups of the population with a genetic predispo-
sition to such environmental effects (van Os, Rutten, & 
Poulton, 2008).

This vulnerability is especially salient during critical 
periods of neuronal and brain development (Arnsten, 
2009). Furthermore, repeated exposure to these insults has 
been associated with more severe psychotic symptoms, 
especially in those who experienced adversity early in 
life who become more sensitive to environmental stress in 
adulthood, possibly from altered dopamine activity in the 
brain (Glaser, van Os, Portegijs, & Myin-Germeys, 2006).

One example of a gene–environment interaction is 
provided by a potential relationship between the genes 
that encode the major histocompatibility complex class I 
proteins, which have been associated with schizophrenia 
in genome-wide association studies (Walters et al., 2013) 
and prenatal infection (McAllister, 2014). These proteins 
are necessary for proper functioning of not only T lym-
phocytes, but also synaptic function. It has been sug-
gested that individuals with these mutations are more 
sensitive to the effects of a prenatal infection or other 
environmental events that activate the immune system 
(Brown & Derkits, 2010). According to this hypothesis, 
this aberrant immune response subsequently leads to 
a greater degree of modification of major histocompat-
ibility complex class I function, leading to abnormal 
synaptic function, which is abnormal in schizophrenia 
(Stephan, Baldeweg, & Friston, 2006). In this way, major 
histocompatibility complex molecules might be one of 
many mediators between genetic and environmental 
contributions to schizophrenia.

Recent work by Kannan, Sawa, and Pletnikov (2013) 
on mouse models of gene–environment interaction 
has supported the diathesis-stress model. The authors 
found an interaction between psychological stress and 

the Disrupted-in-Schizophrenia-1, a genetic candidate 
for schizophrenia, in producing neurochemical and 
behavioral deficits. Other studies have found interac-
tion effects between specific genes and stressors such as 
immune activation (Vuillermot et al., 2012) and cannabis 
use (Behan et al., 2012). In a recent study of interaction 
between environmental events, Giovanoli et al. (2013) 
demonstrated that exposure in mice to prenatal infec-
tion, combined with trauma during peripuberty, leads 
to pathological effects on behavior and neurochemistry 
during adulthood.

Intervention and Prevention

One of the key implications of research on environ-
mental factors in schizophrenia is a potential role in pre-
vention. Primary prevention includes interventions that 
attempt to reduce the incidence of schizophrenia by pro-
viding feasible interventions either to the general pub-
lic (“universal prevention”) or to specifically targeted 
populations (Gordon, 1983; Mrazek & Haggerty, 1994). 
Secondary prevention aims to avert serious symptom-
atology by means of early intervention at the first stage 
of pathology. Tertiary prevention aims to provide the 
most efficient treatment and rehabilitation to subjects 
already diagnosed with the disorder to prevent future 
relapse.

One metric used to assess the potential impact of a 
preventive approach is the population attributable risk, 
which is an estimate of the number of cases of a disease 
that could be prevented in a population if a certain risk 
factor was completely eliminated from that population 
(Brown & McGrath, 2010). Related to the population 
attributable risk is the number needed to prevent. This is 
a measure of the number of people from whom a specific 
risk factor would need to be removed to prevent a single 
new case of a disease.

Another factor that is used in decisions on prevention 
and intervention is risk assessment. The Global Burden 
of Disease project uses risk assessment to comparatively 
examine disorders to ascertain which have the greatest 
public impact. This allows policy makers to decide upon 
appropriate allocations of funding for proper treatment 
and prevention of different disorders (Murray & Lopez, 
1996), taking public safety and known risks of the inter-
vention or research into account.

At least some prenatal infections are preventable. We 
had found that the population attributable risk for expo-
sure to influenza, T. gondii, and genital infections was 
about 30% (Brown & Derkits, 2010), meaning that if each 
of these infections were entirely eliminated from the 
pregnant population that we studied, nearly one-third 
of cases of schizophrenia could be eliminated. Although 
it is not feasible to entirely eliminate these infections and 
the findings were calculated only from estimates from 
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our cohort studies, and thus may vary by population, 
this suggests that preventive efforts may lead to a sizable 
reduction in the incidence of schizophrenia.

With regard to influenza, vaccination is readily avail-
able in developed countries and continually updated to 
reflect new strains that come into existence every year. 
Maternal influenza is a potential risk factor not only for 
schizophrenia in the offspring, but also for other abnor-
mal outcomes of the pregnancy, such as bipolar disor-
der (see the discussion in the next section) as well as 
fetal mortality (Zaman et al., 2008). Therefore, pregnant 
women have been identified as a population that should 
be targeted for influenza vaccination (Centers for Dis-
ease Control and Prevention (CDC), 2013). We have also 
argued that women planning a pregnancy and/or of 
reproductive age should consider influenza vaccination 
(Brown & Derkits, 2010). Furthermore, it might be pru-
dent to increase efforts for influenza vaccination among 
the wider population to control the spread of the virus to 
pregnant women and to newborn infants.

Toxoplasma gondii is also preventable. Most indi-
viduals become infected with this parasite by ingest-
ing oocyst-infected soil or water, eating contaminated 
food that is undercooked, or lacking proper hygienic 
measures when changing cat litter boxes (Elmore et al., 
2010). Therefore, by using safety precautions such as 
handwashing after contact with soil, using gloves when 
changing cat litter boxes as well as thorough cooking 
practices, the incidence of T. gondii may be reduced in 
the population. Furthermore, all of these recommenda-
tions can be implemented with little or no cost.

Genital and reproductive infections, which are usu-
ally sexually transmitted infections may be difficult to 
control in the population, but general education about 
the risks of unsafe sex and use of condoms reduce the 
frequency of new cases of sexually transmitted infections 
in communities (Vivancos, Abubakar, Phillips-Howard, 
& Hunter, 2013). Furthermore, a vaccine has been devel-
oped for a specific sexually transmitted infection called 
human papillomavirus; universally vaccinating children 
against human papillomavirus may prevent patients 
from developing as they grow older and become sexu-
ally active (Deleré et al., 2014). Furthermore, prompt and 
proper treatment of those already infected with sexu-
ally transmitted infections may reduce the impact of 
the infection or cure it completely, should treatment be 
timely enough.

Prevention of prenatal malnutrition may be more 
challenging than preventing certain prenatal infections, 
given that protein-calorie malnutrition is commonly 
caused by social adversity or factors that require great 
effort to control. However, micronutrient deficiencies 
in the pregnant population are more readily prevent-
able through improved obstetric counseling, education, 
and preventive interventions. For example, considerable 

proportions of the pregnant population do not receive 
adequate quantities of vitamins such as folic acid (Ray, 
Singh, & Burrows, 2004) or vitamin D (Bodnar et al., 
2007), deficiencies of which have been implicated in 
schizophrenia (see the discussion in the prenatal mal-
nutrition section) and that can be eliminated by taking 
prenatal vitamins.

Finally, risk factors such as cannabis use are wide-
spread and difficult to control; indeed, some US states are 
beginning to overturn these laws and marijuana is legal 
in many other countries (Palamar, Ompad, & Petkova,  
2014). One potential avenue of intervention might involve 
counseling on the effects of cannabis use among individ-
uals with a family history of schizophrenia.

FUTURE DIRECTIONS

We suggest several directions for future work in this 
area. First, in addition to replicating previous associa-
tions, a significant priority should be given to the iden-
tification of new environmental exposures that may be 
involved in the pathogenesis of schizophrenia. Trans-
lational research on animal models as well as emerging 
work in clinical neuroscience will have an important 
role to play in this regard in that this work is expected 
to identify novel candidates for testing in epidemiologic 
studies. A second key issue is to use this work for the 
identification of common pathophysiologic pathways. 
As an example, we and other groups aim to examine 
how effects of prenatal infections are mediated through 
inflammatory pathways such as cytokines and C-reac-
tive protein. Third, it will be key to study developmental 
trajectories, as revealed by several approaches includ-
ing neurocognitive testing and neuroimaging. This will 
allow for relating risk factors identified from epidemio-
logic studies with pathobiologic processes in schizophre-
nia. Fourth, this work has significant future implications 
for genetics and epigenetics. Regarding genetics, we 
expect that future work will allow for the discovery of 
interactions between environmental exposures and sus-
ceptibility genes, or allow for the identification of new 
susceptibility genes by studying subjects with a com-
mon environmental exposure that plays a causal role. A 
related avenue of exploration is epigenetics: As discussed 
previously, it is likely that environmental exposures 
exert their influences via effects on the epigenome, and 
this may be one mechanism by which gene–environment 
interactions operate. Fifth, as discussed previously, this 
work could have significant potential for future public 
health interventions aimed at prevention of the environ-
mental exposures and may help to stimulate responsible 
agencies, including those of governmental and nongov-
ernmental organizations to develop feasible prevention 
strategies. Sixth, it will be critical to assess whether the 
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environmental exposures that are related to schizophre-
nia may be risk factors for other psychiatric disorders. 
Our group has demonstrated, for example, that maternal 
influenza may be a risk factor for bipolar disorder with 
psychotic features among offspring (Canetta et al., 2014) 
and that elevated maternal C-reactive protein is a risk 
factor for both autism (Brown et al., 2014) and for schizo-
phrenia (Canetta et al., 2014).

CONCLUSION

Epidemiologic studies of schizophrenia have revealed 
increasing evidence that environmental factors at key 
periods of life increase vulnerability to the disorder. These 
factors include infection, malnutrition, cannabis use, and 
social factors such as migration, childhood trauma, and 
socioeconomic status. These effects have been supported 
by an expanding literature on these same risks in animal 
models and by new research on the clinical pathobiology 
of schizophrenia. Although still in its infancy, it is likely 
that interactions between genetic and environmental, and 
between different environmental exposures, account for 
a considerable risk of the disorder. Implications of these 
studies include preventive approaches, and offer sugges-
tions for future research that may capitalize on emerging 
findings from translational research.
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INTRODUCTION

A diversity of genetic and environmental factors 
appears to determine the origins of psychotic illness 
and influence its complex life course (Brown, 2011; Hall, 
Trent, Thomas, O’Donovan, & Owen, 2015; van Os & 
Kapur, 2009). Although the term psychotic illness implies 
a broader concept of psychosis that transcends a sin-
gle diagnostic category, the bulk of our evidence base 
derives from studies in schizophrenia. On this basis, 
current theorizing posits a neurodevelopmental disor-
der of high heritability with important environmental 
modifiers across infancy, childhood, adolescence, and 
into maturity in which the emergence of diagnostic 
symptoms represents the outcome of a pathobiologi-
cal process that has its origins in the earliest stages of 
brain development (Rapoport, Giedd, & Gogtay, 2012; 
 Waddington, Hennessy, O’Tuathaigh, Owoeye, & Rus-
sell, 2012); thereafter, the extent to which the subsequent 
life course and underlying pathobiology does or does 
not reflect an active, morbid process remains controver-
sial and constitutes a major research front (Anderson 
et al., 2015; Fusar-Poli et al., 2013; Kobayashi et al., 2014; 
Rund, 2014; Van Haren, Cahn, Hulshoff Pol, & Kahn, 
2013; Zipursky, Reilly, & Murray, 2013).

It remains challenging that psychosis can be mani-
fested under no less than 11 diagnostic categories in 
addition to schizophrenia (schizoaffective disorder, 
schizophreniform disorder, delusional disorder, brief 

psychotic disorder, bipolar disorder, major depressive 
disorder, substance-induced psychotic disorder, psy-
chotic disorder due to a general medical condition, 
substance-induced mood disorder, mood disorder due 
to a general medical condition, psychotic disorder not 
otherwise specified) (American Psychiatric Associa-
tion, 1994, 2013). Increasing recognition of the breadth 
of psychopathology in schizophrenia and of clinical, 
genetic, and pathobiological overlap, not only with 
the enigma of schizoaffective disorder (Jager, Haack, 
Becker, & Frasch, 2011; Malaspina et al., 2013) (com-
monly conflated with schizophrenia), but also with 
bipolar disorder (Cardno & Owen, 2014; Hill et al., 
2013; Ivleva et al., 2013; Tamminga et al., 2013), has been 
extended to major depressive disorder with psychotic 
features (Swartz & Shorter, 2007; Waddington & Buck-
ley, 2013). Most recently, such overlap has been further 
extended to developmental disorders not usually con-
sidered within the realm of psychotic illness, such as 
autism spectrum disorder and attention-deficit hyper-
activity disorder (Cross-Disorder Group of the Psy-
chiatric Genomics Consortium, 2013a, 2013b;  Gratten, 
Wray, Keller, & Visscher, 2014). Given such disrespect 
to prevailing nosology, current evidence suggests that 
these diagnostic categories may reflect arbitrary points 
of intersection along dimensions of psychopathology, 
dysfunction, and pathobiology (Demjaha et al., 2009; 
van Os & Kapur, 2009; Owen, 2014; Waddington et al., 
2012).
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It should be recognized that psychotic illness is not 
defined by the onset of psychotic symptoms; rather, 
such symptoms reflect a stage in the trajectory of a dis-
order that is manifested throughout the lifespan: from 
the neurological and psychosocial/intellectual deficits 
of infancy, childhood, and adolescence that are evident 
on a population basis (but are too subtle to be of indi-
vidual diagnostic utility), through to the increasing 
emergence of prediagnostic psychopathologies that are 
captured in terms such as “ultra high risk” and “attenu-
ated psychosis syndrome” that can be (but are not nec-
essarily) the harbingers of subsequent transition to a 
psychotic diagnosis (Brown, 2011; Carpenter & van Os, 
2011; Howes & Murray, 2014; Insel, 2010; Linscott & van 
Os, 2013; Waddington et al., 2012).

To advance understanding of psychotic illness 
through model systems in terms of increased valid-
ity and heightened heuristics requires recognition and 
incorporation of this evolving clinical landscape.

MODELING DIMENSIONS OF 
PSYCHOPATHOLOGY

In accordance with long-standing convention, the 
most widely used psychometric instrument for the 
assessment of psychotic illness, the Positive and Nega-
tive Syndrome Scale (Kay, Fiszbein, & Opler, 1987) 
involves 30 items that are commonly aggregated into 
three primary domains: positive, negative, and general 
psychopathology. Although the more recent advances 
in psychopathology outlined previously have resulted 
in an expanding concept of dimensionality, investiga-
tors using model systems require those dimensions to 
be capable of assessment in animals; yet many human 
psychopathologies are intrinsically beyond nonhuman 
expression, whereas others are captured indirectly via 
indices that challenge isomorphic/homologous rep-
resentation (Low & Hardy, 2007; van den Buuse, 2010; 
O’Tuathaigh, Desbonnet, & Waddington, 2014; Papaleo, 
Lipska, & Weinberger, 2011).

One widely entertained elaboration (van Os & Kapur, 
2009; Tandon et al., 2013) posits five dimensions: psy-
chotic (positive) symptoms, negative symptoms, depres-
sion, mania, and cognitive impairment. Although each 
of these five domains has been evaluated in animal 
models, they have been applied in what have been con-
ceptualized previously as distinct contexts; for example, 
positive and negative symptoms have been studied most 
commonly in the context of modeling psychotic disor-
der, whereas depression and mania have been studied 
most commonly in the context of modeling affective 
disorder, with cognitive impairment studied in a wide 
context, from models of Alzheimer’s disease through 
to a broad range of neuropsychiatric disorders, among 
which schizophrenia is but one part.

Furthermore, the same model may be “claimed” to 
reflect a different dimension according to the context in 
which it is applied: for example, does an animal model 
of anhedonia reflect the negative symptom of psychotic 
illness or the affective psychopathology of depression? 
(Belzung, 2014; O’Tuathaigh et al., 2014; O’Tuathaigh, 
Kirby, Moran, & Waddington, 2010). Such challenges 
reflect the clinical reality that it can be difficult to dis-
tinguish phenomenologically between negative and 
depressive symptoms; for example, do higher negative 
symptom scores in major depressive disorder with psy-
chotic features reflect increasing prominence of nega-
tive symptoms or greater severity of depression or some 
combination thereof? (Owoeye et al., 2013).

For model studies to advance in their heuristic and 
translational import, they must reflect evolving concepts 
of the illness they seek to address. Therefore, in the con-
text of psychotic illness, they should consider not only 
the modeling of positive symptoms (van den Buuse, 
2010), negative symptoms (O’Tuathaigh et al., 2014), 
and cognitive impairment (Papaleo et al., 2011), but also 
affective symptoms (depression and mania: Neumann 
et al., 2011; Young, Henry, & Geyer 2011) in a manner that 
reflects our understanding of psychotic illness beyond 
conventional diagnostic categories. However, it would 
be unrealistic, on practical and fiscal grounds, to expect 
every contemporary study using a whole-animal model 
to evaluate, compare, and contrast indices relating to 
each of these five dimensions of psychopathology. There-
fore, there are and will inevitably continue to be gaps in 
the evolving literature. Nevertheless, the field will not 
advance unless these dimensions are recognized and 
evaluated in such model systems. The heuristic would 
be for any differential effect of specific etiological/patho-
physiological manipulations across these dimensions to 
be resolved and, ideally, related to pathobiological pro-
cesses in a manner that can be back translated to studies 
in living patients.

MODELING DIMENSIONS OF 
PSYCHOPATHOLOGY IN THE CONTEXT 
OF THE EPIDEMIOLOGY OF PSYCHOTIC 

ILLNESS

A person presenting clinically with a first psychotic 
episode, most commonly in early adulthood, is an indi-
vidual with psychopathology and dysfunctionality that 
is occurring in juxtaposition with other such individuals, 
who may be similar—but no two of whom are identical 
in their clinical presentation and setting. These cases are 
occurring among a population, such that factors distin-
guishing cases from noncases can be studied to establish 
the epidemiology of the disorder at issue and identify 
risk factors for caseness. Over the past 25 years, multiple 
studies have identified a diversity of environmental risk 
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factors for psychosis (Brown, 2011; Meyer-Lindenberg 
& Tost, 2012; Waddington et al., 2012) on a background 
of high heritability and increasing but still incomplete 
understanding of the genes involved (Gratten et al., 
2014; Schizophrenia Working Group of the Psychiat-
ric Genomics Consortium, 2014). On this basis, risk for 
psychotic illness is likely to involve a combination not 
only of common alleles of small effect and/or rare, pen-
etrant or de novo mutations of large effect, but also this 
diversity of environmental risk factors that may operate 
(1) independently, (2) additively, or (3) via “true” inter-
actions between genes (G) and environmental risk fac-
tors (E), that is, G × E interaction (European Network of 
National Networks Studying Gene–Environment Inter-
actions in Schizophrenia, 2014; McGrath, Mortensen, 
Visscher, & Wray, 2013; van Os, Kenis, & Rutten, 2010; 
O’Tuathaigh & Waddington, 2015).

Such putative phenomena are the subject of increas-
ing investigation, most commonly in the form of the 
exposure of a mutant mouse, at a given point in devel-
opment/maturation, to a biological or psychological 
environmental adversity, where each of the mutated 
gene and environmental adversity have been associ-
ated clinically with risk for schizophrenia (Kannan, 
Sawa, & Pletnikov, 2013; O’Tuathaigh &  Waddington, 
2015). However, although genotype is essentially 
fixed in an individual (subject to epigenetic regula-
tion; Dempster, Viana, Pidsley, & Mill, 2013; Pishva 
et al., 2014), it can vary in a diverse manner between 
those who are affected and unaffected by psychotic 
illness, indicating a polygenic disorder (Gratten et al., 
2014; Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014); furthermore, the range 
of environmental exposures implicated is large and 
can vary across the developmental/maturational time-
line of psychotic illness, from early prenatal/postna-
tal adversities, through psychosocial stressors during 
childhood/adolescence, to substance abuse (Brown, 
2011; Meyer-Lindenberg & Tost, 2012; Pishva et al., 
2014; Waddington et al., 2012). Therefore, any sim-
ple one gene–one environmental exposure–one time point 
model is likely to be incomplete. However, although 
model studies can in theory isolate individual gene 
effects and deploy specific, experimentally controlled 
environmental interventions on multiple occasions, the 
logistical challenges in conducting studies that involve 
a broader range of genes, environmental exposures, 
and time points are immense.

Nevertheless, such approaches, although in their 
infancy, are emerging. In our own study, mice mutant 
for the schizophrenia risk gene neuregulin 1 (G) were 
exposed to two environmental manipulations: mater-
nal immune activation via prenatal exposure to 
polyinosinic:polycytidylic acid (E1) and postnatal 
cross-fostering to an alternate dam (E2); groups of both 
sexes having various permutations and combinations 

of genetic mutation and environmental manipulations 
were then assessed, in young adulthood and, in some 
instances, also in adolescence, using procedures related 
to positive symptoms (parameters of activity, prepulse 
inhibition), negative symptoms (sociability, social nov-
elty preference), and cognitive impairment (spatial 
working memory). The results indicated that, in relation 
to positive symptom indices, activity parameters were 
regulated primarily by G and by E1 × E2 interactions, 
whereas prepulse inhibition was regulated by G, E1, and 
E2 and by E1 × E2 and G × E1 × E2 interactions; in relation 
to negative symptom indices, sociability was regulated 
by E2 and by G × E1 and E1 × E2 interactions, whereas 
social novelty preference was regulated by G and E1 and 
by G × E2 interactions; in relation to the index of cognitive 
impairment, spatial working memory was regulated by 
G and E1 and by G × E1 interactions; some of these regu-
latory effects differed according to whether assessments 
were made in adolescence versus young adulthood and 
in males versus females (O’Leary et al., 2014).

These findings suggest that concepts of G × E interaction 
in risk for psychotic illness should be elaborated to mul-
tiple interactions that involve individual genes interacting 
with diverse biological and psychosocial environmental 
factors over early life, to differentially influence particu-
lar domains of psychopathology, sometimes over specific 
stages of development and sometimes in a manner that can 
differ between the sexes. Such complex studies have yet to 
be extended beyond the positive/negative symptom/cog-
nition domains to include the affective psychopathologies 
of depression and mania.

MODELING DIMENSIONS OF 
PSYCHOPATHOLOGY IN THE CONTEXT 
OF THE PATHOBIOLOGY OF PSYCHOTIC 

ILLNESS

Over the past decade, our concepts of the pathobiol-
ogy of psychotic illness have moved from abnormali-
ties and/or dysfunctions in individual brain regions, 
in terms of neuropathology, structural/functional 
neuroimaging, and neuropsychology, to developmen-
tally determined disconnectivity in one or more brain 
network(s) that mediate the complex psychopathol-
ogy and dysfunctionality of psychosis (Bastos-Leite 
et al., 2015; Fitzsimmons, Kubicki, & Shenton, 2013; 
van den Heuvel & Fornito, 2014; Orliac et al., 2013; 
Pettersson-Yeo, Allen, Benetti, McGuire, & Mechelli, 
2011; Waddington et al., 2012); these concepts, deriv-
ing primarily from studies in schizophrenia, appear 
to generalize across diagnostic boundaries (Kumar 
et al., 2015) and to those showing subclinical psychotic 
experiences, whether at the level of “ultra high risk” 
(Wotruba et al., 2014) or more generally among the 
population at large (Orr, Turner, & Mittal, 2014).
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Whole-animal models of psychotic illness had a pri-
mary origin in the effects of psychotomimetic drugs, a 
relationship that has stood the test of time and is sub-
ject to continuing evolution (Pratt, Winchester, Dawson, 
& Morris, 2012; Neill, Harte, Haddad, Lydal, & Dwyer, 
2014). Models based on understanding the pathobiol-
ogy of psychosis have a somewhat shorter history that 
was given impetus by findings from a new generation 
of neuroimaging and neuropathological studies that, 
for the first time, indicated replicable abnormalities in 
individual brain regions that could then be disrupted in 
animals by a variety of procedures. The first generation 
of such studies derived from clinical findings on what 
appeared to be neurodevelopmental rather than neuro-
degenerative changes in the temporal and frontal lobes 
and their interrelationships, with a particular focus on 
the hippocampus (Hyde & Weinberger, 1990). These 
initial insights were followed by studies seeking to dis-
rupt hippocampal integrity and assess the functional 
consequences thereof, among which the rat neonatal 
ventral hippocampal lesion model (Lipska et al., 1993) 
has become the most thoroughly characterized (Tseng, 
Chambers, & Lipska, 2009).

In this model, ibotenic acid lesions of the ventral hip-
pocampus at postnatal day 7 result in the emergence of 
hyperresponsivity to pharmacological or environmental 
stimuli known to provoke release of dopamine (DA) in 
the mesocorticolimbic DAergic system, that is, hyperac-
tivity in response to the DA-releasing psychotomimetic 
amphetamine, enhanced sensitivity to the N-methyl-
d-aspartate glutamate antagonist psychotomimetic 
phencyclidine, hyperreactivity to stress, disruption to 
sensorimotor gating in terms of prepulse inhibition, 
and deficits in latent inhibition; these effects, involving 
behaviors held to relate to positive, psychotic symp-
toms, emerge only during the postpubertal period and 
are sensitive to amelioration by antipsychotics. How-
ever, such lesions also result in prepubertal deficits in 
social interactions, behaviors held to relate to negative 
symptoms, when those related to psychotic symptoms 
have yet to emerge; these social deficits endure into the 
postpubertal period and are insensitive to amelioration 
by antipsychotics. Additionally, such lesions result in the 
postpubertal emergence of long-lasting deficits in work-
ing memory tasks, particularly the capacity to acquire 
and retain information in tests of spatial and avoidance 
learning; these behaviors are held to relate to the cogni-
tive dysfunction of psychotic illness (Tseng et al., 2009).

In overview, on separate assessment of behaviors 
related to three dimensions of psychopathology, those 
for positive symptoms (postpubertal emergence), nega-
tive symptoms (prepubertal emergence), and cognitive 
impairment (prepubertal emergence) show longitudinal 
profiles that, in general terms and subject to the impre-
cision of assessment at limited time points, mirror the 

clinical characteristics of schizophrenia and related psy-
chotic illness. Although behaviors related to affective 
psychopathology (depression and mania) have yet to be 
investigated systematically, some findings are suggestive 
in this regard (Bhardwaj, Tse, Ryan, Wong, & Srivastava, 
2014). Aspects of this profile vary with lesion timing, dif-
fer between male versus female rats, and are influenced 
by both genetic background and environmental variables 
such as maternal care, periadolescent social impoverish-
ment, and other psychosocial stressors. Mechanistically, 
aspects of this profile consequent to neonatal ventral hip-
pocampal lesions are influenced by subsequent lesioning 
of the prefrontal cortex; when supplemented by a broader 
range of behavioral and cellular indices, the model indi-
cates early disruption of limbic inputs to frontal cortico-
striatal circuits that alters development of mesocortical 
DAergic control of excitatory and inhibitory neurotrans-
mission, with such control being critical for expression of 
mature brain function that normally emerges during late 
adolescence (Tseng et al., 2009).

CONCLUSIONS

Although these findings are complementary to some 
current concepts of schizophrenia pathobiology, it should 
be emphasized that they involve permanent destruction 
of one or more brain regions when no such lesions are 
present in schizophrenia itself, with network involve-
ment presumptive on indirect indices. Thus, most of 
the more recently introduced models considered in this 
volume involve disruption to the brain, particularly to 
brain development, via either environmental (biological 
or psychosocial) or genetic manipulations that are more 
specifically related, and are in some instances isomor-
phic/homologous, to factors associated with clinical risk 
for psychotic illness. For example, it is now possible to 
disrupt limbic and cortical connectivity via genetic muta-
tion and to investigate resultant phenotypes at numer-
ous levels, from cellular organization, through both 
short- and long-range connectivity and associated elec-
trophysiological changes, to behaviors related to distinct 
dimensions of psychopathology (Runker et al., 2011).

In a previous era, it was common to believe that a 
“valid” animal model of schizophrenia, involving a uni-
tary manipulation such as treatment with a psychotomi-
metic drug or a circumscribed lesion, should reproduce 
“all” aspects of the condition (each of positive/negative 
symptoms and cognitive impairment). However, there 
is increasing recognition that each domain of psychopa-
thology in psychotic illness may have its own pathobio-
logical substrate, involving developmentally determined 
disconnectivities in one or more brain networks (Wad-
dington et al., 2012); this is complementary to the US 
National Institute of Mental Health’s Research Domain 
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Criteria initiative, which involves the development of 
a research-based classification system for mental disor-
ders that is informed by the genetics, physiology, and 
neural circuitry underpinning biobehavioral constructs 
that cut across current diagnostic categories (Cuthbert 
& Insel, 2013). Increasing recognition of such heuristics 
for psychotic illness extends not only to genetic, but 
also to psychopathological and functional overlap with 
autism spectrum disorder (Hommer & Swedo, 2015) and 
attention deficit-hyperactivity disorder (Jandl, Steyer, & 
Kaschka, 2012).

Just as model systems have to keep pace with and 
reflect increasing knowledge on the epidemiology and 
pathobiology of psychotic illness, they have to keep pace 
also with still-evolving knowledge on psychopathology 
and associated dysfunction that is no longer accommo-
dated easily by discrete categories of disease.
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INTRODUCTION

Diagnostic criteria of schizophrenia are updated in 
Diagnostic and Statistical Manual of Mental Disorders-5 
(DSM-5) by the American Psychiatric Association in 
2013. Accordingly, to be diagnosed as schizophrenia, the 
patient should have two or more of the following charac-
teristic symptoms, including delusions, hallucinations, 
disorganized speech, grossly disorganized or catatonic 
behavior, negative symptoms (i.e., diminished emotional 
expression) during a 1-month period (or less if success-
fully treated), and have social/occupational dysfunction 
during a 6-month period (Tandon et al., 2013). Among 
the characteristic symptoms, delusions, hallucinations, 
and disorganized speech are conventionally regarded 
as the core “positive symptoms” diagnosed with high  
reliability and might reasonably be considered neces-
sary for a reliable diagnosis of schizophrenia (Tandon  
et al., 2013).

A delusion is a false belief that indicates an abnormal-
ity in the affected person’s content of thought (Kiran & 
Chaudhury, 2009). Delusions are distorted false beliefs 
such as someone is plotting against you or a movie char-
acter is giving you commands. A person with a delusion 
will hold firmly to the belief regardless of evidence to 
the contrary (Kiran & Chaudhury, 2009). Delusions have 
particular significance for the diagnosis of schizophre-
nia, and are common in several psychiatric conditions 
(Blackwood, Howard, Bentall, & Murray, 2001; Kiran & 
Chaudhury, 2009).
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A hallucination is a fake and involuntary percep-
tion with seemingly real quality in the absence of actual 
stimulus. Hallucinations differ from delusions in which 
an actual stimulus is distortedly interpreted and given 
some bizarre significance. A delusion might also be an 
attempt to explain a hallucinatory experience (Kiran & 
Chaudhury, 2009).

Disorganized speech is a demonstration of thought 
disorder or illogical thought processes that make speech 
poorly organized. With disorganized speech, the topic 
slips from one to the next (e.g., jumping from idea to 
idea) and it is difficult to communicate. Schizophrenic 
communication disturbances reflect specific cognitive 
deficits in the areas of working memory (WM) and atten-
tion (Docherty et al., 1996). Disorganized speech is asso-
ciated with poor goal maintenance and with a task that 
included both goal maintenance and verbal WM storage 
demands (Becker, Cicero, Cowan, & Kerns, 2012). There 
is also a trend for poorer performance on WM tasks to 
be associated with hallucinations (Berenbaum, Kerns,  
Vernon, & Gomez, 2008).

Currently, we do not have any established knowl-
edge in the field of disorganized speech, hallucinations, 
and delusions to help answer the questions about the 
relationships.

DELUSIONS AND HALLUCINATIONS

Although the positive symptoms are related closely 
to one another in occurrence, hallucinations are the 
mostly studied symptoms across the species. Hallucina-
tions and delusions are almost inseparable symptoms 
in schizophrenia. The diagnosis of schizophrenia can 
be made with just one symptom including either audi-
tory hallucinations or bizarre delusions, because 96% 
patients with auditory hallucination have delusions, and 
88–99% patients with bizarre delusion have hallucina-
tions (Shinn, Heckers, & Ongur, 2013).

Therefore, in this chapter, we will mainly focus on 
hallucination, briefly on delusions, to understand the 
modeling of positive symptoms of schizophrenia.

Delusions

Delusions result from abnormalities in how brain 
circuits identify hierarchical predictions and how they 
compute and respond to prediction mismatches. Defects 
in these fundamental brain mechanisms can weaken per-
ception, memory, and social learning. As a result, indi-
viduals develop delusions and experience an internal 
and external world that healthy individuals would find  
difficult to comprehend (Corlett, Taylor, Wang, Fletcher, &  

Krystal, 2010). Recent advances in computational neu-
roscience have led us to consider the delusions as the 
disturbance in error-dependent updating of inferences 
and beliefs about the world (Fletcher & Frith, 2009). 
Considering that the brain constructs hierarchical causal 
models of the external world, the failure to maintain the 
excitatory to inhibitory balance results in hallucinations 
as well as in the formation and subsequent consolidation 
of delusional beliefs (Jardri & Deneve, 2013). Indeed, the 
consequence of excitatory to inhibitory imbalance in a 
hierarchical neural network is equated to a pathological 
form of causal inference called “circular belief propa-
gation.” In circular belief propagation, prior beliefs are 
misinterpreted as sensory observations and sensory 
observations are misinterpreted as prior beliefs. The 
circular inference explains the emergence of erroneous 
percepts and the patient’s overconfidence when facing 
probabilistic choices and the learning of “unshakable” 
causal relationships between unrelated events, which are 
all known to be associated with schizophrenia (Jardri & 
Deneve, 2013). It is suggested that hippocampal sensory 
gating deficits, disturbed frontolimbic balance, and DAe-
rgic dysregulation in limbic areas such as the amygdala 
in interaction with prefrontal cortex (PFC) and temporal 
cortex play an important role in the pathogenesis of posi-
tive symptoms (Javanbakht, 2006; Pankow, Knobel, Voss, 
& Heinz, 2012). Structural magnetic resonance imaging 
(MRI) in schizophrenia has convincingly demonstrated 
reductions in volumes of the amygdala–hippocampal 
complex and other limbic and paralimbic structures 
(Ganzola, Maziade, & Duchesne, 2014; Lawrie, Whalley, 
Job, & Johnstone, 2003). The amygdala–hippocampal 
complex in the medial temporal lobe is linked to inde-
pendent memory systems, each with unique characteris-
tic functions in context processing which is impaired in 
schizophrenia (Cohen, Barch, Carter, & Servan-Schreiber, 
1999; Phelps, 2004). The amygdala can modulate both 
the encoding and the storage of hippocampal-dependent 
memories. The hippocampal complex, by forming epi-
sodic representations of the emotional significance and 
interpretation of events (including relationships between 
unrelated events), can influence the amygdala response 
when emotional stimuli are encountered (Phelps, 2004). 
Interrelation between amygdala and hippocampus 
may play a role in hippocampal sensory gating deficits 
in the pathogenesis of positive psychotic symptoms 
(Javanbakht, 2006). Although functional MRI stud-
ies suggest that WM performance depends upon the 
capacity of PFC to suppress bottom-up amygdala sig-
nals during emotional arousal, WM is found facilitated 
after basolateral amygdala damage (Morgan, Terburg, 
Thornton, Stein, & van Honk, 2012). WM is a vital cog-
nitive capacity without which meaningful thinking 
and logical reasoning would be impossible (Morgan 
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et al., 2012), and disruption of meaningful thinking 
and logical reasoning lead to delusions.

Molecular genetic analysis of delusional patients 
suggests dopamine (DA) signal transmission is 
increased in delusional patients (Morimoto et al., 2002).  
Decreased DA transporter (DAT) expressions in DAer-
gic terminals are observed in the amygdala of subjects 
with schizophrenia (Markota, Sin, Pantazopoulos, 
Jonilionis, & Berretta, 2014). The decrease in DAT 
disrupts DA uptake, leading to increased DAergic 
synaptic transmission. These findings support hyper-
DAergic hypothesis for delusion and the effectiveness 
of DA receptor blockers for delusions in schizophre-
nia (Corlett et al., 2010; Correll & Kane, 2014; Huber, 
Kirchler, Karner, & Pycha, 2007; Morimoto et al., 2002).

Hallucinations

Hallucinations have been described for more than 
two millennia, yet their causes remain unclear (Weiss & 
Heckers, 1999). Hallucinations remain as one of the most 
intriguing phenomena in psychopathology, specifically 
in schizophrenia (Allen, Laroi, McGuire, & Aleman, 2008; 
Weiss & Heckers, 1999). Hallucinations are a person’s 
false but vivid and substantial perception of things in the 
absence of apparent stimulus and created by the awake 
mind. Not all people who experience hallucinations have 
a psychotic disorder. A hallucination may be a sensory 
experience in which a person can see (visual hallucina-
tion), hear (auditory hallucination), smell (olfactory hallu-
cination), taste (gustatory hallucination), and feel (tactile 
hallucination or somatic hallucination), something that is 
not at all present at the time of perception. Among those, 
auditory hallucinations are by far the most common, fol-
lowed by visual hallucinations, and then by tactile and 
olfactory or gustatory hallucinations in schizophrenia 
(Mueser, Bellack, & Brady, 1990).

It has been generally suggested that abnormal cerebral 
excitation and a lack of normal cerebral inhibition may 
play primary roles in the generation of hallucinations. 
Recent advances in structural neuroimaging is sensory 
modality-specific activation in cerebral areas that are 
involved in normal sensory processing associated with 
hallucinations (Weiss & Heckers, 1999). Neural activa-
tion in these sensory processing areas may be specifically 
related to distinct phenomenological features of the hal-
lucinatory experiences (Braun, Dumont, Duval, Hamel-
Hebert, & Godbout, 2003; Weiss & Heckers, 1999).

In a systematic review of structural neuroimaging 
studies, which applied computed tomography or MRI, 
the consistent relationships are observed between hallu-
cinations (in the visual, auditory, and somatic aspects) 
and brain lesions in people (Braun et al., 2003). The 
lesion is practically always located in the brain pathway 

of the sensory modality of the hallucination and implied 
that compensatory overactivation of the nearby brain  
tissue as causative in hallucination. It is suggested that 
the lesioned tissue must have contained a predominance 
of inhibitory overexcitatory neurons for the sensory 
modality in question (Braun et al., 2003).

Visual Hallucinations
Visual hallucinations (VHs) are false visual sensory 

perceptions in the absence of external stimuli and one 
of the primary diagnostic criteria for schizophrenia 
(Cummings & Miller, 1987; Norton & Corbett, 2000).  
VHs also occur in diverse clinical circumstances 
including ophthalmologic diseases, neurologic disor-
ders, and idiopathic psychiatric illnesses (Cummings 
& Miller, 1987). VHs may occur up to 32% in schizo-
phrenia patients (Bracha, Wolkowitz, Lohr, Karson,  
& Bigelow, 1989; Mueser et al., 1990).

Brain activity related to VHs is found in higher visual 
areas corresponding to the content of the hallucinations 
(faces, bodies, scenes) and the hippocampus. The hippo-
campal activity is related to the retrieval of visual images 
from memory and that sensory cortex activity is related to 
the vividness of the perceptual experience (Oertel et al., 
2007). Limbic areas, which involved in retrieval from 
long-term memory, and category-specific visual areas 
also contribute to the generation of VHs in schizophre-
nia. Electrocortical stimulation of temporo-occipital or 
parieto-occipital regions can produce VHs (Penfield & 
Perot, 1963). Although VHs are typically produced along 
the visual pathway, the temporal or subthalamic nucleus 
stimulation is also reported to produce VHs (Diederich, 
Alesch, & Goetz, 2000; Penfield & Perot, 1963). Recent 
evidence from molecular, pharmacological, and neuro-
imaging studies suggests a crucial role for serotonin 2A 
receptors (5-HT-2AR) in visual processing and the patho-
genesis of VHs by increasing cortical excitability and 
altering the coherence of visual-evoked cortical responses 
in polysynaptic sensory circuits (Kometer, Schmidt, 
Jancke, & Vollenweider, 2013; Moreau, Amar, Le Roux, 
Morel, & Fossier, 2010). Activation of 5-HT-2AR may 
induce a processing mode in which stimulus-driven corti-
cal excitation is overwhelmed by spontaneous neuronal 
excitation through the modulation of alpha-oscillations 
that play active inhibitory role in information processing  
(Kometer et al., 2013).

Auditory Hallucinations
In many ancient cultures, the experience of hear-

ing voices (auditory verbal hallucinations, AVHs) were 
thought to be either sign of divine inspiration or evi-
dence of demonic possession, depending on the content. 
Today, however, AVHs are often regarded as an abnormal 
experience and a sign of mental illness (Allen et al., 2008; 
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Weiss & Heckers, 1999). AVHs have been noted in nor-
mal as well as schizophrenic people in different cultures 
(Carpenter, Strauss, & Bartko, 1973; Chaudhury, 2010; 
Klemperer, 1992; Sartorius, Shapiro, Kimura, & Barrett, 
1972). In the general population, some people who do 
not fulfill any criteria for specific psychotic or neurologic 
disorders may report auditory hallucination under unde-
sired external stimulations (Chaudhury, 2010; Daalman  
et al., 2011). AVHs remain one of the most intriguing 
phenomena in psychopathology and are the cardinal 
symptom for the diagnosis of schizophrenia (Allen et al., 
2008; Plaze et al., 2011). More than 70% of schizophrenic 
patients suffer from AVHs, which are unpleasant and 
distressing (Sartorius et al., 1986; Stephane, Barton, & 
Boutros, 2001).

Phenomenological studies in auditory hallucinations 
identified independent dimensions in auditory halluci-
nations including spatial location, language complexity, 
and impairments in monitoring of inner speech and the 
subsequent self-other misattribution (Gaser, Nenadic, 
Volz, Buchel, & Sauer, 2004; McGuire et al., 1995; Plaze 
et al., 2011). A predisposition to AVHs is associated with 
a failure to activate areas concerned with the monitoring 
of inner speech (McGuire et al., 1995). The fundamental 
mechanism for AVHs in schizophrenia is speech genera-
tion/perception pathology, which results from abnor-
mal activation of speech production (Broca) and speech 
perception (Wernicke) areas (Stephane et al., 2001). 
The impaired self-monitoring or misattribution of self- 
generated inner speech or thoughts to external sources 
is one of the main difficulties in schizophrenia patients 
with AVHs. The misattribution of self-generated inner 
speech occurs even in healthy individuals with high lev-
els of psychotic-like experiences (Allen, Freeman, Johns, 
& McGuire, 2006). Schizophrenia patients with AVHs 
are prone to misidentifying their own verbal material as 
alien or nonself (Allen et al., 2004). AVHs may be medi-
ated by a distributed network of cortical and subcortical 
areas (Shergill, Brammer, Williams, Murray, & McGuire, 
2000). Disrupted connectivity between frontal and tem-
poroparietal language areas gives rise to impairments in 
monitoring of inner speech and the misattribution of this 
inner speech (McGuire et al., 1995; de Weijer et al., 2011). 
The brain regions that involve in language production 
and verbal monitoring include inferior frontal gyrus and 
superior temporal gyrus (STG) contribute to the misat-
tribution processes. These regions are implicated in the 
genesis and/or persistence of AVHs through cortical 
intercorrelations between frontotemporal regions, sup-
porting the critical role of this network in the patho-
physiology of hallucinations (Garcia-Marti et al., 2008; 
Modinos et al., 2009). Brain structural imaging studies 
are shedding light on the understanding of anatomical 
contributors of AVHs in schizophrenia (Allen et al., 2008; 
Allen et al., 2012; Plaze et al., 2011).

NEUROIMAGING STUDIES ON POSITIVE 
SYMPTOMS

Brain Structures

Advanced neuroimaging techniques in the past 2 
decades have improved our understanding on what is 
happening in the brain of those who experience AVHs, 
particularly in patients with schizophrenia (Allen et al., 
2008, 2012). The fundamental mechanism for AVHs in 
schizophrenia is speech generation pathology, which 
results from abnormal activation of speech production 
(Broca) and speech perception (Wernicke) areas (Ste-
phane et al., 2001). The Broca area is a region in the infe-
rior frontal gyrus of (usually) the left hemisphere of the 
human brain with functions linked to speech production 
(Nixon, Lazarova, Hodinott-Hill, Gough, & Passingham,  
2004). The Wernicke area is located in the posterior section 
of the STG in the left cerebral hemisphere and encircles 
the auditory cortex. MRI study of young schizophrenic 
patients demonstrates smaller volume of the STG, and 
the shrinkage of the left STG is strongly and selectively 
correlated with severity of AVHs (Barta, Pearlson,  
Powers, Richards, & Tune, 1990; Flaum et al., 1995). 
High-spatial-resolution MRI study on patients with 
first-episode schizophrenia found significantly (progres-
sively) decreased gray matter volume over time in the 
left STG compared with healthy comparison subjects 
(Kasai et al., 2003). However, the relationship between 
the presence and characteristics of cerebral structural 
abnormalities with the intensity and phenomenology of 
auditory hallucinations needs to be analyzed by means 
of magnetic resonance voxel-based morphometry (VBM) 
method (Garcia-Marti et al., 2008; Neckelmann et al., 
2006). The procedure in VBM involves spatially nor-
malizing high-resolution images from all the subjects in 
the study into the same stereotactic space, followed by 
segmenting the gray matter from the spatially normal-
ized images and characterizing regional cerebral volume 
and tissue concentration differences in structural MRIs 
(Ashburner & Friston, 2000; Good et al., 2001). In a VBM 
study on gray matter volume differences in the whole 
brain volume between a group of schizophrenia patients 
with AVHs and a healthy control group, significant gray 
matter volume reductions in the schizophrenia patient 
group in the left STG, the left middle frontal gyrus, and 
in the right cuneus are noticed (Neckelmann et al., 2006). 
Areas of gray matter volume reduction that correlated 
negatively with hallucinations are found in the STG, left 
thalamus, and left and right cerebellum. It is proposed 
that significant reductions in gray matter volume may 
be instrumental in generating spontaneous neuronal 
activity that is associated with speech perception expe-
riences in the absence of an external acoustic stimulus 
that may cause hallucinations (Neckelmann et al., 2006).  
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In a more sensitive VBM method, reductions of gray mat-
ter concentration in schizophrenia patients with AVHs 
are observed in bilateral insula, bilateral STG, and left 
amygdala (Garcia-Marti et al., 2008), whereas gray mat-
ter volume in the left inferior frontal gyrus is positively 
correlated with severity of AVHs (Modinos et al., 2009).

Brain Regional Activity and Connectivity

The coupling of brain cell function to the vascular sys-
tem is the basis for a number of functional neuroimag-
ing methods relevant for human studies. These methods 
map specific localized brain activation through a vascular 
response such as an increase in cerebral blood flow (CBF) 
or a change in blood oxygenation (Villringer & Dirnagl, 
1995). In a study using single photon emission computed 
tomography neuroimaging, schizophrenic AVHs were 
associated with increased regional CBF during verbal 
memory activation (Busatto et al., 1995). A recent study 
using magnetic resonance arterial spin labeling, which is 
a technique that provides a direct quantitative measure 
of CBF, demonstrate that schizophrenia patients with 
AVHs have significantly higher CBF (tonic hyperactiv-
ity) in a predefined region, the left STG compared with 
healthy controls and compared with global CBF (Homan 
et al., 2013). Reversing hyperactivity (decreasing CBF) in 
the primary auditory cortex (Heschl gyrus and the STG) 
via treatment with transcranial magnetic stimulation is 
correlated with the decrease in AVHs, supporting its cru-
cial role in triggering AVHs and contributing to the phys-
ical quality of the false perceptions (Kindler et al., 2013). 
Further, the findings of continuously increased CBF in 
the left STG in patients with AVH has also been shown 
for patients with AVH of epileptic etiology (Hauf et al., 
2013), supporting the relevance of left STG activation 
(speech perception areas) in the genesis of AVHs. How-
ever, both increased and decreased patterns of regional 
CBF are associated with different types of hallucinations 
and make it difficult to make CBF as a feature trait in 
hallucinations (Izumi, Terao, Ishino, & Nakamura, 2002; 
Okada, Suyama, Oguro, Yamaguchi, & Kobayashi, 1999; 
Sabri et al., 1997).

White matter abnormalities in schizophrenia may 
offer important clues to a better understanding of the 
disconnectivity associated with AVHs (Seok et al., 2007). 
Diffusion tensor images and MRI studies on hallucinat-
ing schizophrenic patients showed that white matter 
density is significantly increased in the left inferior lon-
gitudinal fasciculus. The decreased fractional anisotropy 
value of the left frontal part of the left superior longitu-
dinal fasciculus is positively correlated with the sever-
ity score of AVHs in the hallucinating patient group, 
suggesting that disrupted connectivity in the left fron-
totemporal area may contribute to the development of 
auditory hallucinations in schizophrenia (Seok et al., 2007).  

Disrupted connectivity between frontal and temporo-
parietal language areas, which may contribute to the 
misattribution of inner speech, should be reflected in 
the microstructure of the arcuate fasciculi, the main con-
nection between frontal and temporoparietal language 
areas (de Weijer et al., 2011). To examine the connectivity, 
diffusion tensor images are used to compute fractional 
anisotropy and to reconstruct the fiber bundles of inter-
est, whereas the magnetic transfer imaging scans are used 
to compute magnetic transfer ratio values. Schizophre-
nia patients with chronic severe hallucinations showed 
a general decrease in fractional anisotropy and signifi-
cant increase in compute magnetic transfer ratio values 
for all bundles. These changes in the arcuate fasciculi in 
patients with AVHs suggest increased free water concen-
trations, probably caused by degraded integrity of the 
axons or the supportive glia cells. The disintegrated fiber 
integrity in the connection between frontal and tempo-
roparietal language areas in schizophrenia patients may 
explain why patients do not recognize the self-produced 
words instead of attributing them to an external source 
(de Weijer et al., 2011). Recently, a functional connectivity 
study, using resting-state functional MRI on the primary 
auditory cortex, which is located on the Heschl gyrus, 
found neural circuit abnormalities are associated more 
specifically with AVHs (Shinn, Baker, Cohen, & Ongur, 
2013). Schizophrenia patients with AVHs vulnerability 
showed increased left Heschl gyrus functional connec-
tivity with left inferior frontal gyrus (Broca area) and left 
lateral STG, and showed decreased functional connectiv-
ity with right hippocampal formation and mediodorsal 
thalamus compared with patients without AVHs expe-
riences (Shinn, Baker, et al., 2013). Abnormal interac-
tions between left Heschl gyrus and regions involved in 
speech/language, memory, and the weak monitoring of 
self-generated sounds may contribute to vulnerability of 
suffering AVHs (Shinn, Baker, et al., 2013).

It is obvious that neuroimaging and connectivity 
studies are in broad agreement with a general abnormal 
connectivity within and between the left and right fron-
totemporal regions including both gray and white mat-
ter that involve in speech generation, speech perception, 
and memory (Benetti et al., 2013; Tracy & Shergill, 2013).

DELUSIONAL AND HALLUCINOGENIC 
SIGNALING

Delusions and hallucinations in healthy human sub-
jects can be induced by natural occurring or man-made 
hallucinogens (Johnson, Richards, & Griffiths, 2008; 
Schultes, 1969). Hallucinogens have been adored and 
hated since prehistory; however, the exact mechanisms 
of hallucinogen-induced hallucinations are not yet 
understood.
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Accumulating evidence suggests that a disturbance 
of the fine balance among the complex network involv-
ing multiple transmitter receptor systems is responsible 
for hallucinatory symptoms of schizophrenia. Research 
findings suggest that hallucinogens work by temporarily 
disrupting cellular communication at a neurotransmit-
ter signaling level by at least six different pharmaco-
logical pathways including activation of dopamine D2 
receptors (D2R), 5-HT-2AR, cannabinoid CB-1 receptors 
(CB-1R), gamma-aminobutyric acid A receptors (GABA-
AR), and blockage of muscarinic receptors as well as  
N-methyl-d-aspartate receptors (NMDAR).

Dopamine Signaling through Dopamine D2 
Receptors

DA hypothesis of schizophrenic hallucinations (audi-
tory) is provided by the studies of psychostimulant drugs 
such as amphetamine (AMP) or methamphetamine 
(METH). AMP or METH is used primarily to enhance 
mental power and mood. During World War II, AMP 
or METH was used extensively to stimulate the fight-
ing spirits of soldiers in Japan (Yui, Ikemoto, Ishiguro,  
& Goto, 2000). However, shortly after the release of post-
war military stores of METH during reconstruction of 
the country, there was a sharp increase in the number 
of patients (about 200,000 patients) with MAP psychosis 
that indistinguishable from acute or chronic schizophre-
nia (Shimazono & Matsushima, 1995; Yui et al., 2000). The 
situation in Japan presents an opportunity to examine 
the etiology of MAP psychosis in relation to the patho-
physiology of schizophrenia (Yui et al., 2000). Both AMP 
and METH increase DA signaling and cause addiction. 
METH increases the concentration of working DA in the 
synaptic cleft by reversing the transport direction of the 
DAT and also by decreasing the membrane-associated  
DAT in the presynaptic neurons (Miller, 2011; Xie & 
Miller, 2009). AMP, on the other hand, increases extracel-
lular concentrations of DA and also induces psychotic 
behaviors in humans and monkeys, similar to the posi-
tive symptoms such as hallucination, seen in schizophre-
nia patients (Lieberman, Kane, & Alvir, 1987; Nielsen, 
Lyon, & Ellison, 1983). The DA system is one of the best 
known and most completely mapped neurotransmitter 
systems in the brain (Bjorklund & Dunnett, 2007). Neu-
rons in the ventral tegmental area synthesize and release 
DA into the nucleus accumbens and the PFC, whereas 
neurons in the substantia nigra synthesize and release DA 
into the striatum (Bjorklund & Dunnett, 2007). DAergic  
systems project preferentially to striatal, frontal, and lim-
bic areas, leading to the general concept that specificity 
might be related to localized dysfunction within those 
regions and preserved function elsewhere. The posi-
tive symptoms of schizophrenia are a direct result of too 
much DA neuronal firing originating in the midbrain 

and allowing excessive DA release and activity in lim-
bic structures (hyper-DAergic state), whereas negative 
symptoms are associated with hypo-DAergic state in the 
frontal-cortical terminal fields of mesocortical DA neu-
rons (Schwartz, Sachdeva, & Stahl, 2012; Stahl, 2007). 
Molecular imaging studies have also generated impor-
tant in vivo insights into the DA hypothesis in the etiol-
ogy of schizophrenic hallucinations (Howes et al., 2009; 
Iyo et al., 1993). In a quantitative autoradiography study 
in normal human brain tissue, the majority of the D2R-
enriched bands are observed in the lateral and inferior 
aspects of the STG, less frequently on the lateral surface 
of the inferior temporal gyrus and the parahippocampal 
cortices, whereas they are absent from primary auditory 
cortex (Goldsmith & Joyce, 1996). In the schizophrenic 
brain, disrupted pattern of D2R such as reduced concen-
trations of D2R in the supragranular layers and elevated 
concentrations of D2R in the granular layer in isocor-
tical regions of the temporal lobe has been reported  
(Goldsmith, Shapiro, & Joyce, 1997). The anatomical 
localization of D2R, in auditory and speech association 
cortices and auditory–visual association areas, mirrors 
the presumed sites underlying hallucinations in schizo-
phrenia. Further, in a functional and structural neuroim-
aging study, striatal D2R density is found significantly 
higher in the striatum in schizophrenic group than in the 
normal group by positron emission tomography (PET) 
scanning, and left STG volume is found significantly 
smaller in the schizophrenic group than in the normal 
group MRI scanning (Tune et al., 1996). Thus, the inverse 
relationship between STG volume and striatal D2R den-
sity lend support to the involvement of increased D2R 
signaling in functional connectivity of the striatum to 
the temporal cortex. In agreement, all currently licensed 
antipsychotic drugs block striatal D2/3R in vivo and 
that D2/3R occupancy above a threshold is required for 
antipsychotic treatment response (Howes et al., 2009). 
Increases in the level of DA as well as the number of D2R 
are observed in schizophrenia compared with control 
subjects (Abi-Dargham et al., 2000; Seeman & Kapur, 
2000). Blockade of the disrupted distribution of D2R in 
hallucination association cortices is a likely mechanism 
for the clinical efficacy of D2R antagonists in reducing 
hallucinations and delusions (Goldsmith et al., 1997).

Serotonin Signaling through Serotonin 2A 
Receptors

The classical hallucinogens such as psychedel-
ics include wide variety of substances with different  
chemical structures, but show remarkably similar effects 
including VHs. Psychedelics include naturally occur-
ring psilocybin (in mushrooms) and synthetic lysergic 
acid diethylamide (LSD). The recreational use of LSD 
by counterculture youths in the Western world during 
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the 1960s led to a focused study on psychedelics. The 
people who use either LSD or psilocybin suffer from 
incidence of psychosis that are identical to those of 
schizophrenia patients (Keeler, 1965; Vardy & Kay, 1983). 
Extensive behavioral and neuroimaging data show 
that these hallucinogens stimulate 5-HT-2AR, espe-
cially those expressed on neocortical pyramidal cells. 
Activation of 5-HT-2AR also leads to increased cortical 
glutamate levels presumably by a presynaptic receptor-
mediated release from thalamic afferents (Nichols, 2004). 
By genetically expressing 5-HT-2AR only in the cortex, 
it has been shown that 5-HT-2AR-regulated pathways 
on cortical neurons are sufficient to mediate the signal-
ing pattern and behavioral response to hallucinogens. 
Hallucinogenic and nonhallucinogenic 5-HT-2AR ago-
nists both regulate signaling in the same 5-HT-2AR-
expressing cortical neurons. However, the signaling and 
behavioral responses to the hallucinogens are distinct 
(Gonzalez-Maeso et al., 2007). Recent evidence suggests 
that activation of 5-HT-2AR may lead to the formation 
of VHs by increasing cortical excitability and altering 
visual-evoked cortical responses (Kometer et al., 2013).

Cannabinoid Signaling through CB-1 Receptors

The world’s oldest and most widely used recreational 
drug cannabis (also known as marijuana or hashish) is 
also the most controversial drug because of its medici-
nal use. The hallucinations occur in cannabis-intoxicated 
healthy individuals tend to be visual and/or auditory in 
nature (van Os et al., 2002; Stefanis et al., 2004). In a study 
on a community sample of 880 adolescents, lifetime can-
nabis use and the frequency of cannabis use (in the past 
year) are associated with the experience of auditory and 
VHs (Hides et al., 2009). The major psychoactive sub-
stance in marijuana is Δ9-tetrahydrocannabinol (THC) 
(Hollister, 1974). Intravenous injection of THC in healthy 
and psychiatrically well individuals produces transient 
behavioral symptoms including hallucinations simi-
lar to those seen in schizophrenia (D’Souza et al., 2004;  
Morrison et al., 2009). Studying the psychoactive effects of 
cannabis led to the discovery of endocannabinoids (pro-
duced by the mammalian body) and cannabinoid recep-
tors (Devane, Dysarz, Johnson, Melvin, & Howlett, 1988). 
Endocannabinoids work as retrograde messengers and 
contribute to short- and long-term modulation of synap-
tic transmission via presynaptic cannabinoid receptors. 
It is generally accepted that CB-1R mediates the effects of 
endocannabinoid both in excitatory and inhibitory syn-
apses (Kawamura et al., 2006). A study using PET and the 
D2/D3R ligand [11C]raclopride found THC can induce 
DA release in the striatum of healthy human subjects 
(Bossong et al., 2009). CB-1R is abundantly expressed 
in brain regions targeted by the efferent terminals of the 
DAergic neurons and functionally interacts with both 

cortical and striatal neurons that express D2R (Fitzgerald,  
Shobin, & Pickel, 2012). CBR agonists upregulate and 
enhance 5-HT-2AR activity, whereas CB-1R knock-out 
mice display impaired functionality of 5-HT-2AR (Hill, 
Sun, Tse, & Gorzalka, 2006; Mato et al., 2007). Thus, the 
involvement of the endogenous cannabinoid system 
in the regulation of neurotransmitter systems that are 
essential for the genesis of schizophrenia, supports the 
“cannabinoid hypothesis” in the neurobiological mecha-
nisms of hallucinations in schizophrenia (Fernandez-
Espejo, Viveros, Nunez, Ellenbroek, & Rodriguez de 
Fonseca, 2009; Muller-Vahl & Emrich, 2008).

Cholinergic Signaling through Muscarinic 
Receptors

The cholinergic system is one of the most important 
modulatory neurotransmitter systems in the brain and 
controls activities that depend on selective attention, 
which are an essential component of conscious aware-
ness that monitors delusional and hallucinatory infor-
mation processing (Perry, Walker, Grace, & Perry, 1999). 
Increased understanding of the role of acetylcholine 
in the human brain and its relationship to other neu-
rotransmitter systems has led to a rapidly growing inter-
est in the cholinergic system in schizophrenia (Berman,  
Talmage, & Role, 2007; Hyde & Crook, 2001). The cho-
linergic involvement in VHs and delusions are initially 
understood from the observations of subjects with 
dementia with Lewy bodies who manifest reductions 
in neocortical acetylcholine-related activity (McKeith 
et al., 1996; Sarter & Bruno, 1998). It is suggested that 
muscarinic acetylcholine receptors activation in the cor-
tex is involved in restraining the contents of the discrete 
subconscious sensory events. In the absence of cortical 
acetylcholine, the understimulated muscarinic acetyl-
choline receptors allow currently irrelevant intrinsic 
and subconscious sensory information to be amplified 
and expressed as delusions and hallucinations (Perry & 
Perry, 1995). In hallucinating patients with Lewy body 
dementia or with Alzheimer’s disease, the extensive loss 
of cortical acetylcholine allows irrelevant information to 
enter “conscious awareness” and thus leads to delusions 
and hallucinations (Perry et al., 1999; Sarter & Bruno, 
1998). This is consistent with the ability of muscarinic-
receptor antagonists, such as scopolamine and atropine, 
administered medically, recreationally, or ritualistically 
to induce VHs and other perceptual disturbances (Fisher, 
1991; Perry & Perry, 1995; Warburton, Wesnes, Edwards, 
& Larrad, 1985). Increasing the levels of acetylcholine by 
treatments with reversible cholinesterase inhibitors ame-
liorates delusions and VHs in Alzheimer’s and schizo-
phrenia patients (Cummings, Gorman, & Shapira, 1993; 
Patel, Attard, Jacobsen, & Shergill, 2010). The density 
and expression of muscarinic receptors are reduced in 
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hippocampal formation, PFC, and STG in schizophrenic 
patients (Crook, Tomaskovic-Crook, Copolov, & Dean, 
2000; Crook, Tomaskovic-Crook, Copolov, & Dean, 
2001; Deng & Huang, 2005; Mancama, Arranz, Landau,  
& Kerwin, 2003; Scarr, Sundram, Keriakous, & Dean, 
2007). These reports support the involvement of musca-
rinic acetylcholine system in the pathogenesis of positive 
symptoms of schizophrenia (Dean, 2012; Foster, Jones, 
& Conn, 2012; Raedler, Bymaster, Tandon, Copolov, & 
Dean, 2007).

Gamma-Aminobutyric Acid A Signaling through 
Gamma-Aminobutyric Acid A Receptors

GABA is the principal inhibitory neurotransmitter 
throughout the nervous system, and it plays an impor-
tant role in regulating neuronal excitability. GABA-
AR agonists can cause hallucinations depending on 
functional selectivity. Certain hallucinogenic amanita 
mushrooms, including amanita muscaria, are reported 
to cause visual and auditory hallucinations (Brvar, 
Mozina, & Bunc, 2006; Magdalan & Antonczyk, 2007). 
The main psychoactive constituent of these mushrooms 
is identified as muscimol (Halpern, 2004; Tsujikawa 
et al., 2006). Muscimol is one of the most potent ago-
nist ligands at the GABA-AR. Muscimol binds to the 
GABA-binding site on the GABA-AR complex. An ago-
nist of GABA-AR, zolpidem, is used for insomnia and 
sleep disorder as prescription medicine. Overdose or 
misuse of zolpidem is reported to induce hallucination 
in patients (Kummer et al., 2012; Manfredi et al., 2010; 
Singh & Loona, 2013).

Investigations of postmortem brain from schizo-
phrenic patients have revealed a preferential increase in 
bicuculline-sensitive 3H-muscimol binding on neuro-
nal cell bodies of layers II and III of superficial layers 
of cingulate cortex, and in layers II, III, V, and VI of PFC 
in the schizophrenic cases (Benes, Vincent, Alsterberg,  
Bird, & SanGiovanni, 1992; Benes, Vincent, Marie, & 
Khan, 1996). Because information processing depends 
on corticocortical integration in outer layers I–III, a dis-
turbance of inhibitory activity in these superficial layers 
of limbic cortex is suggested to contribute to the defec-
tive associative function (including delusions and hallu-
cinations) seen in schizophrenia (Benes et al., 1992). The 
alteration in inhibition of pyramidal neurons contrib-
utes to a diminished capacity for the gamma-frequency- 
synchronized neuronal activity that is required for nor-
mal working memory function (Lewis, Hashimoto, & 
Volk, 2005), which is important in the control of delusional 
and hallucinatory information processing. In a quantita-
tive autoradiography study to investigate the binding of 
the agonist [(3)H] muscimol to GABA-AR in the brain of 
schizophrenia patients, a significant increase in binding 
of [(3)H] muscimol is observed in the STG, suggesting 

an increase of GABA-AR densities in the STG of schizo-
phrenia patients (Deng & Huang, 2006). The STG, which 
connects to the hippocampus, amygdala, and neocortical 
association areas in the PFC, is involved in the pathology 
of AVHs. Recent advances in mouse genetics, neuroimag-
ing, and electrophysiology techniques in schizophrenia 
study suggest perturbed functions of GABAergic inter-
neurons of the cerebral cortex may underlie key symp-
toms of the disease (Benes & Berretta, 2001; Chen et al., 
2014; Inan, Petros, & Anderson, 2013). These reports sug-
gest the involvement of the increased inhibitory GABA-
signaling through GABA-AR in the pathophysiology of 
delusions and hallucinations of schizophrenia.

Glutamate Signaling through NMDAR

Dissociative hallucinogenic side effects of recreational 
drug phencyclidine (PCP), which was marketed in the 
late 1950s, improved our understanding on the etiology 
of schizophrenic hallucinations. A broad range of schizo-
phrenia-like symptomatology, including cognitive, posi-
tive, and negative symptoms in healthy volunteers, was 
observed after using PCP and another dissociative drug, 
ketamine (Cohen, Rosenbaum, Luby, & Gottlieb, 1962; 
Davies & Beech, 1960; Krystal et al., 1994; Luby, Cohen, 
Rosenbaum, Gottlieb, & Kelley, 1959). PCP, at submicro-
molar serum concentrations, interacts selectively with a 
specific binding site (PCP receptor), which is associated 
with the NMDAR and induces noncompetitive inhibi-
tion of NMDAR-mediated neurotransmission (Javitt 
& Zukin, 1991). NMDAR are primarily responsible for 
excitatory neurotransmitter in the brain. As opposed to 
DA receptors, NMDAR are widely distributed through-
out the brain, including cortical and subcortical brain 
regions. Sensory dysfunction predicts impairments in 
higher order cognitive functions such as auditory or 
visual emotion recognition (Javitt, Zukin, Heresco-Levy, 
& Umbricht, 2012). PCP induces a schizophrenia-like psy-
chosis by blocking neurotransmission at NMDAR and  
supports the hypoglutame (hypofunctional NMDAR) 
hypothesis of schizophrenia (Coyle, 2012; Javitt et al., 
2012; Nabeshima, Mouri, Murai, & Noda, 2006). Other 
NMDAR antagonists such as the dissociative anesthetic 
ketamine also induce PCP-like neurobehavioral effects 
by inhibiting NMDAR (Javitt & Zukin, 1991). Studies 
agree that hypofunction of NMDAR leads to secondary 
DAergic dysregulation that may result in hallucination 
in schizophrenia. Normally, descending corticobrain-
stem glutamate neurons tonically excite mesocortical DA 
pathway (increase DA release) and also tonically inhibit 
the mesolimbic DA pathway (decrease DA release 
through inhibitory GABA interneurons). When NMDAR 
are hypofunctional in corticobrainstem glutamate neu-
rons, a disinhibited and thus hyperactive mesolimbic 
DA pathway may result in hallucinatory experience, 
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whereas a disinhibited mesocortical DA pathway may 
result in negative and cognitive symptoms of schizo-
phrenia (Stahl, 2007). The hypofunction of NMDAR rep-
resents a convergence point possibly for progression and 
insistence of positive symptoms of schizophrenia (Sny-
der & Gao, 2013).

METHODS TO INVESTIGATE POSITIVE 
SYMPTOM-RELATED BEHAVIORS IN 

ANIMAL MODELS

Hallucinations and delusions are known to humans 
who can linguistically communicate with nonself about 
what they have heard and have seen. Although halluci-
nations in the healthy state might be unique to humans, 
the pathological hallucinations can be produced in ani-
mals by hallucinogens. The induced hallucination in ani-
mals (which cannot linguistically communicate with us) 
can be detected by observing the changes in their behav-
iors that may result from the experience of hallucinations 
during the experimental time-frame. The specificity of 
the hallucination-related behavioral changes should 
never be seen in response to other nonhallucinogenic 
drugs in theory. Although higher animals such as cats 
and monkeys show hallucination-like behaviors such as 
visual tracking of invisible objects or abortive groom-
ing (Jacobs, Trulson, & Stern, 1976; Jacobs, Trulson, & 
Stern, 1977; Nielsen et al., 1983), they are not specific 
responses to hallucinogens (Marini & Sheard, 1981). The 
drug discrimination study, which applies standard two-
lever operant procedures for rats, is proposed to detect a 
classical hallucinogen from saline (Hirschhorn & Winter, 
1971). Although the drug discrimination studies have 
been proven to be quite useful for the investigation of 
addictive properties of hallucinogens and nonhallucino-
gens and hallucinogen-trained animals provide a func-
tional behavioral model of 5-HT2R activation, it does 
not represent an animal model of hallucinogenic activity 
(Glennon, 1991; May et al., 2009). Despite the absence of 
hallucinatory behavior in animal models of schizophre-
nia, hallucinogen-associated behavioral studies have 
yielded important insights into the linkage between hal-
lucinogenic molecules and schizophrenia, both in phar-
macological and transgenic models, and have helped to 
identify receptor targets and interactions that could be 
exploited in the development of new therapeutic agents 
(Halberstadt & Geyer, 2013b; Marcotte, Pearson, &  
Srivastava, 2001; Nabeshima et al., 2006; Niwa et al., 
2010; Young, Zhou, & Geyer, 2010). There is still no any 
specific method to exclusively investigate delusional or 
hallucinatory behaviors in rodent animal models. Nev-
ertheless, several methods are being applied to investi-
gate the hallucinogen-related behaviors in context with 
the confirmed hallucinogenic (delusional) molecules. 

Here, we introduce the most commonly used behavioral 
methods which have been used to study the effects of 
hallucinogens as well as hallucination-related molecules.

Prepulse Inhibition of Startle Response

Schizophrenia patients and their relatives show defi-
cits in prepulse inhibition (PPI) of startle responses, a 
phenomenon that measures an early stage of informa-
tion processing (preattentional sensorimotor gating), 
and are seen as a feature for schizophrenia spectrum 
disorders (Cadenhead, Swerdlow, Shafer, Diaz, & Braff, 
2000; Wynn et al., 2004). PPI refers to the ability of a weak 
prestimulus (nonstartling, the prepulse) to transiently 
inhibit the response to a closely following strong sen-
sory stimulus (the startle stimulus, the pulse) (Kumari 
et al., 2008; Stitt, Hoffman, & Marsh, 1973; Zangrando  
et al., 2013). The PPI is impaired in a number of psy-
chopathological disorders involving cortico-striato-
pallido-pontine circuits that exhibits impaired gating of 
sensory, cognitive, or motor information (Braff, Geyer, &  
Swerdlow, 2001). In schizophrenia patients, the pres-
ence of auditory hallucinations is positively associated 
with a marked PPI deficit if the patients are not able to 
control their occurrence and thus are unable to dismiss 
them. Hearing voices with a high degree of negative con-
tent is associated with high mean startle amplitude in 
patients with current auditory hallucinations (Kumari 
et al., 2008). This supports the notion that auditory hal-
lucinations in patients with schizophrenia are theorized 
to result from impaired monitoring of inner speech, the 
inability to consciously ignore them appears to be asso-
ciated with a sensorimotor gating deficit (Kumari et al., 
2008; McGuire et al., 1995).

Animal studies of PPI provide strong support for a 
loss of sensory gating with increased DA activity in the 
mesolimbic system and involvement of the 5-HTergic 
system in the modulation of startle habituation (Geyer &  
Braff, 1987; Geyer, Swerdlow, Mansbach, & Braff, 1990; 
Swerdlow, Braff, Taaid, & Geyer, 1994). PPI is also 
widely used to study the action mechanism of hal-
lucinogens such as PCP (Takahashi et al., 2006), LSD  
(Halberstadt & Geyer, 2010), THC (Nagai et al., 2006), 
and METH (Arai et al., 2008) in mouse models. Acti-
vation of 5-HT-2AR is involved in PCP-induced dis-
ruption of PPI of the acoustic startle in rats (Yamada, 
Harano, Annoh, Nakamura, & Tanaka, 1999). PPI is also 
applied to test the role of genetic susceptibility factors 
for schizophrenia such as Disrupted-in-Schizophrenia-1 
(Niwa et al., 2010), immune activation during pregnancy 
(Ozawa et al., 2006), and neuregulin 1 (Hong, Wonodi, 
Stine, Mitchell, & Thaker, 2008) in mouse models.

Thanks to the consistent application of PPI in schizo-
phrenic patients and related animal models as a repro-
ducible measure of sensorimotor gating, it can be used 
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to monitor the animal modeling of schizophrenia and 
therapeutic effects of candidate drugs to control hallu-
cinations. Although the PPI methods are described in 
all research publications involved, the protocol for the 
measurement of startle response, PPI, and habituation in 
rats and mice are also reported exclusively with detailed 
trouble shooting information (Geyer & Swerdlow, 2001; 
Valsamis & Schmid, 2011).

Locomotor Activity

Locomotor activity does not represent any hallucina-
tory behavior in any species. Although hallucinogenic 
drugs cause visual hallucination-like behaviors and 
increased locomotor activities (maybe because of the 
chasing of the invisible objects they are seeing) in mon-
keys and cats (Jacobs et al., 1976, 1977; Nielsen et al., 1983), 
the relationship between them needs to be addressed.  
Single or repeated exposure to drugs of abuse in animal 
models can also induce long-lasting increased locomo-
tor response—the locomotor sensitization (Mizoguchi 
et al., 2007; Robinson & Berridge, 1993; Valjent et al., 
2010). However, in combination with PPI in schizo-
phrenia models, locomotor activity may help to exam-
ine the involvement of DAergic and 5-HTergic system 
in PPI deficiency that can result from auditory hal-
lucination (Geyer & Braff, 1987; Kumari et al., 2008; 
Nabeshima et al., 2006; Niwa et al., 2010). The activation 
of D2R and 5-HT-2AR is associated with hallucination 
in humans (Goldsmith et al., 1997; Kometer et al., 2013; 
Tune et al., 1996) and hyperlocomotion in animal mod-
els of hallucinogens (Aoyama, Kase, & Borrelli, 2000;  
Halberstadt, Powell, & Geyer, 2013; Nabeshima, Kitaichi, 
& Noda, 1996). Therefore, locomotor activity is necessary 
to monitor the D2R and 5-HT-2AR signaling systems in 
the animal models of hallucination.

Locomotor activity is evaluated by placing an ani-
mal into the center of an open-field arena and allowing 
exploring for a preferred time. Activity in the open field 
can be quantified by direct observational techniques 
and automated monitoring. Total distance of locomo-
tion, movement time, and movement speed are easily 
measured by a computer-based automated monitoring 
system. Protocols for measurement of locomotor activ-
ity using photocell-based automated monitoring sys-
tems are available with detailed information (Pierce & 
Kalivas, 2007).

Head-Twitch Response

Hallucinogens induce head-twitch response (HTR) 
in rodents; however, it may not represent any halluci-
natory behavior. The HTR is a rapid side-to-side violent 
head-shaking movement that occurs in mice and rats 
only after administration of hallucinogens such as LSD, 

PCP, 5-hydroxytryptophan, 2,5-dimethoxy-4-iodoam-
phetamine, and 5-HT-2AR agonist (Corne, Pickering, &  
Warner, 1963; Keller & Umbreit, 1956; Nabeshima, 
Ishikawa, Yamaguchi, Furukawa, & Kameyama, 
1987a; Nabeshima, Ishikawa, Yamaguchi, Furukawa, 
& Kameyama, 1987b; Willins & Meltzer, 1997). HTR  
does not occur in normal untreated mice and rats, but 
does occur in mice and rats in response to 5-HT-2AR acti-
vation; selective 5-HT-2AR antagonists block the HTR 
induced by hallucinogens (Willins & Meltzer, 1997). It is 
confirmed that 5-HT-2AR is essential for HTR generation 
by hallucinogens, because 5-HT-2AR knock-out mice do 
not react with HTR after treatment with hallucinogens 
(Gonzalez-Maeso et al., 2007; Gonzalez-Maeso et al., 2003). 
Interestingly, the other known hallucinogenic cannabi-
noids including THC inhibit 5-HT-2AR-mediated HTR, 
whereas selective cannabinoid CB-1R antagonist pro-
duces robust frequencies of HTR in mice (Darmani, 2001; 
Darmani & Pandya, 2000; Janoyan, Crim, & Darmani,  
2002). Nevertheless, HTR is not only seen as an indicative 
of some hallucinogenic receptor activity in animal mod-
els (Corne & Pickering, 1967; Nabeshima et al., 1987b), 
it is also useful for studying the hallucinogenic signal-
ing pathways in schizophrenia. However, it is not clear 
whether the 5-HT-2AR-mediated HTR in rodents is asso-
ciated with 5-HT-2AR-mediated auditory hallucinations 
or VHs in humans because they cannot be induced in the 
same species. A recent study reported that a magnetom-
eter coil can be used to detect HTR induced by hallucino-
gens (Halberstadt & Geyer, 2013a). Magnetometer-based 
HTR detection may provide a high-throughput, semiau-
tomated assay for this behavior, and offer several advan-
tages over traditional assessment methods (Halberstadt 
& Geyer, 2013a).

Y-Maze Test and Water-Finding Test

The Y-maze test is widely used for the evaluation 
of WM (or short-term memory) and requires immedi-
ate sequential association of movements and different 
visual stimuli (Nabeshima et al., 1994; Yamada et al., 
1996). The water-finding test is used to evaluate WM as 
well as latent learning (Nabeshima et al., 1994). This test 
examines the capability of a mouse to associate a pro-
vided clue (the location, which is briefly explored in the 
training session) with the desired object (the water, in a 
test session after 24 h). The latent learning is an associ-
ate learning which is essential for correctly matching the 
prior beliefs with the novel observations and understand 
causal relationships between related events. The learn-
ing of causal relationships between unrelated events 
is seen as the impairment of associative learning and 
associated with the delusion in schizophrenia (Jardri 
& Deneve, 2013). Hallucinogenic drugs such as METH 
and PCP induce impairments of latent learning, WM, 
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and PPI in mouse models of schizophrenia in relation 
with DA hypothesis (Mouri et al., 2007; Nabeshima et al., 
2006; Nabeshima et al., 1994). Therefore, any impairment 
in the water-finding test may provide a clue for delu-
sional information processing in mouse models.

WM enables us to hold the contents of our conscious 
awareness, even in the absence of real sensory input, by 
maintaining an active representation of information for 
a brief period (Courtney, Petit, Haxby, & Ungerleider, 
1998). Auditory hallucinations are mediated by D2R 
activation, which also improves WM (Tarantino, Sharp, 
Geyer, Meves, & Young, 2011). Thus, abnormally over-
active WM may support hallucinations that occur in 
the absence of real sensory input. On the other hand, 
impairment in WM disrupts logical reasoning and leads 
to the formation as well as the persistence of delusional 
ideation (Broome et al., 2012). Delusions are also diffi-
cult to model in animals, given that they involve dys-
functions of consciousness and reality monitoring and 
cognition. However, the Y-maze or water-finding test 
may help evaluate the delusion- or hallucination-related 
cognitive state in animal models in the context of related 
pathology.

Cued and Contextual Fear Conditioning

The role of the amygdala and hippocampus in the 
acquisition and consolidation of contextual represen-
tations is well confirmed in rodents during studies of 
conditioned fear responses to a cue and to context. Fear 
conditioning to either a cue or a context represents a form 
of associative learning (Curzon, Rustay, & Browman, 
2009). Because the delusion in schizophrenia originates 
from “unshakable” causal relationships between unre-
lated events (Jardri & Deneve, 2013), testing the abnor-
mality in associative response to a cue (a tone paired 
with foot-shock) and a context (background present dur-
ing the tone-paired foot-shock) may represent how the 
animals miscompute and illogically reason the causal 
relationship of events. Of course, one should be careful 
to interpret the data because they are also implicated in 
associative fear memory. This method is widely used 
and the detailed protocol and methods of data analysis 
for cued and contextual fear conditioning in rodents are 
well reported (Curzon et al., 2009).

CONCLUSION

Despite the consistent findings in structural imag-
ing and functional/connectivity studies to support ana-
tomical origin of positive symptoms of schizophrenia, 
the underlying pathophysiological causes are still not 
fully understood (Steinmann, Leicht, & Mulert, 2014). 
Therefore, various approaches such as pharmacological, 

genetic, and epigenetic manipulations should be applied 
to model the symptoms and find a target for therapeutic 
intervention.

Currently approved typical and atypical antipsychot-
ics are D2R-antagonists with different affinity (with the 
exception of aripiprazole, which is a partial D2R agonist). 
Atypical antipsychotics also act as 5-HT-2AR antagonists 
with high affinity. Unfortunately, these medications can-
not selectively target the D2R or 5-HT-2AR in pathways 
that involve in positive symptoms of schizophrenia, and 
blocking these receptors in other pathways can cause a 
wide range of adverse effects. Although DA theory is 
dominating our understanding of schizophrenia, a single 
neurotransmitter is less likely responsible for the genesis 
of the positive symptoms of the disease. To avoid the D2R 
blockade-related side effects, current understanding of 
research leads the drug development strategy to other 
hypothesis of schizophrenia to target related receptors. 
Obviously, animal models that are specific to positive 
symptoms as well as the underlying pin-point pathol-
ogy are anticipated to develop better antipsychotics. 
Integration of the anatomical knowledge such as positive 
symptom-associated brain structures that, obtained from 
schizophrenic neuroimaging studies, with the positive 
symptom-associated receptors, obtained from hallucino-
gen studies, may facilitate the modeling of positive symp-
toms in animal models.

Future research on the modeling of positive symp-
toms in schizophrenia should focus on a better combina-
tion of region- and receptor-specific neurochemical and 
pharmacological basis of positive symptoms in animal 
models.
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INTRODUCTION

Schizophrenia is a complex psychiatric disorder, affect-
ing up to 1% of the world’s population, expressing char-
acteristic domains of symptomatology, generally split into 
positive, negative, and cognitive symptoms (Kane, 1996). 
The positive symptoms are commonly regarded as addi-
tions to normal behavior (thought disorder, visual and audi-
tory hallucinations, and delusions), whereas the negative 
symptoms represent deficits in normal healthy function-
ing (anhedonia, alogia, avolition, asociality, and blunted 
affect) and the cognitive symptoms are impaired working 
memory, attention, and executive function (Andreasen, 
1995; Kirkpatrick & Fischer, 2006). Because schizophrenia 
is a heterogeneous condition, not all patients will suffer 
from the same symptoms; this can determine the success 
or failure of pharmacological treatment (Dawe, Hwang, & 
Tan, 2009). From recent interview studies on patients, using 
newer (Clinical Assessment Interview for Negative Symp-
toms) (Kring, Gur, Blanchard, Horan, & Reise, 2013) and 
older (Scale for the Assessment of Negative Symptoms, 
SANS) (Andreasen, 1982) interview methods, two broad 
domains of symptoms cover the negative symptoms, 
namely motivation/pleasure and expression. Indeed, these 
two domains may better cover the putative underlying 
mechanisms (Blanchard & Cohen, 2006; Kring & Elis, 2013).

From the point of view of treatment, the use of anti-
psychotic medication has resulted in clinical benefit, but 
this has not always produced improvement in functional 
outcomes (Robinson, Woerner, McMeniman, Mendelow-
itz, & Bilder, 2004). The negative symptoms of schizo-
phrenia appear to have the most detrimental effect on 

the functioning of the patient and their long-term quality 
of life (Milev, Ho, Arndt, & Andreasen, 2005). This, cou-
pled with the fact that the pharmacological treatments, 
although effective for positive symptoms, generally lack 
efficacy against the negative symptoms, means that there 
is a gap in the treatment profile for patients (Rosenbaum 
et al., 2012). The impact of second-generation antipsychotic 
drugs, which were meant to be more effective at treating 
the negative symptoms, has been further questioned with 
evidence to show that any change in negative symptoms 
may actually be mediated through a reduction in positive 
symptoms (Subotnik et al., 2014). Sadly, studies show that 
those with least functional improvement are the patients 
with the most marked negative symptoms (Ho, Nopoulos, 
Flaum, Arndt, & Andreasen, 1998; Milev et al., 2005).

Although efforts are ongoing to develop effective 
treatment regimens for patients with dominant nega-
tive symptoms, the results are not encouraging. Novel 
techniques such as repetitive transcranial magnetic 
stimulation have been investigated but have shown 
mixed results. One study has shown an improvement 
in the Positive and Negative Syndrome Scale, whereas 
results from a different group showed no improvement 
in Positive and Negative Syndrome Scale (Dlabac-de 
Lange et al., 2014; Zhao et al., 2014).

MODELING SYMPTOMATOLOGY

One method to address the clinical need for treatments 
is through the development of animal models that better 
represent the negative symptoms and through rigorous 
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validation of these models. However, there are a number 
of difficulties with this, many of which are detailed in 
this section, not least of which is the representation of 
behaviors in animals that are uniquely human. Coupled 
with this is our limited (though admittedly improving) 
knowledge of the development of and pathophysiologi-
cal changes in schizophrenia.

There is ample evidence that there are particular areas 
of the brain affected in patients with schizophrenia. The 
key areas involved, particularly in relation to the nega-
tive symptoms, appear to be the ventral striatum and 
prefrontal cortex. Indeed, in patients with predominant 
negative symptoms, cerebral blood flow imaging has 
shown hypofrontality (Pinkham et al., 2011), and other 
imaging studies have shown decreased activation of the 
ventral striatum was associated with negative symp-
toms (Menon, Anagnoson, Glover, & Pfefferbaum, 2001). 
Further work showed a negative correlation between the 
negative symptom, anhedonia, and dorsomedial pre-
frontal cortex metabolism (Park et al., 2009). Lesions of 
the medial prefrontal cortex result in a lack of spontane-
ity and reduced ability to initiate movement and speech, 
further underlining the importance of this region in 
schizophrenia (Fuster, 2001). There also appear to be 
differences in the connectivity between brain regions 
in schizophrenia patients. Positron emission tomogra-
phy studies have shown fewer functional interactions 
between brain areas, particularly between thalamic and 
cortical regions, when comparing schizophrenia patients 
and controls (Volkow, Fowler, Ding, Wang, & Gatley, 
1998). Morphological changes have also been shown in 
patients. In a study of first-episode, antipsychotic-naive 
patients, there were changes in the morphology of the 
orbitofrontal cortex. Compared with controls, the schizo-
phrenia patients showed increased volumes of the orbi-
tofrontal cortex, which correlated with the severity of 
negative symptoms (Lacerda et al., 2007).

The most enduring hypothesis to explain schizophrenia  
is the dopamine hypothesis, which suggests that raised 
dopamine levels, hyperdopaminergia, are responsible 
for the production of the symptoms of schizophrenia 
(Lau, Wang, Hsu, & Liu, 2013; Seeman, 1987). Indeed, 
amphetamine-induced psychosis, which can present 
as hallucinations and delusions similar to the positive 
symptoms, has been well-known for many years and 
underpins the dopamine hypothesis (Snyder, 1973). 
However, the situation is not as clear-cut because studies  
have shown that there appear to be behavior-specific 
changes in functioning of different areas of the brain, par-
ticularly the dorsolateral prefrontal cortex (Weinberger,  
Berman, & Illowsky, 1988). Hypofunction in this region 
may result in disinhibition and hyperdopaminergia in 
limbic regions (Weinberger, 1987). Despite the ample 
evidence in support of the dopamine hypothesis, recent 
work has shown that prefrontal cortical regions display 
hypodopaminergia (Howes & Kapur, 2009). Furthermore, 

excess dopamine levels were not able to account for the 
negative and cognitive symptoms displayed by patients 
(Thaker & Carpenter, 2001). So, despite the fact that the 
majority of pharmacological treatments for schizophre-
nia mediate their effects through dopamine, the pre-
sented evidence necessitated a revision of the dopamine 
hypothesis to account for these observations.

It has become increasingly apparent that the gluta-
matergic system also has an important role to play in 
schizophrenia. The anesthetic, phencyclidine (PCP), 
which is an antagonist at the N-methyl-d-aspartate 
(NMDA) glutamate receptor, has long been known to 
produce effects in humans that resemble those of schizo-
phrenia, both positive and negative symptoms, and 
early positron emission tomography scans of PCP abus-
ers showed temporal and frontal lobe alterations similar 
to those seen in patients with schizophrenia (Hertz-
mann, Reba, & Kotlyarov, 1990; Rainey & Crowder, 
1975). Similarly, ketamine, if given to healthy humans, 
will produce paranoia, hallucinations, and thought and 
cognitive impairments (Krystal et al., 1994). This evi-
dence has resulted in the development of the glutamate 
hypothesis of schizophrenia (Malhotra et al., 1996). It has 
been proposed that as part of the glutamate hypothesis, 
there is chronic overrelease of glutamate, resulting in 
NMDA receptor hypofunction in patients with schizo-
phrenia and this would lead to the behavioral symptoms 
and morphological changes in patients’ brains (Olney,  
Newcomer, & Farber, 1999). Furthermore, there is molecu-
lar evidence also supporting NMDA receptor  dysfunction 
in schizophrenia, with, for example, reduced levels of 
dysbindin and its messenger RNA in the hippocampus  
and the dorsolateral prefrontal cortex and polymor-
phisms of DTNBP1, which encodes dysbindin (Talbot 
et al., 2004; Voisey et al., 2010; Weickert et al., 2004).

Although both dopaminergic agonists and glutama-
tergic (NMDA) antagonists effectively replicate psychotic  
symptoms, it is the latter group that is better able to 
produce the negative (and cognitive) symptoms of 
schizophrenia. As a result, much emphasis has now 
been placed on the role of glutamate, and glutamater-
gic hypofunction, in the development of treatments for 
schizophrenia. This focus on glutamate is particularly 
concerned with the NMDA receptor because this is the 
site of action of PCP and ketamine.

Further support for this comes from the  identification 
of the role of a number of the schizophrenia risk genes. 
There is evidence that Dysbindin, DISC1, and COMT 
are all involved in the dysfunction of the glutamater-
gic neurotransmission (Harrison & Weinberger, 2005;  
Wirgenes et al., 2009). Furthermore, neuregulin-1, 
through its receptor, erbB4, inhibits prefrontal cortical 
NMDA receptors in humans, and patients with schizo-
phrenia have been shown to have increased interactions 
between erbB4 and the postsynaptic density protein, 
PSD-95 (Hahn et al., 2006): all of which strengthens the 
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glutamatergic hypothesis of schizophrenia. In addition, 
clozapine, which does show some efficacy in treating the 
negative symptoms, results in downregulation of the 
GLT-1 glutamate transporter resulting in raised levels 
of glutamate in the cerebral cortex, whereas haloperidol, 
a first-generation antipsychotic, is ineffective because it 
does not affect glutamate levels in the prefrontal cortex 
(Mouri, Noda, Enomoto, & Nabeshima, 2007).

To further complicate matters, another symptom 
domain, affective symptoms, overlaps with the negative  
symptoms. There is clear evidence that patients with 
schizophrenia can also suffer from affective  symptoms 
such as anxiety, suicidality, and depression. These form  
part of the spectrum of symptoms, and patients with 
schizophrenia have increased risk of developing depres-
sion compared with the general population, with depres-
sive patients being at a higher risk for developing 
schizophrenia (Buckley, Miller, Lehrer, & Castle, 2009; 
Hafner et al., 2005; an der Heiden, Konnecke, Maurer, 
Ropeter, & Hafner, 2005). This relationship between the 
two disorders suggests that there may be commonalities 
in both their pathophysiology and etiology. Indeed, gene-
wide association studies have shown shared genetic risk 
factors for both schizophrenia and depression (Cross-
Disorder Group of the Psychiatric Genomics, 2013). 
Similarly, dysfunction in one neurotransmitter system, 
dopamine, could lead to downstream disruption of other 
systems and ultimately contribute to the development of, 
among others, affective symptoms (Hafner et al., 2005). 
As a result, some of the negative symptoms overlap with 
depressive symptoms, such as anhedonia, which can lead 
to overlap in modeling of the different symptom groups 
in schizophrenia.

Schizophrenia is particularly complex as it is a neu-
rodevelopmental disorder with susceptibility affected 
by both genetic and environmental factors. However, 
as mentioned previously and as highlighted by many 
groups (Cognitive Neuroscience Treatment Research to 
Improve Cognition in Schizophrenia Initiative and the 
Measurement and Treatment Research to Improve Cog-
nition in Schizophrenia (MATRICS) program among 
others), better animal models are required to better 
understand the pathophysiology of schizophrenia and 
to allow the identification of novel targets and treat-
ments for schizophrenia (Carter & Barch, 2007; Marder 
& Fenton, 2004). One of the most important steps in this 
process is the validation of the putative animal models.

MODEL VALIDITY

There are clearly a number of issues when attempting to 
construct a model for schizophrenia, not least of which are 
the symptomatic domains and the changes in neuroanat-
omy and neurochemistry that occur in the patient. One way 
to develop a better model is to carefully validate the model 

ensuring that, as close as possible, the negative symptoms 
are represented. Broadly speaking, any effective animal 
model for the negative symptoms should show face valid-
ity, construct validity, and predictive validity. Face validity 
means that the animals mimic (as much as possible) the 
negative symptoms of schizophrenia seen in patients. Con-
struct validity ensures there is a theoretical rationale to the 
model with representative pathophysiology. Finally, pre-
dictive validity ensures that existing and novel treatments 
are detected or predicted using the model.

Given the nature of the negative symptoms described 
previously, it is clear that it will be very difficult to construct 
a model that expresses all of the genetic, etiological, and 
neurobehavioral traits of schizophrenia patients. Indeed, 
the final factor, predictive validity, although arguably 
the most important, is the most challenging for negative 
symptoms because there is no known, consistently effec-
tive, therapeutic agent. Often the paradigm used is a mod-
est response to clozapine or sometimes amisulpride and a 
lack of response to first-generation antipsychotics, such as 
haloperidol, neither of which is a robust mechanism.

However, the situation regarding face validity for 
animal models of negative symptoms is more positive. 
Although we do not fully understand the etiology of 
schizophrenia, we can directly measure, for example, aso-
ciality through social interaction of mice or rats (Trezza, 
Campolongo, & Vanderschuren, 2011; Trezza, Dam-
steegt, Achterberg, & Vanderschuren, 2011) and this can 
be manipulated through pharmacological, developmen-
tal, and genetic means (Moser, 2014; Neill, Harte, Had-
dad, Lydall, & Dwyer, 2014; O’Tuathaigh, Desbonnet,  
& Waddington, 2014).

MODELING TECHNIQUES

Despite the difficulty in validating a model of schizo-
phrenia, many techniques have been used to develop 
such models and are based broadly on the differ-
ent hypotheses of schizophrenia and observations of 
patients. It has been estimated by Carpenter and Koe-
nig that there are more than 20 different animal models 
of schizophrenia (Carpenter & Koenig, 2008) and this 
number continues to rise. These generally fall within 
a number of categories, namely genetic models, lesion  
models, neurodevelopmental models, and pharmacolog-
ical models. However, given the heterogeneous nature of 
schizophrenia, it is unlikely that any one model will dis-
play all of the required characteristics. To be an appropri-
ate, comprehensive model for schizophrenia, the animal 
would need to show postpubertal onset, with a loss of 
hippocampal and cortical connectivity and functioning. 
In addition, there should be neurotransmitter abnormal-
ities with changes to dopamine and glutamate levels and 
behavioral changes such as social withdrawal, an abnormal  
response to rewards, and impairment in cognition.
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Other considerations when developing a model of 
schizophrenia are that the behaviors to be measured 
must be consistently represented across species and be 
mediated through the same neural circuits. This all lends 
to the construct validity of the model as described previ-
ously. However, many of the behavioral measures used 
are more aligned with face validity.

The neurodevelopment models exploit the fact that 
epidemiological studies have shown that environmental 
insults to the neonate, such as maternal stress or mal-
nutrition, infections, and obstetric complications during 
birth, can all increase the risk of developing schizo-
phrenia later on in life (Brown, 2006). One such model 
is the prenatal infection model, whereby administration 
of polyinosine-polycytidylic acid (poly I:C), during the 
gestational period, elicits a viral-like immune response. 
This results in offspring with long-term structural brain 
abnormalities coupled with behavioral and cognitive 
changes that are akin to schizophrenia (Meyer & Feldon,  
2009, 2010). Indeed, the time of administration of poly 
I:C during gestation seems to affect the symptoms  
produced, with later administration times being more 
associated with the negative symptoms (Meyer, Feldon, &  
Yee, 2009).

Similarly, exposure of pregnant rodents to MAM, an 
antimitotic agent, produces long-term structural changes in 
the brain and behavioral changes in the offspring (Moore, 
Jentsch, Ghajarnia, Geyer, & Grace, 2006). Interestingly, 
like the poly I:C model, the time of administration to the 
pregnant rodent (between gestational day 14 and 17) also 
appears to impact the spectrum abnormalities expressed 
with later times (GD17) appearing to most closely represent 
schizophrenia (Balduini, Elsner, Lombardelli, Peruzzi, &  
Cattabeni, 1991; Fiore et al., 1999).

The earliest pharmacological models were built on 
the foundation of the dopamine hypothesis and hyper-
function of the mesolimbic dopaminergic system. For 
example, chronic amphetamine, resulting in sensitiza-
tion, and subsequent acute amphetamine challenge 
produced exaggerated hyperactivity. The antipsychotic 
agents, haloperidol and clozapine, were able to reverse 
this sensitization (Meng, Feldpaush, & Merchant, 1998). 
However, amphetamine administration was not able to 
mimic the negative symptoms of schizophrenia (Sams-
Dodd, 1998a, 1998b). This is a distinct limitation of the 
chronic amphetamine model, though it is in line with the 
current hypotheses of schizophrenia and in accordance 
with observations in humans (Javitt & Zukin, 1991).

Other pharmacological models involve the acute or 
subchronic administration of substances such as PCP or 
ketamine. In comparison to the earlier models, the use 
of PCP or ketamine is better able to elicit a spectrum of 
symptoms including positive, negative, and cognitive 
symptoms. They are also consistent with observations in 
humans of delusions, hallucinations, social withdrawal, 

and alogia (Cohen, Rosenbaum, Luby, & Gottlieb, 1962; 
Krystal et al., 1994; Luby, Cohen, Rosenbaum, Gottlieb, &  
Kelley, 1959). Although the PCP model has the advantage  
that it induces positive and negative symptoms, it is gen-
erally only used acutely, or subchronically, to produce 
these symptoms, whereas schizophrenia is a chronic 
condition (Ellenbroek & Cools, 2000).

The lesion models involve the lesioning of a spe-
cific area of the brain in an attempt to modify the neu-
ral architecture in a similar way to schizophrenia. The 
neonatal ventral hippocampal lesion model involves 
the administration of ibotenic acid to the ventral hip-
pocampus and the timing of the lesion is critical, in a 
similar manner to the neurodevelopmental models. This 
results in postpubertal changes in the prefrontal cortex 
and nucleus accumbens with concomitant changes in 
behavior (Tseng, Chambers, & Lipska, 2009). The behav-
ioral changes from a ventral hippocampal lesion develop 
over time, but many of the abnormalities associated with 
schizophrenia are present by postnatal day 56 (Lipska, 
Jaskiw, & Weinberger, 1993; Lipska et al., 1995; Lipska & 
Weinberger, 1993).

The group of animal models of schizophrenia that is 
most rapidly developing is the genetic model, particu-
larly the so-called risk factor models. It is well established 
from twin studies that there is a significant heritability in 
schizophrenia (Cardno et al., 1999; Kendler et al., 1993). 
The majority of the genes identified that are in some way 
disrupted in schizophrenia are involved in glutamater-
gic or dopaminergic function, neuronal plasticity, or syn-
aptogenesis (Harrison & Weinberger, 2005). There are in 
excess of 1000 studies regarding the putative susceptibil-
ity genes for schizophrenia with more published annu-
ally (Allen et al., 2008). However, several of these risk 
genes have been explored in more detail than others and 
in some cases have displayed abnormal functioning of 
glutamate and/or dopamine, resulting in pathophysio-
logical and behavioral changes representative of schizo-
phrenia (Arguello & Gogos, 2010; Kirby, Waddington, 
& O’Tuathaigh, 2010; O’Tuathaigh, Kirby, Moran, &  
Waddington, 2010). For example, using a mutant mouse 
with a heterozygous deletion of the TM domain of 
 neuregulin-1, O’Tuathaigh and coworkers demonstrated 
intact mnemonic processes, but impaired social novelty 
behavior, thereby underlining its role as a schizophrenia 
risk gene (O’Tuathaigh, Harte, et al., 2010).

MODELING THE NEGATIVE SYMPTOMS

Anhedonia

Anhedonia has long been suggested to be a core 
symptom of schizophrenia and was one of the symp-
toms described by Kraepelin in his original presentation 
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of patients with dementia praecox (schizophrenia) 
 (Kraepelin, 1971). Anhedonia can be defined as a lack of 
feeling pleasure, and in patients it can be assessed using 
the SANS anhedonia-asociality subscale. This scale 
examines the negative symptoms of anhedonia and aso-
ciality using interest in activities that may be sexual or 
recreational in addition to measures of intimacy, close-
ness, and relationships with friends.

Although many regions in the brain have a role in 
emotion and feelings of pleasure, studies in schizo-
phrenia patients have highlighted a few areas. Reduced 
activity and responsiveness of the amygdala and stria-
tum are thought to lead to anhedonia through a failure 
to respond to positive stimuli (Dowd & Barch, 2010). 
This reduced ventral striatal activity has also been seen 
in healthy subjects (Wacker, Dillon, & Pizzagalli, 2009). 
In addition, dopamine and, particularly, the mesolimbic 
to striatal dopaminergic projections, have an important 
role in reward prediction and incentivization (Berridge, 
2004; Schultz, Dayan, & Montague, 1997).

However, to be able to assess its presence in ani-
mals, one needs to be able to measure when animals are 
pleased, or hedonic. Generally, animal behavior that is 
initiated voluntarily and then repeated is accepted to 
fulfill this. The most commonly used paradigm to mea-
sure anhedonia and a reduction in reward function, is a 
decrease in the sucrose consumption or preference rela-
tive to control, whereby the rodent is presented with 
a choice of consuming water or sucrose solutions of 
increasing concentrations (Cryan & Mombereau, 2004; 
Willner, Muscat, & Papp, 1992).

Many of the different models used in schizophrenia 
have examined sucrose consumption and preference. 
Recent research using the poly I:C model, administered 
late in gestation, showed that prenatal immune stimula-
tion resulted in a reduction in sucrose preference compared 
with controls, which was indicative of anhedonic behav-
ior (Bitanihirwe, Peleg-Raibstein, Mouttet, Feldon, &  
Meyer, 2010). However, the relevance of the sucrose pref-
erence test has been questioned. Work by Brady, McCal-
lum, Glick, and O’Donnell (2008), using a progressive 
ratio schedule to examine motivation and effort, showed 
that rats that had undergone neonatal ventral hippocam-
pal lesions worked harder in attaining their goal than 
control rats (Brady et al., 2008). This is contrary to the 
traditional thinking whereby the animal that is anhe-
donic would be expected to have a lower breaking point 
than a control animal.

However, recent evidence has somewhat confused mat-
ters and the measurement of anhedonia. Work by Horan 
et al. has shown that schizophrenia may not actually be 
associated with a reduced ability to experience pleasure, 
but rather with deficits in other aspects of the reward 
system (Horan, Kring, & Blanchard, 2006). This can be 
linked to animal work that has shown that dopaminergic 

projections to the dorsal and ventral striatum mediate 
reward prediction (Berridge, 2004). Indeed, prediction of 
reward, in addition to the reward stimulus itself, is associ-
ated with dopaminergic neurons in the ventral tegmental 
area and the substantia nigra (Schultz, 2007).

Reports have shown that schizophrenia patients are 
indeed able to experience pleasure (Heerey & Gold, 
2007), suggesting patients may not be anhedonic. Given 
this, it seems that schizophrenia may be more closely 
linked to deficits in anticipatory pleasure rather than the 
ability to experience the pleasure of a particular activity 
(Cohen & Minor, 2010) or that patients may be unable 
(or have a reduced ability) to use pleasurable memories 
to guide current behavior (Simpson, Waltz, Kellendonk, 
& Balsam, 2012).

Although this is an important development in the 
understanding of the symptomatology of schizophre-
nia, it does not help the development of a valid animal 
model of anhedonia and argues against the applicabil-
ity of sucrose consumption as a measure. However, this 
does suggest that an effective model of avolition may 
fulfill a dual role.

Avolition

Avolition, which can be described as a reduced moti-
vation to commence or continue goal-directed behaviors, 
is a key negative symptom of schizophrenia. Although, 
as described previously, consummatory pleasure, or lik-
ing something, is only modestly, if at all, compromised 
in patients with schizophrenia, there is ample evidence 
that wanting a reward and initiating action to acquire 
the reward are significantly impacted (Foussias, Agid, 
Fervaha, & Remington, 2014).

Evidence exists that people with schizophrenia appear  
have reduced participation in goal-directed behaviors 
because they perceive there will be less pleasure asso-
ciated with the behavior when compared with controls 
(Gard, Kring, Gard, Horan, & Green, 2007). This links 
closely with mounting evidence that schizophrenic 
patients are impaired in value computation (Brown et al., 
2013; Gold et al., 2012). This reduction in goal-directed 
behavior is thought to be linked to the functioning of the 
lateral prefrontal cortex (Braver & Cohen, 1999; Miller 
& Cohen, 2001). Studies in healthy volunteers using 
functional magnetic resonance imaging, examined the 
responses to anticipation of a reward and the actual 
receiving of that reward. Anticipation of reward resulted 
in activation in the ventral striatum, whereas reward 
(compared to nonreward) resulted in activation in the 
ventromedial frontal cortex (Knutson, Fong, Adams, 
Varner, & Hommer, 2001). The authors suggested that 
this work showed that although ascending dopamine 
projections are involved, reward and anticipation of 
reward activate distinct regions of the brain.
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In an effort to develop an animal model of avolition, 
effort computation has been examined. Effort compu-
tation is the calculation of the work (or effort) required 
to acquire a reward or particular outcome and this is 
thought to involve dopaminergic projections from the 
nucleus accumbens and other forebrain areas to the  
dorsal anterior cingulate cortex. Research has dem-
onstrated that lesions of the anterior cingulate cortex 
(ACC) or the medial prefrontal cortex in rats results 
in the preference of a low reward/low effort choice to 
a higher reward/higher effort option (Rudebeck et al., 
2007; Rudebeck, Walton, Smyth, Bannerman, & Rush-
worth, 2006; Salamone, Correa, Farrar, & Mingote, 2007; 
Walton, Bannerman, & Rushworth, 2002; Walton, Rude-
beck, Bannerman, & Rushworth, 2007). However, there 
is evidence to suggest that this may not be replicated in 
mice, therefore suggesting a species difference in perfor-
mance (Solinsky & Kirby, 2013). It must be noted that 
results obtained in mice have the potential to differ from 
those in rats due to species differences (Asan et al., 2005). 
Much of the data that is available on the connections 
between brain regions has been obtained using rats. 
Studies examining brain connectivity comparing rats 
and mice found most connections to be present in the 
latter, but the extent of these can differ and some may be 
absent (Yilmazer-Hanke, 2008).

This, of course, also limits the potential of using this 
particular paradigm in the risk gene models of schizo-
phrenia as they generally involve the use of mice. How-
ever, using a different model, dopamine D2 receptor 
overexpressing mice showed a motivational impairment 
in cost/benefit computations for the value of future 
rewards, which was reversed when the transgene was 
switched off (Ward et al., 2012). Furthermore, work with 
a transgenic model expressing a dominant negative 
DISC-1 showed behavioral deficits linked to the func-
tioning of the prefrontal cortex, including progressive 
ration performance and social interaction (Johnson et al., 
2013).

Social Withdrawal

Social withdrawal or asociality is one of the pri-
mary negative symptoms of schizophrenia and has a 
significant impact on functioning of the patient (Puig 
et al., 2008). Of all of the negative symptoms of schizo-
phrenia, social withdrawal and asociality are the most 
widely studied in animal models. This is likely due to 
the relative ease with which asociality can be measured 
in rodents (using social interaction, for example) and 
thus provides a valid and quantifiable model. This, how-
ever, is not to undermine the importance of asociality 
as a symptom of schizophrenia as it causes significant 
behavioral impairment in patients, meaning they often 
live alone, with few social contacts and in general avoid 

social interaction. Indeed, social withdrawal is often still 
present in periods of remission from the disease (Bellack, 
Morrison, Wixted, & Mueser, 1990).

Unlike avolition described above, it is more difficult 
to identify specific brain areas and structures that are 
involved in asociality as there is significant overlap with 
structures involved in social cognition and, as a concept, 
asociality is linked to both social cognition and avoli-
tion. Despite this, through the use of animal models, 
it has been possible to learn about the neurobiology of 
social interaction. The key neurotransmitters linked with 
schizophrenia are dopamine and glutamate and there is 
evidence to show there may also be a role for acetylcho-
line and noradrenaline and even neuropeptides may 
be involved (Adkins-Regan, 2009; Javitt, 2007; Snyder, 
Aghajanian, & Matthysse, 1972; Thomsen, Christensen, 
Hansen, Redrobe, & Mikkelsen, 2009). Similar to the 
other negative symptoms, areas of the forebrain, amyg-
dala, frontal cortex, and hippocampus, have been impli-
cated in asociality (Becker, Grecksch, Bernstein, Hollt, 
& Bogerts, 1999; Fernandez Espejo, 2003; File, James, 
& MacLeod, 1981). These studies, among others, have 
served to support the validity the social interaction para-
digms for the examination of the negative symptoms of 
schizophrenia.

Social interaction tasks generally examine the behav-
ior of an animal when exposed to an unfamiliar con-
specific and the subsequent range of social and asocial 
responses (Neill et al., 2010). However, although social 
interaction impairment offers good face validity as a 
model of schizophrenia, there is also a caveat in that the 
impairment may be as a result of a number of changes, 
both cognitive and emotional. To overcome this, differ-
ent tests of asociality should be employed, such as social 
approach/avoidance, aggression and social cognition 
(Arguello & Gogos, 2006).

Impairment in social interaction, such as social with-
drawal and social isolation, can be induced by many of 
the different techniques for modeling schizophrenia in 
animals, including neonatal lesions, administration of 
PCP or ketamine or with knock-out mice. For example, a 
single administration of PCP can cause social withdrawal, 
which is amenable to treatment with clozapine but does 
not respond to treatment with haloperidol (Sams-Dodd, 
1996). Interestingly, however, repeated administration of 
amphetamine does not produce social interaction defi-
cits (Sams-Dodd, 1998a). Similarly, MK-801, an NMDA 
receptor antagonist, has shown deficits in social behav-
ior in some studies following both acute and sub-chronic 
dosing (Matsuoka et al., 2005; Rung, Carlsson, Ryden 
Markinhuhta, & Carlsson, 2005), whereas others have 
failed to show enduring behavioral changes, albeit using 
different dosing regiments (Sams-Dodd, 2004).

The schizophrenia risk gene models have also shown 
good ability to produce deficits in the different social 
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interaction tasks. Models with mutations (including 
knockout, overexpression, hypomorphs) in risk genes 
such as DISC-1, dysbindin (sdy mouse), NR1, and DAT  
have all shown deficits in social affiliation (Clapcote et al., 
2007; Duncan et al., 2004; Feng et al., 2008; Rodriguiz, 
Chu, Caron, & Wetsel, 2004), whereas others have 
shown either no deficit, COMT (Babovic et al., 2008), or 
a mixed profile depending on the test used, neuregulin-1 
(O’Tuathaigh et al., 2007, 2008).

This, and the other models of schizophrenia that 
induce social withdrawal and isolation, has the draw-
back that they lack neuroanatomical comparability 
(Dawe et al., 2009). Also, it must be remembered that 
the social interaction deficit may be present as a result 
of other negative symptoms manifesting in the animal.

Alogia

Although alogia is a negative symptom in its own 
right, it is very hard to dissociate this from many of 
the other symptoms as they are all interlinked. Alogia 
may hasten a patients withdrawal from social interac-
tion, thereby exacerbating another negative symptom. 
Speech deficits have long been known to be linked with 
schizophrenia and studies have routinely found, for 
example reduced speech and verbal fluency in schizo-
phrenia patients when compared to controls (Allen, 
Liddle, & Frith, 1993; Rochester & Martin, 1979). Recent 
functional magnetic resonance imaging studies have 
shown functionally altered language pathways in 
schizophrenia (Rapp & Steinhauser, 2013), and this may 
include reduced activation of networks including the 
frontotemporal regions and the thalamus (Kumari et al., 
2010).

Poverty of speech is arguably the most difficult of 
negative symptoms to model in animals. However, 
rodents use other forms of communication, which it 
may be possible to study. These forms include olfac-
tory and tactile modes of communication, such as 
mutual grooming (Dunbar, 2010). However, poten-
tially, more promising is the possibility of measur-
ing ultrasonic vocalizations that are emitted during 
different tests, including social interaction. Chabout 
and colleagues looked at this test and how acoustic 
communication was used by mice during the task 
(Chabout, Cressant, Hu, Edeline, & Granon, 2013). 
Other investigators have shown that mice exposed to 
prenatal lipopolysaccharide showed reduced number 
and duration of ultrasonic vocalizations on postnatal 
days and subsequently showed impaired nest-seeking 
behavior (Baharnoori, Bhardwaj, & Srivastava, 2012). 
The measurement of ultrasonic vocalizations as a 
model of negative symptoms in schizophrenia may be 
useful but a direct link with alogia in humans should 
only be made with caution.

Blunted Affect

The lack of emotional response to stimuli is another hall-
mark of schizophrenia in patients. As one of the negative 
symptoms, emotional flattening has a significant effect on 
outcome in patients. Work by Gur and colleagues in patients 
demonstrated a relationship between blunted affect and 
functional outcome, but with the caveat that the patients 
with blunted affect generally displayed more pronounced 
negative symptoms (Gur et al., 2006). With a diversity of 
imaging studies, it has been difficult to pinpoint areas of 
the brain associated with processing emotional stimuli 
in schizophrenia patients. However, a meta-analysis has 
demonstrated that, curiously, during emotional process-
ing, some areas of the schizophrenic brain not normally 
associated with emotion show increased activation. This 
was contrasted with reduced activation in brain areas nor-
mally active during emotion such as the anterior cingulate 
cortex and the dorsal medial frontal cortex (Taylor et al., 
2012). Studies looking at the emotional impact of facial 
stimuli have shown altered limbic activity. Functional 
magnetic resonance imaging studies have shown weaker 
deactivation of the medial prefrontal cortex (including the 
anterior cingulate cortex, which is involved in processing 
negative emotion) and reduced activation of the left cer-
ebellum when viewing faces (Mothersill et al., 2014).

Although it is not possible to directly measure the 
emotional state of a rodent, many of the different test 
paradigms allow recording the expression of a motiva-
tional state. Tests examining locomotor behavior, social 
interaction, or reward-seeking behavior give a sense 
of the emotionality of a rodent. However, these are not 
direct measures and can be interpreted in different ways 
(Barnes, Der-Avakian, & Markou, 2014; Wilson & Koenig,  
2014). It is known from human studies that ketamine, an 
NMDA receptor antagonist, will produce emotional blunt-
ing (Abel et al., 2003); subsequently, in 2007, Pietersen 
et al. published work showing the development of a 
model for emotional blunting—“the diminished ability 
to respond to emotionally salient stimuli.” This group 
posited that because hypofunction is central to schizo-
phrenia hypotheses, perhaps the negative symptoms 
are linked to hypofunction of the amygdala. The work 
showed that following ketamine-induced hypoactiva-
tion of the amygdala, the effects of fear conditioning 
were inhibited and animals froze less than the control 
animals. This does, however, require further validation 
as a model for emotional blunting.

CONCLUSIONS

Patients with predominant negative symptoms 
respond poorly to the currently available antipsychotic  
treatments. Potentially one reason for this is the 
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concentration primarily on reversing symptoms instead 
of trying to understand and tackle the neurodevelop-
mental changes that occur. Better understanding of both 
the pathological changes and the symptoms themselves 
should allow the identification of novel targets.

Although the symptoms of schizophrenia are split 
into positive, negative, and cognitive, within each group 
there can be some difficulty distinguishing between 
symptoms. Horan et al. (2006) discussed the difficulty in 
distinguishing between two particular negative symp-
toms, namely anhedonia and amotivation. The group 
looked at, among others, the SANS scale, the current 
standard for assessment of negative symptoms, and con-
cluded that as assessment of anhedonia is combined with 
participation in social activities, the SANS rating may 
appropriately show “a social performance deficit more 
than a fundamental hedonic capacity deficit” (Horan 
et al., 2006). In a similar way, many of the other negative 
symptoms may be difficult to distinguish or may not be 
mutually exclusive. The difficulties of modeling alogia 
are clear, but, for example, a patient with avolition may 
show social withdrawal as a result, meaning the symp-
toms are often interlinked. Furthermore, as described 
previously, our understanding of deficits in the reward 
systems of the brain and anhedonia is now showing a 
potential dissociation meaning anhedonia may not be as 
important a symptom of schizophrenia as it had previ-
ously been.

The overlap in both the symptoms and modeling of 
them is also apparent when one considers the affective 
symptoms. Some of the models for depressive symp-
toms are also used as models for the negative symp-
toms, meaning the lines between the two are blurred. 
Certainly anhedonia can be included under both symp-
tom groups, and the sucrose preference test is more 
commonly used as a model of depression. Although we 
know that in patients with schizophrenia the ability to 
experience pleasure is intact, it seems that other aspects 
of the reward system are deficient. Therefore, a model 
of avolition, rather than anhedonia, may be more appro-
priate as a negative symptom model per se. Patients 
with schizophrenia and marked negative symptoms 
show reduced selection of high-effort choices (Barch, 
Treadway, & Schoen, 2014; Gold et al., 2013). Also, factor 
analyses have shown that avolition and apathy (in addi-
tion to blunted affect) are strong predictors of functional 
outcome in schizophrenia patients (Strauss et al., 2013).

Other issues that are affecting our modeling of 
schizophrenia and the ability to draw conclusions 
from the existing models are the inconsistencies in dif-
ferent studies. Depending on the research group using 
the model, different doses of drugs (e.g., PCP or ket-
amine) are administered, over different time periods, 
in different strains of mice or rats and subsequently 

different testing protocols are used. Coupled with 
this the widespread evidence of gender differences 
in mice, including the mice mutant for schizophrenia 
risk genes (O’Tuathaigh et al., 2006), one must won-
der therefore, why in most cases male mice or rats are 
used.

Despite these concerns, many of the models described 
here (and in the subsequent chapters) effectively model 
many of the negative symptoms, though again, there are 
caveats with their use. For example, although the ket-
amine model does show good representation of many 
of the changes that occur as a result of schizophrenia, 
there is no neurodevelopmental or genetic element to the 
model. Given that this is a key element to schizophrenia 
in humans, this represents a limitation of the ketamine 
model. However, the genetic models are also not the 
answer, the so-called schizophrenia risk genes, such as 
disrupted in schizophrenia-1 (DISC-1) and neuregulin-1 
are not exclusively linked with schizophrenia and have 
also been associated with bipolar disorder and autism, 
respectively (Marballi, Cruz, Thompson, & Walss-Bass, 
2012; Szczepankiewicz, 2013).

Alternatively, the poly I:C model, which has an etio-
logical basis and is neurodevelopmental, displays many 
of the symptoms of schizophrenia and in addition shows 
long-term neurochemical changes in different neu-
rotransmitter systems (Bitanihirwe et al., 2010). One of 
the particular advantages of the neurodevelopmental 
models is that they allow the investigation of behavioral 
and/or neurochemical changes in animals that have not 
been exposed to pharmacological agents. However, as a 
counterpoint to that, the poly I:C model only captures 
the cytokine-associated acute phase responses rather 
than a full immune response triggered by viral infection, 
which must be borne in mind when using the model 
(Meyer & Feldon, 2012).

All of this argues for a more combined approach to 
the development and use of models for the negative 
symptoms. For example, combining the ketamine (or 
another pharmacological) model with either a neonatal 
lesion model or a risk gene model or other viable com-
binations (there are many), may result in a more valid 
model, allowing more clear identification of the negative 
symptoms and lead to the development of novel molecu-
lar targets and increasingly effective treatments. It must 
be remembered though, that given the range of changes 
that occur in patients with schizophrenia it is unlikely 
any animal model will ever display all of the character-
istic symptoms of patients with schizophrenia. This is 
particularly true when one considers the uncertain influ-
ence of gene × gene and gene × environment interactions. 
Therefore, when it comes to modeling, we are, to some 
extent, developing models for schizophrenia rather than 
models of schizophrenia.
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COGNITIVE DYSFUNCTIONS IN 
SCHIZOPHRENIA AND MOUSE MODELS

Schizophrenia is a debilitating and chronic psychi-
atric disorder defined by three clusters of clinical fea-
tures, namely positive symptoms, negative symptoms, 
and cognitive deficits (Lewis & Gonzalez-Burgos, 
2006). Despite the fact that the presence and severity 
of these symptoms is very heterogeneous between the 
affected patients (Ross, Margolis, Reading, Pletnikov, & 
Coyle, 2006; Thaker & Carpenter, 2001), the full-blown 
appearance of all these behavioral abnormalities typi-
cally start to occur in late adolescence or early adult-
hood (Minzenberg & Carter, 2012; Thaker & Carpenter, 
2001). However, strong evidence suggests that cognitive 
impairments might be detectable earlier in life (Elvevag &  
Goldberg, 2000; Goldman-Rakic, 1994; Owens & John-
stone, 2006). Furthermore, cognitive symptoms tend 
to be long-lasting traits of the illness and have been 
found to be key prognostic factors for the long-term 
effects of the disease such as the level of functional 
capability, social, and occupational ability and qual-
ity of life (Green, 1996; Green & Nuechterlein, 1999). 
Thus, cognitive deficits, depriving patients of the quali-
ties needed to thrive in society, are nowadays consid-
ered among the main source of disability, having the 
most critical impact on public health because of com-
bined economic and social costs (Mueser & McGurk, 
2004). This is made even more dramatic because, in 
contrast to positive symptoms, cognitive deficits are 
still relatively unaffected by currently available medi-
cations (Keefe et al., 2007; Minzenberg & Carter, 2012;  
Miyamoto, Duncan, Marx, & Lieberman, 2005), with up 
to one-third of patients not even responding to medica-
tions (Javitt & Coyle, 2004). Critically, the development 

of novel treatments is severely hampered by an incom-
plete understanding of the heterogeneity, risk factors, 
and neural circuitry underlying the disease (Fava et al., 
2014). This gap is extremely challenging to fill as clini-
cal studies must deal with the complexity of human 
genetic/clinical heterogeneity and with the uncontrol-
lable impact of gene–gene, gene–environment, and 
gene–environment–drug treatments interactions.

Mouse models can allow for selective control and 
modulation of all these confounding factors, on top of 
which, there is the advantage of cutting-edge genetic 
tools nowadays available for this animal species. For 
example, mouse models allow for strict control of  
environmental conditions, genetic background, sex-
dependent effects, sample size, and developmental 
factors. Most importantly, the available tools in mouse 
genetics (e.g., classical, time- and site-specific conditional  
knockouts/knockins and transgenics, ENU, CRISPR, 
TALENs, ZFNs) can enable the establishment of a 
causal relationship between genetic variations and  
cognitive (dys)functions. Indeed, the mammal mus  
musculus is proving to be a very valuable animal 
model in improving our understanding of the nature 
of complex cognitive impairments in schizophrenia, 
the related implications of specific molecular/cellular 
pathways as well as neural circuits and, finally, can be 
effectively used to generate and screen mechanism-
based treatments. However, to address all of these,  
cognitive studies in mice must be accurately developed 
and used to closely mimic human conditions. Further-
more, keeping in mind that a mouse model cannot 
recapitulate all the behavioral, genetic, and anatomi-
cal features of a human patient with schizophrenia, 
mouse-generated findings must be integrated with 
clinical evidence to directly translate their validity  
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and predictivity. For example, a lack or inappropriate 
use of valid translational models has contributed to 
many global pharma companies withdrawing from the 
neuroscience research field (Nutt & Goodwin, 2011). In 
this chapter, we will illustrate the cognitive impairments 
presently believed to be hallmarks of schizophrenia 
and the most relevant corresponding tasks suggested 
to be used in animal models. In particular, the cognitive 
domains that we will specifically address are executive 
control, working memory, attention, and social cognition 
as these are the cognitive functions most frequently found 
to be altered in patients with schizophrenia (Barch &  
Ceaser, 2012; Ross et al., 2006).

EXECUTIVE CONTROL

Abnormalities in executive control have long been 
thought to be a hallmark cognitive characteristic of 
schizophrenia (Kerns, Nuechterlein, Braver, & Barch, 
2008; Weinberger, Berman, & Zec, 1986). The term “exec-
utive function” can be defined as a “higher order” con-
trol over a set of cognitive abilities aiming to maximize 
performance in a particular situation. This includes the 
ability to monitor and change behavior as required, and 
to plan and/or adapt future behavior when faced with 
novel tasks and situations. On an experimental level, 
“executive control” can be difficult to assess and evalu-
ate as, by definition, it is a high-level ability that influ-
ences more basic cognitive skills like attention, memory, 
and flexibility. Moreover, an executive function deficit 
does not always imply a poorer performance in one of 
the basic cognitive capabilities controlled.

To assess executive control abilities measuring rule 
generation and selection, so-called “attentional set-shifting 
tasks” are commonly used. A traditional and widely 
used task is the Wisconsin Card Sorting Task (WCST; 
Figure 1(A)) (Berg, 1948; Eling, Derckx, & Maes, 2008), 
whereas a more recent and refined task is the “intra- 
and extradimensional attentional set-shifting” (ID/ED; 
Figure 1(B)) of the Cambridge Neuropsychological Test 
Automated Battery (CANTAB) (Barnett et al., 2010; Rob-
erts, Robbins, & Everitt, 1988). These tasks are based on 
the use of compound stimuli that differ in, at least, two 
perceptual dimensions. For example, in the WCST, the 
subject is presented with cards that can vary in the num-
ber, color, and shape of their stimuli (e.g., one red circle, 
four yellow triangles, two green stars). The subject must 
then understand the correct sorting rule in relation to the 
examiner’s feedback in each trial (i.e., the examiner just 
state if the choice made is correct or not). Once the sub-
ject understands and keeps following the correct relevant 
dimension (e.g., color) while ignoring the other stimu-
lus dimensions, he or she will be tested without instruc-
tion to find the new correct response with a different  

FIGURE 1 Attentional set-shifting tasks. (A) Wisconsin Card 
Sorting Test (WCST) for humans: Four stimulus cards are shown to 
a subject characterized by three different dimensions (colors, shapes, 
and numbers). The subject is required to match the cards accord-
ing to the correct dimension of the three shown. For example, if the 
rule is color, the subject needs to place the blue four stars under the 
blue six crosses. The test ends when the subjects finish matching 
128 cards. (B) The Cambridge Neuropsychological Test Automated 
Battery ID/ED task for humans: in this computerized version, the 
dimensions are shapes, colors, and lines. In this example, the cor-
rect dimension is reported in bold and the “+” indicates the correct 
response in each stage. The subject goes through different stages: 
simple discrimination (SD), compound discrimination (CD), com-
pound discrimination reversal (CDRe), intradimensional shift (IDS), 
intradimensional shift reversal (IDSRe), and extradimensional shift 
(EDS). Two or three dimensions can be used for this task: in the first 
case, in the EDS stage, the dimensions shown are the same as in the 
previous stages, but the previously relevant dimension will now be 
irrelevant, and the irrelevant the relevant one; in the second case, 
a new dimension is introduced as the relevant one and the previ-
ously relevant dimension becomes the irrelevant one. (C) Automated 
two-chambered ID/ED Operon task for mice (Scheggia et al., 2014). 
On the left is a schematic representation of the task: the apparatus 
consists of two identical chambers divided by a transparent sliding 
door (6). The chambers are characterized by a house light (1), food 
dispenser (2), two nose-poke holes (the choice action to make) in 
which the odor stimuli are also delivered (3), a pair of tactile stimuli 
(4) and lights (5). Odors, lights, and tactile stimuli are switched on 
or placed in the required position just before the start of a trial while 
the test mouse is in the other chamber. On the right is a photo of one 
side of the apparatus.
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category (e.g., shift from color to shape). A similar con-
ceptual construct is used in the computerized ID/ED task 
(Figure 1(B)). In the first simple discrimination (SD) stage, 
the subject must discriminate between two exemplars 
from the same dimension (e.g., shape). Then, a second 
but irrelevant dimension (e.g., lines) is introduced in the 
compound discrimination (CD) stage. Typically, the suc-
cessive stage consists of a reversal exercise (CDRe), where 
the exemplars and the relevant/irrelevant dimensions are 
unchanged but the subject has to learn that the previously 
correct stimulus is now incorrect. Following there is an 
intradimensional shift (IDS), where novel exemplars from 
each dimension are presented, but with the same relevant 
dimension being rewarded. Finally, the subject is exposed 
to the critical extradimensional shift (EDS) stage, in which 
he or she needs to shift the attention from the previously 
reinforced dimension (in this example, shape) (1) to the 
previously irrelevant dimension (in this example, line) or 
(2) to another new stimulus dimension (e.g., color). Thus, 
the EDS measures the ability to apply a new strategy that 
involves shifting from a previously formed cognitive set. 
This latter stage is analogous to the category shift of the 
WCST (Roberts et al., 1988). After the EDS stage another 
reversal stage (i.e., EDSRe) might be added. Reversal stages 
assess a very elementary form of set-shifting, determining 
whether the subject can shift from a previously rewarded 
cue to the previously not-rewarded choice. Moreover, 
consecutive reversal stages before the EDS (i.e., CDRe and 
IDSRe) also serve to reinforce the cognitive attentional-set 
challenged by the EDS stage and to prevent conditioning 
to unintended aspects of the stimulus. Similarly, the IDS 
stage serves as an internal control and also to strengthen 
the formation of a cognitive attentional set. Thus, com-
pared with the WCST, the ID/ED task incorporates the 
metrics to compare cognitive set formation and shifting 
abilities challenging three main forms of cognitive flex-
ibility: the intradimensional shift, the extradimensional 
shift, and the reversal learning. Moreover, playing with 
two or three different dimensions allows for the differen-
tiation of two distinct cognitive mechanisms during the 
most challenging EDS stage. The first one is the inability 
to release attention from a relevant perceptual dimension 
(i.e., perseveration, also called “stuck-in-set”; best studied 
using three distinct dimensions). The second is the inabil-
ity to reengage attention to a previously irrelevant dimen-
sion (i.e., “learned irrelevance”; assessed using only two 
dimensions).

Patients with schizophrenia have pronounced difficul-
ties in performing the WCST and the CANTAB ID/ED  
(Owen, Roberts, Polkey, Sahakian, & Robbins, 1991; 
Weinberger et al., 1986). In particular, they are consis-
tently impaired in the EDS stage (Ceaser et al., 2008; 
Elliott, McKenna, Robbins, & Sahakian, 1995; Pantelis 
et al., 1999; Turner et al., 2004). This is very similar to sub-
jects with lesions of the frontal lobe who show deficits 

in solving the EDS but not the IDS stage (Owen et al., 
1993). In agreement, the EDS deficits in schizophrenia 
have been associated with physiological dysfunction of 
a specific region of the frontal lobe, the dorsolateral pre-
frontal cortex (DLPFC) (Weinberger et al., 1986). More 
specifically, patients with schizophrenia seem to show 
EDS impairments because of a high level of stuck-in-set 
perseveration (Perry & Braff, 1998), which has also been 
associated with dorsolateral PFC dysfunction (Owen 
et al., 1993; Sandson & Albert, 1984). Furthermore, neu-
roimaging studies (regional cerebral blood flow and 
functional magnetic resonance imaging) have associated 
stuck-in-set perseverative scores with reduced activity 
within the PFC, whereas other types of perseveration, 
such as recurrent or continuous, fail to correlate with 
PFC activity (Nagahama et al., 2001; Nagahama, Okina, 
Suzuki, Nabatame, & Matsuda, 2005). In conclusion, not 
only would an EDS impairment be useful as a sensi-
tive measure of schizophrenia-related executive control 
deficit, but the stuck-in-set perseveration could be a true 
parameter of frontal dysfunction in schizophrenia.

The various components of the WCST and ID/ED tasks 
have been successfully modified and adapted in animal 
models. Consistent with frontal lobe patients (Owen et al., 
1993), lesion studies in nonhuman primates and in rodents 
have demonstrated that the PFC has a functional homology  
to human lateral PFC (Birrell & Brown, 2000; Bissonette 
et al., 2008; Dias, Robbins, & Roberts, 1996). Damage of the 
lateral (in primates) or medial (in rodents) PFC impairs 
set-shifting abilities while sparing reversal learning. 
Conversely, lesions of the orbitofrontal cortex in humans 
(Rahman, Sahakian, Hodges, Rogers, & Robbins, 1999), 
monkeys (Dias et al., 1996), rats (McAlonan & Brown, 
2003), and mice (Bissonette et al., 2008) impair the rever-
sal learning stages but not the EDS. These data suggest a 
double dissociation or functional specialization between 
the PFC and orbitofrontal cortex (Bissonette et al., 2008; 
Brown & Bowman, 2002; Dias et al., 1996; Robbins, 2007). 
Moreover, humans, monkeys, and mice have been shown 
to exhibit qualitatively similar patterns of performance in 
attentional set-shifting tasks. That is, superior IDS perfor-
mance compared with EDS, and progressive improvement 
of performance in serial reversal learning (Roberts et al., 
1988; Scheggia, Bebensee, Weinberger, & Papaleo, 2014). 
Thus, the neural substrates that control the cognitive func-
tions assessed by attentional set-shifting tasks seem con-
served between humans, monkeys, rats, and mice.

The first example of an effective ID/ED attentional 
set-shifting task in rodents was developed in rats (Birrell 
& Brown, 2000). This “digging version” task involves 
the use of two cups filled with sawdust to retrieve food 
reward. The cup can be distinguished by three differ-
ent dimensions: odor, outer texture, and the digging 
medium. Exactly as in humans and monkeys, rats go 
through a series of consecutive discriminations including 
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the SD (where just one dimension is presented; e.g., 
odor), the CD (where a second distracting dimension is 
introduced; e.g., digging medium), the reversal (where 
the relevant and irrelevant dimensions are unchanged, 
whereas the previously incorrect cue is now correct), the 
IDS (where all cues are changed but the relevant and 
irrelevant dimensions remain unchanged), and the EDS 
(where all the pairs of cues are again changed but now 
the previously irrelevant dimension becomes relevant; 
e.g., digging medium). Successively, this task has been 
also implemented in mice and validated with geneti-
cally modified mice, pharmacological, and lesion stud-
ies (Bissonette et al., 2008; Papaleo et al., 2008). However, 
despite the validity and effectiveness of the rodents’ dig-
ging version of the attentional set-shifting task, several 
limitations are dampening their use and application in 
translational studies relevant to psychiatric diseases. 
In particular, the presence of the food reinforcer inside 
the choice stimulus cups could result in an ambiguous 
interpretation of animal responses and potential bias 
in choice making (Gilmour et al., 2013). Moreover, this 
digging version set-shifting task is manually intensive 
and time-consuming, limiting its reliability, replica-
bility, standardization, and application to large-scale 
genetic and/or drug-screening studies. With the intent 
to develop an automated task for rodents, a touchscreen 
visual discrimination paradigm using line and shape as 
dimensions (Brigman, Bussey, Saksida, & Rothblat, 2005), 
similar to the ID/ED task used in humans and monkeys, 
has been proposed. Again, in this task, mice go through 
the SD, CD, IDS, and EDS stages. However, after a very 
long training, although the rodents are able to learn the 
SD and CD stages, this touchscreen paradigm was not 
able to effectively reveal the expected difference in per-
formance between the IDS and EDS stages. This is not in 
line with the behavioral results found in equivalent tasks 
in humans and monkeys, as well as in the rodent digging 
version. More recently, another work has attempted to 
use a touchscreen ID/ED paradigm for mice (Dickson, 
Calton, & Mittleman, 2014). However, the lengthy train-
ing, the important differences in dimensional salience 
of the compound stimuli, and a pattern of performance 
between successive IDS stages and between IDS and EDS 
stages discordant with human studies again proved that 
touchscreen setups might not be optimal to study execu-
tive control in mice. In contrast, a novel automated two-
chamber ID/ED Operon task for rodents that overcomes 
the major limitations of the previous manual versions and 
of the first attempts of automation has been recently suc-
cessfully validated, demonstrating strict analogies to the 
humans’ WCST and ID/ED tasks (Figure 1(C)) (Scheggia  
et al., 2014). In this new setup, mice quickly learn (in 
an average of 7 days) to perform the complete consecu-
tive series of SD, CD, CDRe, IDS, IDSRe, IDS2, IDS2Re, 
EDS, and EDSRe stages. Importantly, in this automated 

test, three different dimensions with equivalent salience 
are available (i.e., lights, odors, and textures), allow-
ing for selective assessment of stuck-in-set or “learned 
irrelevance” switching abilities. Furthermore, this 
novel operant-based task presents several advantages 
over previously used ID/ED tasks for rodents: (1) it 
has less labor-intensive procedures; (2) it eliminates 
any source of subjectivity in the measured parameters; 
(3) it eliminates potential experimental bias resulting 
from reinforcement-related cues; (4) it avoids arbitrary 
environmental conditions; (5) it allows manipulation 
of multiple dimensions with a large range of different 
stimuli; and (6) it allows for large-scale mouse studies 
for genetic, pharmacologic, and neuronal screenings rel-
evant to schizophrenia.

Notwithstanding their effectiveness and relevance 
to schizophrenia, there are still only few examples of 
application of these tasks to schizophrenia-relevant 
mouse models. For example, transgenic mice over-
expressing the human catechol-O-methyltransferase 
-Val polymorphism (COMT Val-tg), simulating human 
genetic conditions leading to relative increased COMT 
activity, have shown a selective impairment in their 
EDS ability (Papaleo et al., 2008). Conversely, genetic 
conditions of reduced COMT activity, which translate 
into increased cortical dopamine, produce a selective 
improvement on EDS abilities in mice (Scheggia et al., 
2014). These results closely parallel findings in healthy 
humans and patients with schizophrenia showing that 
COMT Val carriers have impaired performance and a 
higher number of perseverative errors in the EDS phase 
of the WCST and/or the CANTAB ID/ED task com-
pared with individuals with two copies of the COMT 
Met allele (Egan et al., 2001; Joober et al., 2002; Mal-
hotra et al., 2002; Mattay et al., 2003). Furthermore, 
the schizophrenia-relevant animal model of chronic 
administration of phencyclidine, shows selective EDS 
impairments in the attentional set-shifting tasks in 
both mice and rats (Egerton, Reid, McKerchar, Morris, 
& Pratt, 2005; Scheggia et al., 2014). The reasons of the 
paucity of current studies employing attentional set-
shifting tasks in mouse models of schizophrenia might 
reside in their complexity and difficult setup. However, 
we consider these as the most refined and translation-
ally valid paradigms able to give an accurate and rel-
evant information to model cognitive impairments in 
schizophrenia.

WORKING MEMORY

Impairments in working memory are among the most 
consistent cognitive deficits observed in patients with 
schizophrenia (Castner, Goldman-Rakic, & Williams, 
2004; Forbes, Carrick, McIntosh, & Lawrie, 2009; Keefe 
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et al., 1995). This term refers to the type of memory that 
is active and relevant only for a short period, on the 
scale of seconds, while performing complex tasks such 
as reasoning, comprehension, and learning. The concept 
of working memory evolved from that of short-term 
memory and now it stands at the interface between per-
ceptual processes and long-term memory formation. The 
major components of working memory, as suggested by  
Baddeley’s model (Baddeley, 2010), are (1) a short-term 
storage buffer for visuospatial information that provides a 
virtual environment for physical simulation, calculation, 
visualization, and optical memory recall; (2) a short-term 
storage buffer for verbal information; (3) a central execu-
tive component that is responsible for response selection 
and for coordinating the outputs of different short-term 
memory buffers; and (4) an episodic buffer, in which com-
plex multimodal events are integrated and stored online. 
In this model, the maintenance of specific information is 
governed by the buffer systems, whereas the regulation 
and coordination of this information (i.e., updating and 
maintenance of task goals, management of interference, 
and manipulation and transformations of stored content) 
are handled by the central executive processes.

One of the most commonly used neurocognitive para-
digms to test working memory functions in patients with 
schizophrenia has been the n-back task because this has 
been often coupled with functional neuroimaging stud-
ies (Callicott et al., 2000). “n-back” refers to how far back 
the subject has to recall in the sequence of presented 
stimuli (usually visuospatial, but can be also auditory 
or olfactory). In the first phase of this task, the subject is 
presented with a non–memory-guided control condition 
(0-back) that simply requires identifying the stimulus cur-
rently seen. Then, in the working memory condition, the 
task requires recollection of a stimulus seen one stimulus 
(1-back) or two stimuli before (2-back), while continuing to 
encode additional incoming stimuli. Other working mem-
ory paradigms that have been extensively used in patients 
with schizophrenia are the spatial delayed response tasks 
(Barch, Moore, Nee, Manoach, & Luck, 2012). In these 
tasks, subjects are required to remember the position of 
five objects (i.e., dots). During each trial, five dots appear 
sequentially (1 second each) with very little interstimulus 
intervals. Then, after a retention interval, a probe stimulus 
appears for 1 s and the subject has to indicate whether this 
stimulus was at one of the memorized locations.

Patients with schizophrenia show deficits in all sub-
processes of working memory (Forbes et al., 2009; Lee & 
Park, 2005). In particular, several functional magnetic 
resonance imaging studies applied to the n-back and 
delayed match-to-sample tasks consistently converge, 
indicating that while performing working memory para-
digms patients with schizophrenia present an abnormal 
activation of the PFC (Anticevic, Repovs, & Barch, 2013; 
Callicott & Weinberger, 1999; Weinberger et al., 2001). 

To date, more emphasis is being put on the investiga-
tion of working memory neuronal networks and on how 
genetic vulnerability might influence the developmental 
trajectory of working memory deficits in schizophrenia. 
Indeed, variations in different schizophrenia-candidate 
genes have been observed to influence working mem-
ory functions in schizophrenia (Harrison & Weinberger, 
2005; Rasetti & Weinberger, 2011). These include, but not 
only, functional polymorphisms in COMT (Egan et al., 
2001), genetic variations in the Neuregulin 1 gene, its 
receptor ERBB4 (Nicodemus et al., 2010), and in the dys-
bindin-1 gene (Donohoe et al., 2007).

There are numerous working memory tasks that have 
been employed and validated in rodents to reliably mea-
sure the maintenance of visuospatial information with 
high translational efficacy (Dudchenko, 2004; Kellendonk 
et al., 2006; Papaleo, Burdick, Callicott, & Weinberger, 
2014; Papaleo, Lipska, & Weinberger, 2012). For example, 
the T-maze discrete paired-trial variable-delay alterna-
tion task (Aultman & Moghaddam, 2001; Kellendonk 
et al., 2006; Papaleo et al., 2008), the eight-arm radial 
maze “delayed nonmatch to sample” or “win-shift” 
(Seamans, Floresco, & Phillips, 1995; Seamans & Phillips,  
1994), the eight-arm maze “random foraging task”  
(Floresco, Seamans, & Phillips, 1997; Seamans et al., 
1995), the odor span tasks (Dudchenko, 2004; Young, 
Kerr, et al., 2007), and some paradigms of delayed match-
ing and delay nonmatching to sample position oper-
ant conditioning tasks (Dunnett, 1993) are considered 
the most effective and valid paradigms. In general, the 
tasks that bear close resemblance to the human delayed 
response tasks are the ones adopting the delayed non-
match to position rule. These tasks involve an initial 
“sample” or “forced run” phase in which the rodent is 
exposed to a visual target or an arm of the maze. Subse-
quently, in the “choice” phase that is run after a variable 
delay, the subject is simultaneously presented with the 
original sample (the “match”) and another visual target 
or arm (the “nonmatch”). These pairs of phases must be 
presented repeatedly but, importantly, with randomly 
changing cues presented in the sample phase. Thus, the 
working memory construct is based on the fact that the 
tested rodent is required to integrate information held 
online (the sample phase) with the learned rule (non-
match or match to sample).

Importantly, mouse studies adopting these para-
digms indicate that schizophrenia-susceptibility genes 
might alter working memory functions through their 
modulation of the dopaminergic and/or glutamater-
gic systems in the PFC. This provides supporting bio-
logical validity to the indications derived in functional 
magnetic resonance imaging studies in patients with 
schizophrenia. For example, transgenic mice overex-
pressing the human COMT Val variant (that has been 
suggested as a weak risk factor for schizophrenia) 
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show working memory deficits in a discrete paired-trial  
variable-delay T-maze task (Papaleo et al., 2008). COMT 
Val-tg mice have increased COMT enzyme activity and 
possibly decreased dopamine in the PFC compared with 
their control littermates. Conversely, mice with reduced 
levels of COMT show improved working memory per-
formance in this same task compared with wild-type 
mice (Papaleo et al., 2008). This was true only for male 
subjects, as reported by equivalent working memory 
data in mice and humans (Sannino et al., 2014). Further-
more, mice overexpressing the D2 receptors selectively 
in the striatum (another mouse model with relevance to 
schizophrenia) show impaired acquisition of the discrete 
paired-trial alternation T-maze working memory task 
because of changes in dopamine metabolism and D1 
receptor activation in the PFC (Kellendonk et al., 2006). 
Of note, these deficits persist in these D2 mutant mice 
even after the transgene is switched off in adulthood, 
indicating developmental dysfunctions produced by 
the striatal upregulation of the D2 receptors. These find-
ings help to reshape the current dopamine hypothesis 
of schizophrenia, pointing to a functional role played 
by the PFC-striatal loop, possibly arising already from 
developmental stages. In relation to the glutamatergic 
system, mice lacking the NR2A subunit of the NMDA 
receptors have shown impairments in a spatial non-
matching-to-place T-maze task (Bannerman et al., 2008). 
Similarly, genetic downregulation in mice of another 
subunit of the NMDA receptors, namely the NR1, pro-
duced working memory impairments (Gandal et al., 
2012). Thus, these results suggest an important role of 
NMDA-dependent glutamate transmission in working 
memory abnormalities found in schizophrenia. Further 
support for the dopamine and glutamate implications 
in working memory deficits found in schizophrenia 
come from mice with genetic modifications of the dys-
bindin-1 gene. Indeed, genetically modified mice with 
decreased dysbindin-1 showed altered working memory 
functions with different patterns of effects depending 
on the cognitive load that could be ascribed to either 
alterations of the dopamine and/or glutamate systems  
(Karlsgodt et al., 2011; Papaleo & Weinberger, 2011; Papaleo,  
Yang, et al., 2012). In agreement, dysbindin-1 has been 
recently shown to participate in a genetic interaction 
with COMT that modulates working memory functions 
dependent on the medial PFC (Papaleo et al., 2014). In 
particular, although dysbindin-1 reduction resulted 
in a faster acquisition of a working memory task, this 
same reduction in a background of reduced COMT gene 
in the same subject results in marked cognitive disad-
vantages. Notably, these mouse studies faithfully pre-
dicted the COMT*dysbindin-1–dependent effects on the 
modulation of PFC physiological responses in humans 
performing the n-back working memory task (Papaleo 
et al., 2014). Thus, dysbindin-1 reduction may represent 

a direct genetic bridge between the dopamine and glu-
tamate schizophrenia-related signaling systems, and the 
molecular mechanism of dysbindin as a psychosis risk 
gene may involve this bridge. Furthermore, the strict 
agreement between human and mouse studies (e.g., 
Papaleo et al., 2014; Sannino et al., 2014) highlights the 
potential of accurately combining mouse–human studies 
for true translational medicine.

ATTENTION

Abnormalities in attentional processes are fundamen-
tal cognitive deficits in schizophrenia, with evidence 
suggesting that lack of selection of relevant information 
may be a cause of impairment also in the other cogni-
tive domains (Gold & Thaker, 2002; Zvyagintsev, Parisi, 
Chechko, Nikolaev, & Mathiak, 2013). A broad definition 
of the term “attention” is the ability to select a subset 
of the available information for preferential processing, 
while ignoring competing information (Smid, de Witte, 
Homminga, & van den Bosch, 2006). However, there are 
different forms of attentional processes: (1) sustained 
attention (vigilance; i.e., the capacity to allocate informa-
tional processing resources over an extended period); (2) 
selective/focused attention (i.e., the ability to preferen-
tially attend to a subset of stimuli while ignoring others); 
and (3) divided attention (i.e., the capacity to monitor 
and respond to multiple stimuli simultaneously accord-
ing to the demands of the situation) (Millan et al., 2012).

The processes most studied in schizophrenia are selec-
tive attention and sustained attention. Notably, mount-
ing evidence suggests that patients with schizophrenia 
have an intact implementation of information selec-
tion (i.e., unaltered sustained attention), while being 
impaired in the control of information selection (i.e., 
switching the focus of attention) and broad monitor-
ing (Hahn et al., 2012; Luck & Gold, 2008; Nuechterlein, 
Luck, Lustig, & Sarter, 2009; Smid, Martens, de Witte, 
& Bruggeman, 2013). This might be due to the fact that, 
in contrast to sustained attention (in which competing 
information are absent or minimal), the other forms of 
attentional processes require additional control mecha-
nisms that enable flexibility and selective integration of 
different information.

Several paradigms are available to measure atten-
tional processes. Here, we briefly describe few of them 
that proved to be relevant in clinical studies of schizo-
phrenia. The Continuous Performance Test (CPT), a 
visual vigilance task, has been used extensively to mea-
sure selective attentional or vigilance deficits in patients 
with schizophrenia (Cornblatt, Risch, Faris, Friedman, &  
Erlenmeyer-Kimling, 1988; Gold & Thaker, 2002;  
Nuechterlein & Dawson, 1984). In the basic CPT task,  
subjects are exposed to a rapid presentation of continuously  
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changing stimuli (e.g., letters, auditory tones), and are 
required to respond only to an infrequent target stimulus 
(typically 10–20% of total stimulus presentations), while 
withholding any response following noncue targets or 
cues followed by a distractor. Subjects might be monitor-
ing for a single target (e.g., a letter C) or a target sequence 
(e.g., letters A, B, C) (Gold & Thaker, 2002; Nuechterlein & 
Dawson, 1984). Variants of the task such as the CPT Iden-
tical Pairs (Cornblatt et al., 1988) and the A-X CPT ver-
sions (Servan-Schreiber, Cohen, & Steingard, 1996) have 
been shown to be especially relevant to schizophrenia.

The Stroop task is another test of selective attention 
based on the interference effect (MacLeod, 1991; Stroop, 
1935; Zvyagintsev et al., 2013). In this task, subjects are 
presented with words written with inks of different col-
ors and instructed either to name the ink color and ignore 
the word or, at other times, read the word and ignore the 
color. When the ink color and word form are incompat-
ible, there is a slowing of responses because of interfer-
ence from the highly overlearned read-the-word rule 
(Luck & Gold, 2008). Patients with schizophrenia show 
significantly stronger Stroop interference compared with 
healthy subjects, resulting from selective attention deficits 
and/or impaired rule selection abilities (Barch, Carter, 
Hachten, Usher, & Cohen, 1999; Henik & Salo, 2004; Luck 
& Gold, 2008; Perlstein, Carter, Barch, & Baird, 1998).

The Spatial Attentional Resource Allocation Task 
(SARAT) has been described and validated as a tool for 
manipulating the size of the attentional focus in space 
(Hahn, Ross, & Stein, 2006). In short, this task requires sub-
jects to fixate on a central circle (divided into four quarters 
(four cues)) that would predict the location of one of four 
peripheral target stimuli. One, two, three, or all four pos-
sible cues can be turned on simultaneously (Hahn et al., 
2006). In this way, predictability of the target location is 
varied across trials. Thus, subjects are required to contin-
uously allocate attention to cued locations in anticipation 
of a target engaging the ability to spread attention across 
a variety of locations and the ability to focus the atten-
tion (Hahn et al., 2012, 2006). In summary, this task has 
been developed to investigate and distinguish selective 
attention from broad monitoring. In particular, patients 
with schizophrenia show a substantial impairment in the 
ability to distribute attention broadly, but are unimpaired 
at focusing attention on one location and withdrawing 
attention from others (Hahn et al., 2012). These studies 
suggest that visuospatial attentional deficits in schizo-
phrenia arise because of the presence of distractors and 
when broad monitoring of cues is required.

Preclinically, discrete elements of attentional pro-
cesses such as sustained and focused attention, impulse 
control, perseverative and reactivity-related functions 
can be effectively studied in rodents. For example, a 
cognitive test allowing the concomitant examination of 
multiple cognitive measures such as attention, impulse 

control, processing speed and cognitive flexibility is 
the 5-Choice Serial Reaction Time Task (Carli, Robbins,  
Evenden, & Everitt, 1983; Robbins, 2002; Robbins,  
Muir, Killcross, & Pretsell, 1993). Succinctly, in this task, 
the animal is required to simultaneously monitor five 
light stimuli (either over or inside five nose-poke holes) 
positioned on one wall of an operant chamber; when 
one of the light stimuli is illuminated, to respond with 
a nose poke in the corresponding location. Food or liq-
uid reinforcements are delivered at a dispenser situated 
at the opposite wall of the chamber following a correct 
response. This task has been often used in animal models 
relevant to schizophrenia (Amitai & Markou, 2009; Carli, 
Calcagno, Mainolfi, Mainini, & Invernizzi, 2011; Le Pen, 
Grottick, Higgins, & Moreau, 2003; Paine & Carlezon,  
2009; Papaleo, Erickson, Liu, Chen, & Weinberger, 2012; 
Young, Crawford, et al., 2007). Indeed, the advantages 
of the 5-Choice Serial Reaction Time Task, including, for 
example, a low within- and between-subject variance, 
possibility to detect impairments as well as improve-
ments, complete automation, concomitant registration of 
different behaviors/measures, high versatility to flexibly 
and selectively manipulate the testing parameters (e.g., 
increasing intertrial interval, decreasing stimulus dura-
tion) (Amitai & Markou, 2011; Robbins, 2002). Further-
more, the stable baselines of performance of the rodents 
in this task have made it useful in the assessment of 
repeated effects of systemically administered drugs, par-
ticularly as performance often returns to baseline quite 
rapidly (Robbins, 2002).

The Distractor Condition Sustained Attention Task 
is another operant attention task that has been first 
developed as a signal-detection task in rodents. Here 
animals are required to indicate the appearance of a 
signal (e.g., a brief focal light illumination) by pressing 
the correct lever in a series of discrete trials under dis-
tractor conditions (e.g., flashing house light) and under 
standard (without distractor) conditions (Bushnell, 1999; 
McGaughy & Sarter, 1995; Mohler, Meck, & Williams, 
2001; Nuechterlein et al., 2009). Thereafter, this task has 
been redesigned and validated for use in humans, thus 
exhibiting clinical translatability (Demeter, Sarter, & 
Lustig, 2008). This task is now being applied to patients 
with schizophrenia (Demeter, Guthrie, Taylor, Sarter, & 
Lustig, 2013). In particular, in agreement with previous 
literature (Bowen et al., 1994; Ford, Pfefferbaum, & Roth, 
1992; Grillon, Courchesne, Ameli, Geyer, & Braff, 1990; 
Melcher et al., 2013; Oltmanns, 1978; Oltmanns & Neale, 
1975), results of studies using this task provide confir-
mation that patients with schizophrenia are more vul-
nerable to distraction than healthy controls.

The Distractor Condition Sustained Attention Task 
is a good example of effective and useful translational 
research that might have important implications in 
the study of cognitive impairments in schizophrenia. 
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Similarly, based on the proven utility of the SARAT para-
digm in distinguishing deficits in selective attention from 
broad monitoring alterations relevant to schizophrenia, 
additional tasks with this translatable value will prove 
to be highly useful. Unfortunately, as yet, no preclinical 
paradigms equivalent to SARAT exist.

SOCIAL COGNITION

In recent years, there has been growing consensus 
that abnormalities in social cognition form part of the 
core symptoms in schizophrenia (Billeke & Aboitiz, 
2013; Millan, Fone, Steckler, & Horan, 2014). Social cog-
nition can be generally defined as the ability to construct 
mental representations of others, oneself, and relations 
between others and oneself and to use these representa-
tions to guide social behavior and facilitate skillful social 
interactions (Adolphs, 2001; Sergi et al., 2007). In schizo-
phrenia, deficits in social cognition are correlated with 
neurocognitive impairments and negative symptoms 
and thus also play an important role in the functional 
outcome of patients (Brune, 2005; Brune, Abdel-Hamid, 
Lehmkamper, & Sonntag, 2007; Couture, Penn, & Roberts,  
2006; Sergi et al., 2007). Furthermore, social cognitive 
impairments as well as other cognitive deficits, are 
poorly ameliorated by currently available antipsychot-
ics (Brune, 2005; Kucharska-Pietura & Mortimer, 2013; 
Millan et al., 2014). The progression of social cognitive 
impairment in schizophrenia is still unclear; whether it 
is present at the start of illness, whether it exists before 
the onset of illness, whether the degree of impairment 
progressively decreases or increases, or whether such 
changes apply across multiple social cognitive domains 
(Green & Leitman, 2008). Indeed, to better conceptual-
ize social cognitive impairment, and in agreement with 
the Measurement and Treatment Research to Improve 
Cognition in Schizophrenia and Cognitive Neuroscience 
Treatment Research to Improve Cognition in Schizo-
phrenia guidelines (Carter, Barch, Gur, Pinkham, & 
Ochsner, 2009; Green et al., 2008), social skill domains 
can be categorized into five main areas: emotional pro-
cessing, social perception, social knowledge, theory 
of mind, and attributional bias (Green & Horan, 2010; 
Green & Leitman, 2008; Green, Olivier, Crawley, Penn, &  
Silverstein, 2005). Emotional processing refers to the 
ability to identify, facilitate, understand, and manage 
emotions (Green et al., 2008). Social perception involves 
the capacity to identify roles, rules, and contexts in a 
social setting (Billeke & Aboitiz, 2013). Social knowledge 
refers to an awareness of the roles, rules, and goals that 
characterize social situations and guide social interac-
tions (Green et al., 2008). Theory of mind is the abil-
ity to infer the mental state of others (i.e., their beliefs, 
desires, dispositions, knowledge, intentions, and future 
behavior) (Green et al., 2008; Millan & Bales, 2013).  

Finally, attribution bias reflects the way people tend to 
infer the cause of particular positive and negative events 
(i.e., context-sensitive regulation) (Billeke & Aboitiz, 
2013; Green et al., 2008). Clinical studies have shown 
that patients with schizophrenia display impairments 
in all the social cognition domains: emotion process-
ing (Archer, Hay, & Young, 1994; Pollard, Hellewell, & 
William Deakin, 1995), social perception (Corrigan & 
Green, 1993a; Toomey, Schuldberg, Corrigan, & Green, 
2002), social knowledge (Corrigan & Addis, 1995; Penn, 
Ritchie, Francis, Combs, & Martin, 2002), theory of mind 
(Greig, Bryson, & Bell, 2004; Roncone et al., 2002), and 
attributional bias (Green & Horan, 2010; Green et al., 
2005). These deficits can be uncovered by a wide range 
of psychological tests that measure social skills (a few 
examples are listed in Table 1).

Because of the high complexity and multidimension-
ality of the measures used to study social cognition in 
humans, it is difficult to find perfectly matched replica 
tasks in mouse models. Nonetheless, mice are also a 
social species that exhibit complex social behaviors. For 
example, measures of social abilities can be deduced 
from home cage observations such as maternal/paren-
tal behaviors, colony formation/hierarchy, interactions 
between peers, nest-building, sleeping together in the 
nest, or resting in group huddles (Green et al., 2005; 
Millan & Bales, 2013).

The basic assessment of social interaction abilities in 
rodents involves measurements of specific behaviors 
such as sniffing, following, climbing on, ultrasonic vocal-
izations, allogrooming, fighting, and sexual behavior, 
whereas two unfamiliar adults freely interact in an open-
field arena (File & Hyde, 1978; File & Seth, 2003; Huang 
et al., 2014; Silverman, Yang, Lord, & Crawley, 2010). 
Using this setting, many genetic, pharmacological, devel-
opmental, and neurobiological rodent models relevant to 
schizophrenia have shown perturbations in social inter-
action (Hida, Mouri, & Noda, 2013; Koros, Rosenbrock, 
Birk, Weiss, & Sams-Dodd, 2007; Millan & Brocco, 2008; 
Peleg-Raibstein, Feldon, & Meyer, 2012; Pratt, Winchester, 
Dawson, & Morris, 2012; Sams-Dodd, 1999). These social 
interaction abnormalities are usually interpreted to be 
relevant to the social withdrawal phenotypes associated 
with negative symptoms in schizophrenia.

Furthermore, there are available in rodents more 
specific paradigms that might recruit, to some extent, 
the animal’s ability to encode, retrieve/recognize, and 
respond appropriately to social stimuli, testing domains 
such as: sociability (i.e., the motivation to interact with 
social over nonsocial stimuli); social recognition/mem-
ory (i.e., the ability to remember an individual and dis-
criminate between individuals); and social motivation 
(i.e., motivation to perform an action to gain access to 
a social partner) (Millan & Bales, 2013; Silverman et al., 
2010). These tasks could prove to be more relevant to the 
social cognitive constructs in humans.
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Sociability is commonly tested using a three-chambered 
setup where rodents are presented and can chose to 
interact with a social stimulus (an unknown conspecific, 
a partner, etc.), with no stimulus (an empty chamber), 
or with a socially neutral stimulus (an inanimate object) 

(Crawley, 2000; Kaidanovich-Beilin, Lipina, Vukobradovic, 
Roder, & Woodgett, 2011; Moy et al., 2007; Roullet & 
Crawley, 2011; Young, Gobrogge, Liu, & Wang, 2011).  
It is argued that these tasks are relevant to social “drive” 
(i.e., motivation to engage in social interactions in 

TABLE 1 Measures of Social Cognition in Humans

Measure Construct Description Indicator
Other Measures of the  
Same Construct

Mayer-Salovey-Caruso 
Emotional Intelligence 
Test (Mayer, Salovey, & 
Caruso, 2002)

Emotion perception  
and processing

A self-report instrument that 
consists of 141 items and eight 
ability subscales that assess 
four branches of emotion 
processing (identifying, using, 
understanding, and managing 
emotions).

Mayer-Salovey-Caruso 
Emotional Intelligence Test 
total score as well as the 
four branch scores.

Bell-Lysaker Emotion 
Recognition Test (Bell, 
Bryson, & Lysaker,  
1997), Facial Emotion 
Identification Test (Kerr &  
Neale, 1993), Pictures of 
Facial Affect (Ekman &  
Friesen, 1976), Facial 
Emotion Discrimination 
Test (Kerr & Neale, 1993), 
Videotape Affect Perception 
Test (Bellack, Blanchard, & 
Mueser, 1996), Vocal Emotion 
Identification Test (Kerr & 
Neale, 1993), Vocal Affect 
Recognition (Nowicki & 
Duke, 1994), Prosody task 
(Pijnenborg, Withaar, Bosch, & 
Brouwer, 2007).

The Half-Profile of 
Nonverbal Sensitivity 
(Ambady, Hallahan, &  
Rosenthal, 1995; 
Rosenthal, Hall, 
DiMatteo, Rogers, & 
Archer, 1979)

Social perception  
and knowledge

110 videotaped 2-s scenes 
of facial expressions, voice 
intonations, and/or bodily 
gestures of a Caucasian female 
are shown to subjects who are 
then required to select which 
of two labels better describes a 
situation that would generate 
the social cue(s) after watching 
each scene.

Total number of correct 
items.

Situational Feature 
Recognition Test (Corrigan &  
Green, 1993b), Schema 
Component Sequencing Task 
(Corrigan & Addis, 1995), 
Social Cue Recognition Task 
(Corrigan & Green, 1993), 
Social Stimuli Sequencing 
Task (Corrigan, Wallace, &  
Green, 1992), Wechsler 
Adult Intelligence Scale 
comprehension (Wechsler, 
1987).

Hinting task 
(Corcoran, Mercer, & 
Frith, 1995)

Theory of mind (mental 
state reasoning/
decoding)

10 short stories involving the 
interaction of two people, each 
one ending with a character 
dropping an obvious hint 
are read to the subject. The 
subject is then asked about 
the meaning of the character’s 
statements.

Two marks are given for a 
correct answer to the first 
question, one mark for a 
correct answer following 
a second, more obvious 
hint (which is given to the 
subject when he or she 
fails to correctly answer 
the first question) and 0 for 
an incorrect response to 
both hints.

The Awareness of Social 
Inference Test (McDonald, 
Flanagan, & Rollins, 2002), 
Eyes Test (Baron-Cohen, 
Wheelwright, Hill, Raste, & 
Plumb, 2001).

The Ambiguous 
Intentions Hostility 
Questionnaire (Combs, 
Penn, Wicher, & 
Waldheter, 2007)

Attribution biases Subjects read a series of  
vignettes describing social 
situations and answer  
questions about the intentions  
of the characters and how 
subjects themselves would 
respond to  
the situation.

Ambiguous situations are 
scored and three summary 
scores are computed: 
hostility bias, aggression 
bias, and a composite 
“blame” score (average of 
Intentionality, Anger, and 
Blame item ratings).

Internal, Personal, and 
Situational Attributions 
Questionnaire (Kinderman & 
Bentall, 1996)
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humans) (Millan & Bales, 2013). Animal models relevant 
to schizophrenia such as the rat neonatal hippocampal 
lesion model (Lipska, 2004), mice with mutations in the 
Neuregulin-1 and Disrupted in Schizophrenia-1 (DISC1) 
genes have been found to exhibit sociability deficits in 
these paradigms (Li et al., 2007; O’Tuathaigh et al., 2007).

Tests assessing social recognition/memory abilities  
take advantage of the natural tendency of rodents to 
explore more unfamiliar versus familiar conspecifics. 
Thus, a widely used procedure is the “habituation/
dishabituation” paradigm in which the tested subject 
is first repeatedly exposed to the same stimulus animal 
(resulting in progressively shorter investigation times), 
and then exposed to a novel unfamiliar animal (renewed  
interest indicated by increased exploration time) (Dluzen &  
Kreutzberg, 1993; Huang et al., 2014; Winslow &  
Camacho, 1995). Alternatively, in the social (novelty) dis-
crimination procedure, the test subject is first exposed to 
a conspecific and, after a short delay, in the second trial, 
it is simultaneously exposed to the previously explored 
animal and with a second novel conspecific. Various ani-
mal models relevant to schizophrenia have shown dis-
rupted social recognition/discrimination measured in 
these tasks. For example, (1) neonatal exposure to phen-
cyclidine and neonatal immune activation (Boulay et al., 
2008; Ibi et al., 2010; Meffre et al., 2012); (2) genetic dis-
ruption of DISC-1 or microtubules (Begou et al., 2008; Ibi 
et al., 2010); and (3) subchronic interference with NMDA 
receptor-mediated transmission by ketamine (Gao, Elmer, 
Adams-Huet, & Tamminga, 2009; Millan et al., 2007).

Social motivation is generally tested in operant cham-
bers, where a rodent is trained to press a lever with 
access to a conspecific as a social reinforcer (Evans et al., 
1994). However, so far no animal models relevant to 
schizophrenia have been tested in these paradigms.

Despite their extensive use and important utility, the 
currently available tasks in rodents to assess social cog-
nitive functions relevant to schizophrenia are still lim-
ited in their equivalence to human clinical tasks. For 
example, evaluation of social cognitive processes such 
as theory of mind, facial perception/recognition, and 
gaze-following can be tested in nonhuman primates 
(Machado & Nelson, 2011; Millan & Bales, 2013), but are 
not yet, and perhaps never will be, be doable in mice or 
rats. This will require consistent efforts in the field with a 
clear aim to prove the predictive translational validity of 
novel and more refined social cognitive tasks in rodents.

CONCLUSIONS AND FUTURE 
DIRECTIONS

Nowadays schizophrenia is considered a neuro-
developmental disorder (Insel, 2010; Lewis & Levitt, 
2002; Weinberger, 1987), with its cognitive impairments 

appearing before the onset of full symptomatology. 
Thus, early detection and early intervention of cognitive 
deficits could be potentially more effective in mitigat-
ing or reversing the pathological trajectories and ulti-
mately the life quality of individuals with schizophrenia 
vulnerability. In this context, mouse studies allow early 
investigations and testing of early interventions/treat-
ments from conception to adulthood, strictly control-
ling any environmental and genetic factors. This can be 
done only following a stringent translational approach 
and using appropriate tasks as discussed in detail in 
this chapter. Notably, almost the totality of the cogni-
tive tasks described above have been adopted and vali-
dated only in adult mice and rats. Therefore, future work 
will be required to develop and validate similar tasks 
for “infant,” “prepubertal,” and “adolescent” rodents. 
These future behavioral tools, when in place, combined 
with available advanced tools to finely examine mouse 
brain development (with a range of highly efficient 
genetic, imaging, neural, and electrophysiological tech-
niques), will provide unique and strong advantages in 
the schizophrenia field.

The PFC has been consistently shown as an essential 
hub orchestrating “higher order” cognitive functions 
(Goldman-Rakic, Muly, & Williams, 2000; Robbins &  
Roberts, 2007). As we have discussed, these same 
“higher order” cognitive functions are the most affected 
in schizophrenia. In agreement, the PFC and its brain 
networks have been constantly indicated as a crucial 
brain substrate of the abnormalities found in schizophre-
nia. This includes findings from neuropsychological/
cognitive assessments (Goldberg & Weinberger, 1988; 
Goldberg, Weinberger, Berman, Pliskin, & Podd, 1987; 
Keefe et al., 1995; Pantelis et al., 2009; Weickert et al., 
2000), neuroimaging (Callicott et al., 2000; Weinberger 
et al., 1986), and electrophysiological studies (Abrams & 
Taylor, 1979; Guenther et al., 1988; Tauscher, Fischer, 
Neumeister, Rappelsberger, & Kasper, 1998). In particu-
lar, additional evidence shows a reduced activation of 
the dorsolateral PFC and abnormal synaptic organiza-
tion and architecture of the same brain area in patients 
with a diagnosis of schizophrenia while performing  
cognitive tasks (Callicott & Weinberger, 1999; Weinberger  
et al., 1986; Weinberger et al., 2001). Additionally,  
physiological abnormalities have been found in other 
brain areas anatomically connected to the PFC, such as 
the temporal and parietal cortices but also striatum and 
thalamus (Andreasen et al., 1996; Andreasen, Paradiso, &  
O’Leary, 1998; Callicott et al., 2000; Fletcher et al., 
1998). Skepticism obviously exists when considering a 
direct comparison between the highly complex struc-
ture/function of the human PFC with the less evolved 
rodent counterpart. We certainly agree that we are not a 
mouse and that our brains might not work in exactly the 
same way. Despite this, when a mechanistic prediction  
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based on appropriately designed mouse study can be 
confirmed in human studies, as has been implemented 
now more often (e.g. Papaleo et al., 2014; Sannino et al., 
2014; Soliman et al., 2010; Young et al., 2013), we have 
proof of the power and utility of these preclinical studies.

In conclusion, a true concerted and synergistic effort 
between clinical and preclinical studies focused on 
the complexity of cognitive (dys)functions in schizophre-
nia constitute the much-needed step forward. This could 
indeed help to finally solve the causes of schizophrenia 
development, paving the way for more efficient, and pos-
sibly personalized, therapeutic strategies to ameliorate 
cognitive/schizophrenia-related impairments.
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INTRODUCTION

The description of schizophrenia as a disorder 
including positive (delusions, hallucinations) as well 
as affective/negative symptoms (anhedonia, avoli-
tion, emotional flattening) became quite classical and 
is generally agreed upon among psychiatrists. Nega-
tive symptoms have similarities with features of major 
depression: for example, anhedonia is considered a 
core symptom of this disease. Even if the treatments 
currently available target the positive rather than the 
affective symptoms, negative symptoms have histori-
cally been the focus of much attention. Bleuler, who 
coined the term “schizophrenia,” considered emo-
tional blunting and decrease in emotional expression 
to be a part of its core symptoms. Interestingly, these 
symptoms are most prevalent before pharmacologi-
cal treatment has been started: they develop in more 
than 50% of these patients (Johnson, 1981), in around 
25% of patients during the 6 months after discharge, 
and in 4–25% in patients in the chronic phase of the ill-
ness (Leff, 1990). Although this increases the need for 
the medication to be effective against both the positive 
and negative symptoms, most of the available drugs 
have very limited efficacy against negative symptoms, 
even with the advent of new-generation atypical anti-
psychotics (Gardner, Baldessarini, & Waraich, 2005). 
In addition, managing negative symptoms of schizo-
phrenia is especially important not only because they 
worsen psychosocial functioning, but also because they 
frequently occur before suicide attempts or suicide 
itself. Considering the severity of impact of negative 
symptoms on patients and the limitations of currently 
available medication, improving the pharmacological 
therapies is an urgently required step in managing the 
illness. One of the ways through which they might be 
improved involves research on animal models.

Social withdrawal, affective flattening, lack of motiva-
tion (avolition), and the inability to experience pleasure 
(anhedonia) comprise the affective symptoms found in 
schizophrenia which can be (and have been) modeled 
in animals to a certain extent. Because these affective 
symptoms are so similar in nature to the core symptoms 
of depression, one would think that for testing them in 
schizophrenia models, behavioral readouts already used 
in animal models of major depression (early maternal 
separation, chronic corticosterone administration, social 
defeat, and unpredictable chronic mild stress) could be 
relevant (Table 1) (Belzung, 2014).

However, it is to be highlighted here that the affec-
tive symptoms—even if transnosographic—observed 
in schizophrenic patients might be quite different 
from depressive symptoms: they are not triggered 
by the same causes and do not respond to treatment 
with the same drugs. It is to be considered that animal  
models of depression are validated by similarity with 
the etiology of depression and sensitivity to antide-
pressants and thus might not be well suited for the 
evaluation of negative symptoms in schizophrenia. In 
this chapter, our main focus will be on two of those 
symptoms—anhedonia and social interaction—and 
the assays designed to assess behavior related to 
them. In humans, it is considered that the loss of social 
desire is a symptom which overlaps both negative 
and affective symptom domains (Morrissette & Stahl, 
2011). In animal models, social defects are considered 
as a separate symptom, but avolition or social anhe-
donia might contribute to them, which connects the 
symptoms and places them under the same umbrella 
(Barnes, Der-Avakian, & Markou, 2014). Further, in 
animal models of depression, several assays have 
been designed that assess anhedonia, and these tests 
have already been used in the context of animal models  
of schizophrenia. Additionally, modeling avolition will  
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also be briefly discussed because it has recently come 
under a spotlight as one of the core symptoms of 
schizophrenia dissociated from hedonic features.

ANHEDONIA

Anhedonia (Greek: an-, “without” and hēdonē, “plea-
sure”), as its name suggest, is a term describing the 
inability or diminished capacity to feel pleasure in all 
usual and pleasant activities as well as withdrawal from 
them (Kollias et al., 2008). It was coined by Ribot in 1896, 
when he used it to describe the following condition:

The state of anhedonia, if I may coin a new word to pair off 
with analgesia,” he writes, “has been very little studied, but it 
exists. A young girl was smitten with a liver disease which for 
some time altered her constitution. She felt no longer any affec-
tion for her father and mother. She would have played with her 
doll, but it was impossible to find the least pleasure in the act. 
The same things which formerly convulsed her with laughter 
entirely failed to interest her now. Esquirol observed the case 
of a very intelligent magistrate who was also a prey to hepatic 
disease. Every emotion appeared dead within him. He mani-
fested neither perversion nor violence, but complete absence of 
emotional reaction. If he went to the theatre, which he did out of 
habit, he could find no pleasure there. The thought of his house, 
of his home, of his wife, and of his absent children moved him 
as little, he said, as a theorem of Euclid. James (1985)
  

Anhedonia has since been described as a schizophrenic 
symptom by many authors, suggesting that it could 
be a central defect in the illness. However, as already  
mentioned, anhedonia has also been associated with major 
depression. In humans, several scales have been used to 
evaluate depressive symptomatology in schizophrenia,  
but most of them were not originally developed for this 
intention. The Calgary Depression Scale for Schizophre-
nia has been specifically designed for individuals with 
schizophrenia and it has excellent psychometric proper-
ties, internal consistency, interrater reliability, sensitiv-
ity, specificity, and discriminant and convergent validity 
(Addington, Shah, Liu, & Addington, 2014). The scores 
obtained by using this scale correlate with both physical 
anhedonia and social anhedonia ratings, which are usually  
assessed with the scales designed to assess specific 
domains of anhedonia: the Physical Anhedonia Scale 
and the Social Anhedonia Scale (Kollias et al., 2008). 
However, for obvious reasons, it is not possible to apply 
these tests to animals, so different behavioral tests have 
been developed to assess anhedonia in rodents.

One of the tests for evaluating anhedonia in rodents 
is the sucrose preference test, which has been originally 
designed to assess loss of motivation for pleasurable 
activity in animal models of depression. It emerged 
from the observation that the animals exposed to chronic 
stress (which triggers depressive-like states) failed to 
increase their fluid consumption of and preference for 
sweet solutions (saccharin or sucrose added to drink-
ing water), linking this deficit to hedonic disturbances 
of depression (Katz, 1982). Originally, the protocol  
consisted of exposing rats to a 21-day-long stress protocol,  
which caused a decrease of sucrose intake. It has been 
postulated that this decreased sensitivity to reward 
might reflect the inability to experience pleasure, and is 
now considered as a test for the consummatory compo-
nent of anhedonia (Der-Avakian & Markou, 2012). Since 
then, the protocol has been adjusted to obtain a closer 
analogy to the human situation by using milder stress-
ors and extending the duration of exposure to stress 
(Willner et al., 1987). This regime shows the gradual 
development of anhedonia through the course of several 
weeks of stress exposure.

The general procedure for carrying out the test consists 
of presenting the rodents (each in separate cage) with 
two tubes, one of which contains plain drinking water, 
whereas the other one usually contains a 1–4% (depend-
ing on the protocol) sucrose solution. Sometimes, a  
concentration as high as 10% can be used (Clapcote et al, 
2007). Before the start of the test itself, animals are habit-
uated to the presence of these bottles. Usually, both bot-
tles contain just drinking water in the habituation phase, 
which lasts for 1–3 days. After habituation, animals are 
exposed to a bottle containing sucrose solution and a 
bottle containing drinking water and the intake from both 

TABLE 1 Different Readouts Enabling Depression-Like Behavior 
in Rodents to Be Assessed

Depression-
Related 
Phenotype Test References

Resignation Forced swimming Porsolt et al. (1978)

Tail suspension Steru et al. (1985)

Avolition Grooming behavior in the 
splash test

Santarelli et al. (2003)

Nest building in the nest test Nollet, Le Guisquet, 
and Belzung (2013)

Decrease in coat state score Nollet et al. (2013)

Anhedonia Sucrose preference Willner, Towell, 
Sampson, 
Sophokleous, and 
Muscat (1987)

Cookie test Surget et al. (2011)

Intracranial self-stimulation Moreau et al. (1992)

Anxiety Novelty-induced 
suppression of feeding 
behavior

Dulawa and Hen 
(2005)

Irritability Resident-intruder test Mineur, Prasol, Belzung, 
and Crusio (2003)

Modified from Belzung (2014).
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of them is measured on a daily basis. This phase usually 
lasts for 4 days. During testing, the position of the bottles 
is switched daily to reduce any confound produced by a 
side bias. Rodents typically develop a strong preference 
for the solution containing sucrose and consume more 
liquid from that bottle. Sucrose preference is calculated 
as a percentage of consumed sucrose solution of the total 
amount of liquid drunk. A decrease of sucrose preference  
taken as the criterion for anhedonia depends on the  
experimental procedure as well as mouse strain and  
other factors (Pothion, Bizot, Trovero, & Belzung, 2004). 
However, recent research questions the validity of this 
readout and a review of the literature show that the 
effects of chronic unpredictable mild stress, measured 
as a decrease in consumption of or preference for sweet 
solutions, are less reliably observed in several laboratories 
(Nielsen, Arnt, & Sánchez, 2000; Willner, 1997).

A more recent behavioral paradigm has been devel-
oped for testing anhedonia in animals. It is based on 
the motivation for consuming a palatable stimulus—a 
chocolate cookie; hence, it was named the cookie test 
(Surget et al., 2011). It is based on the conflict between 
the drive for the stimulus and the neophobic behavior 
of the animal.

The cookie test is carried out in a device contain-
ing three aligned chambers of the same size; only the 
colors of the walls and the floor are different between 
the chambers. The first chamber is white, the second 
gray, and the third one black. Animals are initially 
familiarized with a chocolate cookie 4.5 weeks before 
the testing; 1 h before the testing all the regular food is 
removed from the cage lid. Then, a small amount of the 
cookie is placed at the center of the black chamber and 
the animal is placed in the white chamber. Each session 
lasts for 5 min and the cookie consumption is recorded 
(Nollet et al., 2013). A reduction of the cookie consump-
tion may be interpreted as anhedonia, a habituation 
deficit, or a combination of both effects. The impor-
tance of the “hedonic” feature of the stimulus has been 
shown in a control experiment where the cookie was 
replaced with a regular food pellet, resulting in almost 
zero consumption of it. However, although validated, 
the cookie test does not directly evaluate the sensitivity 
to reward in animals, which can be accomplished by 
using the intracranial self-stimulation (ICSS) paradigm 
that has been developed by Olds and Milner in 1954.

The ICSS paradigm enables animals with implanted 
electrodes in certain reward areas of their brain to self-
administer weak electrical pulses. Such (self-)stimula-
tion can have strong reinforcing properties and thus 
the self-stimulation threshold can be used as an index 
of the hedonic/anhedonic state of the animal (Nielsen 
et al., 2000). The areas that are commonly targeted for 
stimulation in this paradigm correspond to either the 
medial forebrain bundle, which is thought to play an 

important role in the integration of reward and pleasure, 
or the lateral hypothalamus (Barnes et al., 2014). ICSS is 
well known to be a useful paradigm for use in the study 
of rewards and anhedonia because it reflects the direct 
activation of brain reward systems. Typically, animals 
self administer the current by pressing the lever and two 
measures are used to study anhedonia: the lever-pressing 
rate and stimulation threshold (Ellenbroek & Cools, 
2000). It shares a common theoretical basis with the 
sucrose preference paradigm by interpreting the attenu-
ated self-stimulation behavior (reduction in lever press-
ing or increased stimulation threshold) as a measure of 
anhedonia. However, one of the greatest limitations of 
this methodology is that the performance assessed may 
be contaminated by other processes, such as motor func-
tion, which affects the ability of the animal to perform the 
action and thus hinders the ability to provide a measure  
of reward function independent of the motor ability 
(Markou & Koob, 1992). When used to assess anhedonia 
in animal models of depression, it was shown that ICSS 
has variable sensitivity to antidepressants and a high 
intrastrain variability in rate and frequency responses to 
ICSS (McArthur & Borsini, 2006).

SOCIAL INTERACTION

Unlike other affective symptoms, such as flattened 
affect or apathy, measuring social interactions in animals 
is relatively straightforward, which is an important  
reason for the considerable use of social interaction 
tests (Neill et al., 2010). However, one of the caveats 
of using social interaction tests with genetic models of 
schizophrenia is the problematic interpretation of such 
results because the manipulation used could affect the 
olfactory system, which is a critical determinant of social 
interaction in rodents (O’Tuathaigh, Kirby, Moran, & 
Waddington, 2010). The interpretation of the tests is  
further complicated in more general terms because 
some protocols (e.g., resident-intruder) assess the 
range of behaviors more closely related to aggression, 
whereas some protocols (such as social choice) could be 
interpreted to assess either social anhedonia or anxious  
behavior. Some of the most common approaches of 
assessing social interactions, especially in regards 
to schizophrenia, are (1) social approach-avoidance,  
(2) social choice, and (3) social dominance-aggression.

The social approach-avoidance approach consists of 
placing two unfamiliar animals in a novel environment 
and measuring either the distance between them or the 
time that the animals spend in a defined (and species-
specific) element of active social interaction. The assess-
ment is usually conducted with the help of recording 
equipment and object tracking software (Sams-Dodd, 
1995a) or it can be done manually or by using photocell 
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beam breaks, which activate every time an animal crosses 
from one chamber to the other (Nadler et al., 2004). Using 
photocells and automated analysis eliminates the labor-
intensive and tedious aspects of manual scoring and thus 
minimizes the observer fatigue and increases the con-
sistency of results across experiments and laboratories. 
In addition, automating one aspect of the scoring (basic 
behaviors) enables the researchers to score more interest-
ing and complex behaviors, such as investigative sniffing, 
biting, and pinning. This kind of methodology not only 
provides an objective methodology for scoring social 
interactions, but also increases the consistency of results 
across experiments and laboratories. One of the consid-
erations to have in mind when interpreting the results of 
this dyadic paradigm in schizophrenia-related research is 
that the social encounter can be initiated by either mouse 
(which is not the case in some other paradigms). Also, 
because the test is carried out in a novel environment, the 
social behavior could be modulated by the response to 
novelty, which is in turn modulated by the treatment or 
the genotype of the animal. Overall, it is considered that 
this paradigm is well suited for assessing negative-like 
symptoms of schizophrenia (Ellenbroek & Cools, 2000).

Social choice is one of commonly used paradigms to 
test interest to engage in social interaction and is used 
in many animal models associated with impairments 
in social behavior including not just schizophrenia, 
but also autism and other psychiatric disorders linked 
with anxiety-related behaviors (Sankoorikal, Kaercher, 
Boon, Lee, & Brodkin, 2006). The test is performed in 
an apparatus consisting of three interconnected cham-
bers with two wire enclosures that are occupied differ-
ently, depending on what is studied. The tested animal 
is placed in the apparatus and left to freely explore 
chambers and, if sociability is studied, one of the wire 
enclosures is left empty, whereas an unfamiliar conspe-
cific is placed in the other enclosure. To study preference 
for social novelty, an unfamiliar conspecific is placed in 
one of the enclosures, whereas a familiar conspecific is 
placed in the second enclosure. As mentioned, one of the 
advantages of the social choice paradigm is that only the 
tested mouse can initiate social encounters. However, 
when exploring sociability, one caveat to keep in mind is 
that the behavior may be influenced by the test animal’s 
appraisal of each conspecific in terms of social status or 
aggression. Also, when examining preference for social 
novelty, which assesses social recognition memory, it is 
important to control for phenotypic or treatment effects 
on olfaction because social recognition heavily relies on 
olfactory sensory control. The interpretation of the social 
choice approach is debatable because a lower interest in 
social interaction could be ambiguous and considered a 
result of lowered pleasure/reward response from social 
interactions (social anhedonia) or a result of anxiety-like 
behavior (or both in varying proportions).

When exploring aggressive behavior, a paradigm 
called social dominance-aggression is used. There are 
two approaches that are commonly used, both of them 
employ a dyadic interaction. The first one involves a 
neutral setting, so the behavior is assessed when both 
animals are placed in a clean and unfamiliar cage, 
similar to the social approach-avoidance paradigm. 
The second approach, called the resident–intruder 
test, consists of placing one animal (intruder), usually  
smaller and nonaggressive, into the home cage of the 
animal being tested (resident) and observing them for 
a defined time (until the first attack, or with a time 
limit if a full offensive behavioral repertoire is of inter-
est) or until the researcher needs to intervene because 
of ethical considerations. This paradigm can be used for 
studying aggression, defensive behavior, violence, and 
social stress, and interestingly because a tool to assess 
the predisposition for stress-induced anhedonia, which 
is associated with submissive behavior in the resident-
intruder test (Strekalova, Spanagel, Bartsch, Henn, & 
Gass, 2004). The resident–intruder test is used in animal 
models of depression because a significant part of clini-
cally depressed patients report irritability as one of the 
symptoms. It has its value as an antidepressant screen-
ing test because it has been shown that some mouse 
strains exhibit increased aggressive behavior after 
unpredictable chronic mild stress that can be reversed 
by treatment with compounds with antidepressant 
effects (Mineur et al., 2003; Nollet et al., 2012). In conclu-
sion, although some researchers suggest that submissive 
behavior in the resident–intruder test is an indicator of 
predisposition to stress-induced anhedonia, it can also 
be considered that this paradigm is more valuable for 
assessing negative-like symptoms and aggression.

AVOLITION

Avolition is a term describing lack of motivation and 
is considered to be the core symptom of schizophrenia 
since its earliest description by Kraepelin and Bleuler 
(Bleuler, 1951; Kraepelin, 1919). Patients can experi-
ence pleasure, but they have a reduced outward expres-
sion of emotions and a decreased capacity to anticipate 
whether the pursuit or achievement of a goal will  
be pleasurable. Currently, some researchers consider 
avolition (rather than anhedonia) to be a core symptom 
of the disorder (Pratt, Winchester, Dawson, & Morris, 
2012). This is due to the findings that indicate a detach-
ment between hedonic reaction to rewarding stimuli 
and motivated behavior in patients with schizophrenia. 
The majority of the present-day literature is indicative 
of relatively unimpaired subjective hedonic reaction to 
rewarding stimuli, but impaired incentive motivation 
(Ward et al., 2012).
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Avolition is assessed by operant assays, such as  
progressive-ratio tasks, in which the animal has to work 
(press a lever or poke their nose into an aperture an 
increasing number of time over successive trials) to 
obtain a food reward—for instance, a weak solution of 
sucrose. The breaking point is defined as the number 
of lever presses at which the animal stops pressing the 
lever, which indicates that the rewarding value is lower 
than the effort the animal is willing to make to obtain the  
reward (Ellenbroek & Cools, 2000). In theory, if animals  
were to perceive less reward or be less motivated to work 
for the reward, they would have a lower breaking point 
(quitting sooner) than control rats, so the breaking point 
is taken as an index of avolition. The main differences  
between the progressive-ratio task as a measure of avolition  
and ICSS as a measure of anhedonia are summarized  
in Figure 1.

The translational potential of these tests might 
be substantial, but has yet to be fully exploited. The 

progressive-ratio task is already used in the research of 
depression where it has an important role of differentiat-
ing between consummatory and motivational anhedonia 
(Treadway & Zald, 2011). In addition to the progressive-
ratio task paradigm, some researchers consider the 
increased immobility time in the forced swimming test 
(FST) to be a measure of avolition, but the interpretation 
of this paradigm is questionable (Noda, Kamei, Mamiya, 
Furukawa, & Nabeshima, 2000). There are also certain 
tests used in the research of depression, particularly in 
response to stress, which can be used to detect deficits in 
motivation. One such test is the splash test, which is used 
to measure spontaneous grooming behavior. In this test, 
the mouse is placed in a “splash cage” and “splashed” 
with a sprayer containing a 10% sucrose solution on  
its dorsal region and then returned to its home cage. 
The animal initiates grooming behavior because of the 
viscosity of the solution, which soils the fur. The latency 
to initiate first grooming behavior is measured as well 

FIGURE 1 Differences between the progressive-ratio task as a measure of avolition and intracranial self-stimulation (ICSS) as a measure of 
anhedonia. (A) ICSS enables animals with implanted electrodes in their brain reward areas (for example, medial forebrain bundle or lateral hypo-
thalamus) to administer weak electrical pulses; such self-stimulation has strong reinforcing properties at particular current intensities. The thresh-
old that supports self-stimulation is ascertained by varying the intensity of the current. If the intensity of the current required to elicit a behavioral 
response is increased, an anhedonic state of the animal is suggested. (B) The reward threshold is increased after withdrawal from chronic amphet-
amine for up to 5 days in rats. “Pump in/out” marks the initiation/termination of exposure to amphetamine. (C) The progressive-ratio schedule of 
reinforcement can be used to assess avolition. Animals have to work (press the lever) to obtain a food reward (for example, sucrose pellets or weak 
sucrose solution), with each new pellet “costing” more lever presses. The animals will eventually stop pressing the lever, a point that is called the 
breaking point, and indicates that the rewarding value is lower than the effort the animal is willing to make to obtain the reward. A lower break-
ing point (quitting sooner) is interpreted as an index of avolition or decreased motivation to obtain the reward. (D) The break point for a sucrose 
pellet is decreased after withdrawal from chronic amphetamine exposure for up to 29 days in rats. Modified from Der-Avakian & Markou (2012).
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as the frequency and the duration of grooming over a 
5-min period. The test provides a direct quantitative 
measure of grooming behavior, which serves as an index 
of self-care and motivational behavior. It is considered 
that a decrease in grooming frequency corresponds with 
some symptoms of depression, such as apathetic behav-
ior. A test that can be used to assess spontaneous motiva-
tion is the nest building test, which exploits the fact that 
nest building is an ethologically well-preserved behav-
ior in rodents and that nests have important roles for 
small rodents, such as heat conservation, shelter, and in 
reproduction. Mice are, because of their small size, espe-
cially vulnerable to heat loss, so both male and female 
mice build nests spontaneously. The nest building test 
is carried out in individual cages for each animal, and 
one cotton nestlet is placed in each cage 1 h before the 
beginning of the dark phase. The quality of the nest built 
by the animal is evaluated two times on a 5-point nest-
rating scale 5 and 23 h after nestlet has been provided. 
It is suggested that the deficits in nest building (lower 
scores) are related to self-neglect and social withdrawal, 
both of which might be relevant for assessing negative-
like symptoms of schizophrenia (Pedersen, Sørensen, 
Parachikova, & Plath, 2014). Another ethological test 
used to assess motivation toward self-centered activities 
is the coat state test. The coat quality is a result of groom-
ing behavior, and deterioration in the quality of the coat 
state can be related to a decrease in grooming and thus 
a deficiency in self-directed behavior. The coat state 
assessment is carried out weekly and multiple areas of 
the animal’s body are assessed quantitatively (giving a 
score of 0 for smooth and shiny fur (good condition), 0.5 
for slightly fluffy fur (moderate), and 1 (bad) for fluffy 
fur with slight staining). Stressed animals usually exhibit 
a worse score in coat state than nonstressed animals, and 
this change can be reversed with chronic administration 
of antidepressants.

ANIMAL MODELS OF SCHIZOPHRENIA

Most drugs used in the treatment of schizophrenia 
have been designed to treat positive symptoms. Since 
1952, more than 50 antipsychotic drugs have been devel-
oped to treat schizophrenia and all of them act on the 
dopamine D2 receptor, including clozapine, an atypical 
antipsychotic with a superiority claim for treatment-
resistant schizophrenia (Carpenter & Koenig, 2007). 
Given the efficacy and the targets of the current anti-
psychotic medication, it is crucial to develop new and 
more efficient therapeutic strategies, but also relevant 
and useful animal models for preclinical testing (Flint & 
Shifman, 2008; Nagai, Bi, & Amada, 2011).

It has been estimated that more than 20 different animal  
models of schizophrenia have been developed, but all of 

them can be placed into one of four distinct categories: 
developmental, drug-induced, genetic manipulation, 
or lesion models (Carpenter & Koenig, 2007). Most of 
them replicate aspects of the positive symptoms, and 
the development of more exhaustive models that better 
replicate the negative/affective symptoms is ongoing, 
but many of them need to be tested. The original animal  
models have been developed on the basis of the belief 
that dopamine dysfunction was a key feature in the 
pathophysiology of schizophrenia, but as the under-
standing of the disease widened in regards to the 
genetic basis to the disease and the potential involve-
ment of glutamate, animal models that explore their 
relationship to the disease have been developed (Jones, 
Watson, & Fone, 2011). We will briefly describe the 
most used models.

PHARMACOLOGICAL MODELS

Amphetamine Model of Schizophrenia

The amphetamine model of schizophrenia is based on 
the theory that hyperfunction of the mesolimbic dopa-
mine system underlies schizophrenia, so attempts have 
been made to mimic this property with pharmaceuti-
cal manipulation of the dopamine system (Jones et al., 
2011). In humans, amphetamine-induced psychosis has 
been described as consisting of auditory hallucinations 
and persecutory delusions, which bear resemblance to 
the positive symptoms of schizophrenia.

In animal models, chronic treatment with amphet-
amine induces a persistent sensitization in rats, sug-
gesting changes in prefrontal function similar to those 
seen in schizophrenia, but not memory impairments 
similar to those seen in schizophrenia (Featherstone, 
Rizos, Kapur, & Fletcher, 2008). Preadministration 
of a low dose of haloperidol, a first-generation anti-
psychotic, or clozapine, a second-generation antipsy-
chotic, prevents the induction of sensitization (Meng, 
Feldpaush, & Merchant, 1998). However, the model 
was not so successful in regards to negative symp-
toms because chronic amphetamine administration 
did not induce deficits in social interaction in rats, 
which is used to model certain aspects of negative 
symptoms (Sams-Dodd, 1995b). It has also failed to 
induce prolonged immobility in the FST, which could 
model some aspects of the negative symptomatol-
ogy (Borsini, Volterra, & Meli, 1986; Noda, Yamada, 
Furukawa, & Nabeshima, 1995). This failure to induce 
negative symptoms in animals is in accordance with 
data in humans suggesting that negative symptoms 
are unrelated to a hyperdopaminergic state, and with 
the fact that some patients with predominately nega-
tive symptoms respond poorly or fail to respond to 
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treatment with dopamine antagonists (Javitt & Zukin, 
1991; Marcotte, Pearson, & Srivastava, 2001). To conclude, 
chronic amphetamine administration is able to induce 
positive-like symptoms of schizophrenia, but does not 
replicate the negative symptoms.

Phencyclidine Model of Schizophrenia

It has been hypothesized that the dysfunction of 
the glutamatergic system is involved in the etiology of 
schizophrenia (Carlsson, Hansson, Waters, & Carlsson, 
1997). More specifically, N-methyl-d-aspartatereceptor 
(NMDA) receptors, which bind glutamate, have been 
implicated in the pathogenesis of schizophrenia by  
several lines of evidence, which include postmortem 
studies of schizophrenic patients (Mouri, Nagai, Ibi, & 
Yamada, 2013).

Phencyclidine (PCP), which acts predominately on 
glutamatergic NMDA receptors, can perhaps more 
faithfully mimic non paranoid schizophrenia, particu-
larly when it includes negative symptoms (Marcotte 
et al., 2001). In humans, PCP rekindles and exacerbates 
the positive symptoms in both stabilized and acute 
schizophrenic patients; in healthy volunteers, it produces 
psychotic symptoms accompanied by progressive 
withdrawal and poverty of speech, which resemble 
the negative symptoms of schizophrenia (Jones et al., 
2011). Because of these schizophrenia-like symptoms in 
humans, PCP has been used to produce a pharmacologi-
cal rodent model of schizophrenia.

Both acute and chronic treatment with PCP have 
been used in animal models and both produce similar 
symptoms, such as hyperlocomotion, prepulse inhi-
bition (PPI) deficits, social deficits, working memory 
impairments, extradimensional shifting impairment, 
latent learning impairment, and object recognition  
memory impairment (Mouri et al., 2013). However, 
it has been proposed that the effects of chronic 
administration may better mimic the symptoms of 
schizophrenia (Jentsch & Roth, 1999). Early positron 
emission tomography scans suggested that PCP abuse 
in humans was associated with deficits in the tempo-
ral and frontal lobes, which is similar to the changes 
seen in schizophrenic patients (Hertzmann, Reba, & 
Kotlyarov, 1990). Although many findings support 
claims of face and predictive validity, one criticism of 
the chronic PCP model is the lack of construct valid-
ity in regards to the neurodevelopmental origin of 
schizophrenia because PCP is administered to adult 
rats (Jones et al., 2011; Marcotte et al., 2001). However, 
there has been attempts to address this issue with the 
neonatal PCP model of schizophrenia, in which rat or 
mouse pups start receiving PCP on postnatal day 7  
(Nakatani-Pawlak, Yamaguchi, Tatsumi, Mizoguchi, 
& Yoneda, 2009; Rajagopal, 2011).

Other Pharmacological Models

Besides the dopaminergic and the glutamatergic 
systems, the serotoninergic (5-HT) and GABAergic 
systems have also been implicated in schizophrenia. 
They will be mentioned briefly because their relevance 
is still difficult to establish and because the behavioral 
deficits they produce are less relevant for examining 
affective symptoms in schizophrenia.

It is believed that lysergic acid diethylamide (LSD) 
and mescaline, both psychedelic hallucinogenic drugs, 
act on 5-HT2A receptors to elicit their effects, and a poly-
morphism of the 5-HT2A receptor gene is reported to 
be a minor risk factor for schizophrenia. Clozapine, an 
atypical antipsychotic, has a relatively high affinity for 
the 5-HT2A receptor, which supports a role of the 5-HT 
system in schizophrenia. Both LSD and mescaline affect 
startle habituation and PPI of startle, but also behav-
ioral abnormalities such as scratching, forepaw treading, 
head twitches, and lower lip retraction (Gobira, Ropke, 
Aguiar, Crippa, & Moreira, 2013; Marcotte et al., 2001). 
Although there are strong implications of the 5-HT 
system in schizophrenia, hard evidence for a primary 
dysfunction of it is lacking. Contrary to the situation 
in schizophrenia, repeated administration of LSD leads 
to behavioral tolerance in both humans and rodents, 
which is one of the things that make the assessment of 
the relevance of LSD administration elusive. Hence, the 
construct validity of this model is difficult to establish 
(Marcotte et al., 2001).

GABA is a major inhibitory neurotransmitter, and the 
GABAergic system has been implicated in schizophre-
nia on the basis on both theoretical considerations and 
experimental data. Its involvement with the disease is 
supposed because of its interaction with the dopami-
nergic system. In animal studies, it has been shown that 
picrotoxin, a GABAA receptor antagonist, reduces PPI 
of startle in rats and haloperidol, an antipsychotic drug, 
antagonized this effect (Japha & Koch, 1999). However, 
further studies are needed to examine the relevance 
of GABAergic models of schizophrenia, especially  
having in mind that there is a lack of reported GABA-
induced behavioral deficits related to schizophrenia-like 
symptoms.

LESION MODELS

There is a collection of evidence, ranging from epide-
miological and brain imaging to neuropathological data, 
which suggests that schizophrenia may be a develop-
mental disorder in which one inherits or sustains a brain 
insult early in life, but expresses it in adulthood (Lewis & 
Levitt, 2002). Because of this, some lesion models could 
also be considered as overlapping with developmental 
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models because the lesion could be applied during 
development. In fact, this also applies to the category of 
genetic models. However, to conform with the other lit-
erature, we will follow the standard typology in which 
any lesion, including the neonatal lesion, is considered 
to fall under the umbrella of lesion models as is the case 
with genetic models.

Neonatal Ventral Hippocampal Lesions

Twin studies have shown that genetic factor plays 
a substantial role in the development of schizophrenia 
and a batch of studies indicates that some of the genes 
involved play a role in early brain development (Mouri 
et al., 2013; Sullivan, Kendler, & Neale, 2003).

Most of the research has focused on lesions of the 
rodent ventral hippocampus (that is functionally equiva-
lent to the human anterior hippocampus), which is not 
surprising because this region has a major role in reg-
ulating subcortical dopamine (Marcotte et al., 2001). A 
neurodevelopmental model of schizophrenia in which 
lesions of the ventral hippocampus are created in neo-
natal rodents (PND 7, a period of central nervous system 
development that overlaps the human third-trimester 
“brain growth spurt”) has been used to create abnor-
malities in animals in early adulthood, which resemble 
those found in schizophrenia (Dawe, Hwang, & Tan, 
2009; Pratt et al., 2012). In addition to enhanced loco-
motor activity in a novel environment, PPI, and work-
ing memory deficits, exaggerated hyperlocomotion in 
response to amphetamines and dizocilpine, the model 
also shows social deficits and increased aggressiveness 
(Marcotte et al., 2001; Mouri et al., 2013). These deficits 
are ameliorated after antipsychotic medication, but the 
deficits in social interaction are present both pre- and 
postpubertally and clozapine had no effects on them 
(Sams-Dodd, Lipska, & Weinberger, 1997). In addition, 
even if deficits in the hippocampal pyramidal neurons 
have been observed in schizophrenic patients, their 
brain does not show any signs of a lesion comparable 
with the ones elicited in rodents by this neonatal abla-
tion and thus although the model may be used to test the 
efficacy of antipsychotic drugs, some researchers do not 
consider it to be a really accurate model of schizophrenia 
(Dawe et al., 2009).

DEVELOPMENTAL MODELS

Gestational Methylazoxymethanol Acetate

Methylazoxymethanol acetate (MAM) is an antimi-
totic and antiproliferative agent used to specifically target 
neuroblast proliferation in the central nervous system 
(Cattabeni & Di Luca, 1997). Administration of MAM to 

pregnant rat dams interferes with the development 
of specific brain regions in the offspring and leads to  
morphological and cytological alterations resembling 
those seen in schizophrenia postmortem brains (Hradetzky  
et al., 2012). The behavioral alterations caused by MAM 
are dependent on the day of administration, which 
range usually from gestational day (GD) 14 to GD17. As 
MAM administration at or before GD15 produces a too 
broad disruption of brain morphology and behavior to 
provide a useful model of the specific changes seen in 
schizophrenia, the recommended strategy is to use GD17 
MAM (Jones et al., 2011). MAM treatment on GD17 is 
likely to have a substantial impact on the brain structures 
that are actively developing at that time, which includes 
the hippocampus. The peak of proliferation in this region 
occurs on GD17, and MAM administration at that time 
decreases the thickness of the hippocampus, but also of 
the thalamus and of several cortical regions—the same 
structures which are morphologically altered in schizo-
phrenia (Flagstad et al., 2004).

Behavioral studies of MAM-treated rats exhibit a 
range of deficits, from being unable to ignore irrelevant 
stimuli and sensorimotor gating deficits to social with-
drawal (Hradetzky et al., 2012). They are highly depen-
dent on the day of MAM administration and are beyond 
the scope of this chapter, but more detail is available 
in the review article by Jones et al. (2011). Peculiarly,  
there is a lack of studies exploring behavioral deficits 
in the GD17 model and there are no studies in which  
a pharmacological reversal of the deficits was attempted. 
Hence, although the model has construct validity,  
reasonable face validity, the predictive validity is unknown 
because there have been no attempts to detect existing 
antipsychotic drugs or novel procognitive compounds 
that might be helpful in treating schizophrenia (Jones 
et al., 2011).

Early Environmental Manipulations

Postweaning Social Isolation
Rats have a defined social organization within colo-

nies, and the hierarchy they develop within the colony 
has a crucial impact on their development. In the social 
isolation model, rat pups that are isolated into sepa-
rate cages after weaning exhibit behavioral deficits at 
adulthood and also altered brain development (Fone 
& Porkess, 2008). These changes remain unaltered after 
the animals are re-socialized with the colony later in life 
(Pascual, Zamora-León, & Valero-Cabré, 2006).

The behavioral deficits caused by the model include 
spontaneous locomotor hyperactivity, enhanced 
responses to novelty (neophobia), sensorimotor gating 
deficits, cognitive impairments, and heightened anxiety 
states and aggression (Jones et al., 2011). Although some 
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of the symptoms resemble those found in schizophrenia, 
they largely belong to positive symptoms. Placing the 
animal in a mildly aversive novel arena may produce 
useful readouts with high predictive validity to test drug 
reversal of the positive symptoms of schizophrenia, 
given that existing antipsychotic drugs are able reverse 
them (Jones et al., 2011). However, in terms of negative 
symptoms, in the social interaction task, it has been 
found that isolating the male (but not female) animals 
increased adult social interaction (Ferdman, Murmu, 
Bock, Braun, & Leshem, 2007). In terms of increased 
aggressive behavior, it was successfully reversed with 
tricyclic antidepressants, but the predictive validity for 
modeling negative symptoms using treatments effective 
on these symptoms is unknown (Porkess, 2008).

Some other weaknesses of this model also include 
the relative fragility of behavioral effects that can be 
reversed by repeated handling or with exposure to too 
many other tests during the developmental period and 
the long duration and associated cost of the experiments. 
However, the duration is combated by the relative ease of 
executing the protocol because it is a pure environmen-
tal model without any physical interaction to the animal. 
In addition, the model can also be complemented with 
other interventions that could potentially improve the 
paradigm, as we will discuss when describing genetic 
models of schizophrenia (Jones et al., 2011).

Other Early Environmental Manipulations

In addition to gestational MAM and postweaning 
social isolation, there are other developmental models 
that cause alterations that bear resemblance to some 
symptoms of schizophrenia. To list all of them is beyond 
the scope of this chapter, but we will briefly mention the 
main principles behind these early-life interventions.

One of the models is based on maternal immune 
activation at a critical developmental window during 
gestation, which is usually achieved through systemic 
administration of viral- or bacterial-like immune acti-
vating agents or through maternal exposure to a viral 
infection (Meyer & Feldon, 2010). These environmental 
challenges fall in the category of maternal infections 
and/or immune challenges. Other epidemiological  
factors that can be modeled are maternal stress, maternal 
nutritional deficiency, and obstetric complications, and 
each of them can be modeled experimentally in differ-
ent ways. For example, the experimental systems used 
to model maternal stress range from maternal exposure 
to repeated restraint stress to maternal dexamethasone 
treatment, and obstetric complications can be modeled  
with neonatal anoxia exposure, birth by cesarean  
section, etc. (Meyer & Feldon, 2010). The main prin-
ciple behind all these interventions is simple: there are 

findings that suggest that the etiology of schizophre-
nia involves abnormal neurodevelopmental processes, 
which result from exposure to prenatal and/or perina-
tal environmental insults, before the illness is clinically 
expressed. Thus, just like in other neurodevelopmental 
models, the goal is to induce a disruption in early brain 
development, which leads to neurodevelopmental con-
sequences, and then to study the alterations in behavior, 
neurochemistry, and neuroanatomy in adult animals. In 
regards to negative symptoms of schizophrenia, some of 
the models discussed display certain negative features 
of schizophrenia. One of the powerful animal neuro-
developmental models for (but not limited to) negative 
symptoms of schizophrenia uses late prenatal polyino-
sine-polycytidylic (poly I:C) exposure to induce behav-
ioral and neurochemical abnormalities in mice. Poly 
I:C is a synthetic analog of double-stranded RNA that 
simulates viral infections and elicits a viral-like response 
in mammals (Fortier et al., 2004). In this model, ani-
mals exhibit reduced social interaction and anhedonic 
behavior in a sucrose preference test as well as reduced 
prefrontal and hippocampal dopamine and glutamate 
levels (Bitanihirwe et al., 2010).

GENETIC MODELS

Studies have demonstrated that schizophrenia has a 
high (80%) heritability rate. Twin studies have shown 
that genetic factors play a substantial role in the devel-
opment of schizophrenia, with a heritability rate close 
to 80%. Although no single genetic alteration is respon-
sible for a complex disorder such as schizophrenia, 
many genes have been associated with an increased risk 
of schizophrenia. Most of the genes disrupted have an 
effect on neurotransmission, neuronal plasticity, and 
functioning of synapses (Harrison & Weinberger, 2005). 
Most of genetic models have been developed to repli-
cate the changes in messenger RNA and proteins that are 
observed in schizophrenia, and many different genetic 
models have been created, but only a selection of them 
will be discussed here because describing all of them 
would be far beyond the scope of this chapter.

Disrupted-in-Schizophrenia 1

Disrupted-in-schizophrenia 1 (DISC1) is one of the  
earliest genes discovered to be involved in the develop-
ment of schizophrenia. The product of the gene is a synaptic  
protein that has many roles in pre- and postnatal  
neuronal development, including regulating the prolif-
eration of neuronal progenitor cells and axon elongation 
(Jaaro-Peled, 2009). To date, seven DISC1 models have 
been created (Kellendonk, Simpson, & Kandel, 2009). 
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However, because the development of a knockout DISC1 
has proved difficult, various alternative approaches that 
create a (partial) loss of function of DISC1 have been 
used. Although some of the behavioral alterations in 
DISC1 mice resemble symptoms of schizophrenia, one 
should have in mind that the level of similarity on both 
the nucleotide and amino acid level is only 60% between 
human and mouse DISC1, which prompts for caution 
when discussing DISC1 mouse models (Ma et al., 2002).

Some of the pathological changes in this model that 
are reminiscent of schizophrenia are enlarged lateral  
ventricles, reduced cortical thickness, and partial agenesis  
of the corpus callosum (Jaaro-Peled, Ayhan, Pletnikov, & 
Sawa, 2010). In terms of changes in behavior, the results 
are mixed because some groups have found differences 
in PPI, spontaneous locomotor activity, and social inter-
action, whereas others have reported no significant  
difference (Jones et al., 2011). In regards to anhedonia, the 
sucrose preference test has been used, and some models 
(such as Q31L) show decreased consumption of sucrose, 
whereas some others (such as L100P) do not (Clapcote 
et al., 2007). One possible explanation for these differ-
ences might be associated with the method of generat-
ing these transgenic animals, or by differences in strains, 
gender, or different methodologies and environments. 
Additionally, it is interesting to note that DISC1 is also 
a candidate gene for depression, so the phenotype  
displayed is of interest even if it is not clearly attributed 
to a specific disease (Jaaro-Peled, 2009).

Neuregulin 1 and ErbB4

Neuregulin 1 (NRG1) and its receptor, ErbB4, are also 
considered to be candidate “risk” genes for schizophrenia 
because recent studies identified variations in them to be 
associated with the disorder. NRG1 has many important 
roles in the development and functioning of the nervous 
system, including (but not limited to) both excitatory and 
inhibitory neurotransmission, synaptic plasticity, axon 
guidance, and myelination (Mei & Xiong, 2008). Although 
heterozygous knockout mice were found to be healthy 
and fertile, homozygous knockout of NRG1 is lethal in 
mice, and embryos die of cardiac arrest (Stefansson & 
Petursson, 2002). The heterozygous or conditional knock-
out mice that were developed have different “schizo-
phrenia-like” alterations, depending on the mechanism 
through which they regulate neuregulin–ErbB4 signaling 
(Jones et al., 2011). Some of these models include a hetero-
zygous deletion of the EGF-like domain [Nrg1(ΔEGF)+/−], 
a heterozygous deletion of the transmembrane domain of 
NRG1 [Nrg1(ΔTM)+/−], and so forth.

Because of this, the clinical picture is not as clear, 
also in terms of negative symptoms. For example, 
Nrg1(ΔEGF)+/− mice show robust deficits in social 
interaction, but Nrg1(ΔTM)+/− mice show normal 
social interaction. Transgenic animals in which erbB  

signaling in oligodendrocytes was blocked by expression 
of a dominant negative erbB receptor showed reduced 
social interaction, suggesting that the erbB signaling may 
be involved in the negative symptoms of schizophrenia 
(Roy et al., 2007). In addition, the construct validity of 
most of these models is questionable because the clinical 
manifestations of schizophrenia are associated with NRG1 
hyperfunction, and not hypofunction, which is the result 
of a heterozygous deletion used in most models (Jones 
et al., 2011). It is interesting to note that despite having 
two transgenic models which model NRG1 hyperfunction 
instead of hypofunction, there is a substantial overlap in 
the traits observed, including increased locomotor activ-
ity, reduced PPI, and a decrease in social behavior (Kato 
et al., 2010). However, the exact mechanisms underlying 
the phenotype observed have not been explained and the 
controversy of the similarity of effects between hyper- 
and hypomorphic models remains to be explained.

Other Genetic Models

Several other genetic models are being developed, 
but because it is difficult or even impossible to replicate 
the entire genetic architecture underlying a complex 
disorder such as schizophrenia in a single model, they 
differ in both the quality and the quantity of observed 
behavioral alterations reminiscent of schizophrenia 
(Pratt et al., 2012). These genetic models include the 
calcineurin conditional knockout mice, dysbindin 
mutant mice, reelin disrupted mice (also called reeler 
mice), and dopamine-related and glutamate-related 
knockout mice such as dopamine receptor knockout 
mice (Carpenter & Koenig, 2007; Pratt et al., 2012). 
However, despite their number, these genetic models 
do not seem to capture the spectrum of schizophrenia-
related phenotypes (Carpenter & Koenig, 2007). In 
addition, some genetic models (notably, homozygous 
deletions) create artificial voids in protein expression 
that do not exist in patients, but recently more selective 
strategies are attempting to address this concern.

In summary, because permanently disrupting a  
single gene potentially involved with schizophrenia is 
unlikely to encompass the complex nature of the disor-
der, particularly because of the complex gene–gene and 
gene–environment interactions, more complex models  
are being developed. These models use inducible and 
tissue-specific knockout techniques to address the  
confounds related to compensatory mechanisms by 
selectively (both temporally and spatially) modulating 
genes of interest (Pratt et al., 2012). In addition, they 
may be potentially further enhanced by combining them 
with already existing environmental or pharmacological 
models of the disease, possibly increasing their transla-
tional value by modeling the disorder more accurately 
and combating the overly simplistic attempts to focus on 
single genes as causes of the disease. One such example 
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is a model combining maternal immune activation with 
poly I:C with DISC1 mutant mice, which exhibited an 
enhanced schizophrenia-like phenotype (Abazyan et al., 
2010). New models such as these could open up new 
pharmacological avenues to treat schizophrenia, possibly 
even through separate therapeutic development targeting 
the different domains of the disorder.

AFFECTIVE ASSAYS IN MODELS  
OF SCHIZOPHRENIA

Because the behavioral phenotype can be assessed 
by using different paradigms and because of the sheer 
number of diverse animal models used to model schizo-
phrenia, there is no simple relationship among the symp-
tom, the assay, and the model. We have briefly touched 
upon this when describing different animal models, but 
we will share a broader overview with more detail, and 
focused on affective assays.

As mentioned previously, managing the negative 
symptoms of schizophrenia is still an unmet clinical need 
that prompts improvements in modeling these deficits. 
Although there has been considerable progress in the 
past several years, there are still challenges in applying 
these models to better understand the pathobiology of 
negative symptoms in schizophrenia (O’Tuathaigh et al., 
2010). One of the biggest issues is that the large majority 
of data is related to deficits in social behavior, which does 
not clearly relate to affective symptomatology but rather 
to negative symptoms in a more general way, whereas the 
data relevant for anhedonia are scarce, and the body of 
work relating avolition and schizophrenia is even more 
limited in scope. In addition, even the data related to 
social behavior, which is by far most extensively studied, 
suffer from some problems. In various mutant lines, dif-
ferent tests related to sociability and aggression have been 
(and still are) used, and things are complicated by the 
problematic interpretation of these tests as the manipu-
lation itself might affect the olfactory system, which is a 
crucial element of social interaction in rodents. There are 
also issues with replication of results because the “same” 
strain in the same “test” can, for poorly understood rea-
sons, generate different results (O’Tuathaigh et al., 2010).

The results of behavioral phenotyping for various 
manipulations of rodents and the effects of antipsychotic 
administration (where an attempt has been made) are 
summarized in Table 2. Because our goal is to provide 
a broad overview, it was not feasible to include every 
model and assay, but rather we selected the models and 
assays that are representative, so that for each affective 
symptom we present the results from the four main cat-
egories of models: pharmaceutical, lesion, developmen-
tal, and genetic (and their combinations).

In terms of anhedonia, because there is no research 
relating the animal models of schizophrenia and the 

cookie test, we have focused on the results gained 
from the sucrose preference test and ICSS. The models 
should lead to a decrease in sucrose or saccharine pref-
erence, a reduction in intracranial self-stimulation, and 
an increased threshold for self-stimulation. The results 
are mixed; some models, such as the maternal immune 
challenge with poly I:C in mice, DISC1 mutant (Q31L 
mouse), neonatal ventral hippocampus lesion, and acute 
PCP and MK-801 in rats all show a decreased prefer-
ence for a sucrose (or saccharine) solution. However, 
other models, such as postweaning social isolation and 
subchronic PCP in rats, along with dopamine receptor 
knockout mice and the DISC1 mutant (L100P mouse) 
showed no difference regarding sucrose preference.

Regarding the effects of antipsychotics, it is important 
to bear in mind that all available antipsychotics have only 
limited efficacy in alleviating negative symptoms (see the 
previous section) and display quite variable effects accord-
ing to the class of drugs investigated. Indeed, first-genera-
tion antipsychotics such as chlorpromazine or haloperidol 
have poor efficacy when compared with second-genera-
tion antipsychotics such as clozapine, olanzapine, risperi-
done, or quetiapine (see, for example, Hartling et al., 2012). 
Indeed, this is found in most readouts because haloperidol 
did not reverse anhedonia in the PCP and MK 801 models 
or aggressive behavior in the neonatal ventral hippocam-
pus lesion model. In some cases, haloperidol even wors-
ened the negative symptoms, as found in the clinic. For 
example, acute haloperidol produced an overall decrease 
in sucrose consumption in both PCP-pretreated and con-
trol groups and further decreased the breaking point in 
both PCP-treated rats and control groups (Wiley & Comp-
ton, 2004). The sole study in which haloperidol reversed 
the schizophrenia model-induced impairments used the 
amphetamine administration model. Indeed, haloperi-
dol reversed the effects of amphetamine in regards to the 
threshold of self-stimulation. But this effect is probably 
just trivial because amphetamine and haloperidol act on 
dopaminergic transmission in opposite directions. There-
fore, if we consider that an animal model should mimic 
the clinical situation, a lack of effect on negative/affective 
symptoms with haloperidol cannot really be considered a 
failure of the model to achieve predictive validity. It rather 
strengthens the relevance of the model.

Regarding second-generation antipsychotics, they 
showed ability to counteract affective symptoms in 
schizophrenia models when administered chronically. 
For example, chronic (but not acute) clozapine reversed 
anhedonia in the MK-801 model and in the acute PCP 
model. Second-generation antipsychotic reversal has also 
been attempted in the chronic mild stress model, which is 
not a model of schizophrenia, but a naturalistic paradigm 
of a hostile environment that can induce anhedonia. It 
has been shown that quetiapine causes a complete recov-
ery from absence of sucrose preference. It has also been 
found that many antipsychotics per se are able to reduce 
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TABLE 2 Models Used to Assess Affective Symptoms in Schizophrenia and Antipsychotic Reversal

Affective Symptom Animal Model Assessing Paradigm Measure Effect of AP Reference

Anhedonia Maternal immune challenge (mouse) Sucrose preference ↓ NA Bitanihirwe, Peleg-Raibstein, 
Mouttet, Feldon, and Meyer (2010)

Neonatal ventral hippocampus lesion (rat) Saccharine preference ↓ NA Le Pen, Gaudet, Mortas, Mory, and 
Moreau (2002)

Postweaning social isolation (rat) Sucrose preference ± NA Hall, Humby, Wilkinson, and 
Robbins (1997)

Acute PCP (rat) Sucrose preference ↓ NA Baird, Turgeon, Wallman, and 
Hulick (2008)

Sucrose preference ↓ + (subchronic clozapine) 
- (acute clozapine, 
haloperidol)

Turgeon and Hulick (2007)

ICSS ↑ Threshold NA Spielewoy and Markou (2003)

Acute MK-801 (rat) Sucrose preference ↓ + (clozapine) - 
(haloperidol)

Vardigan, Huszar, McNaughton, 
Hutson, and Uslaner (2010)

Subchronic PCP (rat) Sucrose preference ± NA Jenkins, Harte, and Reynolds 
(2010)

Amphetamine (rat) ICSS ↑ Stimulation↓ threshold - Stimulation Wauquier (1979)

ICSS ↓ Stimulation↑ threshold + (haloperidol) Barrett and White (1980)

Chronic mild stress (rat) Sucrose preference ↓ + (quetiapine) Orsetti et al. (2007)

DISC1 mutant (Q31L mouse) Sucrose preference ↓ NA Clapcote et al. (2007)

DISC1 mutant (L100P mouse) ±

Dopamine receptor knockout (mouse) Sucrose preference ± NA El-Ghundi, O’Dowd, Erclik, and 
George (2003)

Avolition Repeated PCP (mouse) Forced swimming test ↑ Immobility + (clozapine, AD-5423)  
- (haloperidol)

Nagai, Noda, Une, and Furukawa 
(2003), Noda et al. (1995)

Methamphetamine (mouse) ± NA

Repeated PCP (rat) Progressive-ratio task ± - (clozapine) Wiley and Compton (2004)

↓ (haloperidol)

Chronic amphetamine (rat) Progressive-ratio task ↓ Break point NA Der-Avakian and Markou (2010)

DISC1 mutant (Q31L mouse) Forced swimming test ↑ Immobility + (bupropion) - (rolipram) Clapcote et al. (2007)

DISC1 mutant (truncated C-terminal, mouse) Forced swimming test ↑ Immobility NA Hikida et al. (2007)

DISC1 mutant + maternal immune challenge 
(mouse)

Forced swimming test ↑ Immobility NA Abazyan et al. (2010)

Hippocampal lesion (rat) Progressive-ratio task ↑ Break point NA Schmelzeis and Mittleman (1996)

Dopamine receptor knockout (mouse) Progressive-ratio task ↓ Break point NA El-Ghundi et al. (2003)

Striatal dopamine D2 receptor overexpression 
(mouse)

Progressive-ratio task ↓ Break point NA Drew et al. (2007)
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Social interaction Gestational MAM (rat) Social interaction test ↓ Interaction NA Flagstad et al. (2004), Le Pen et al. 
(2006)

Prenatal stress (rat) Social interaction test ↓ Interaction + (oxytocin) Lee, Brady, Shapiro, Dorsa, and 
Koenig (2007)

Maternal immune challenge (mouse) Social interaction test ↓ Interaction NA Bitanihirwe et al. (2010)

Social choice ↓ Preference NA Smith, Li, Garbett, Mirnics, and 
Patterson (2007)

Prenatal restraint stress (mouse) Social interaction in a 
novel environment

↓ Interaction + (clozapine) Matrisciano et al. (2013)

+ (valproate)

Postweaning social isolation (rat) Social interaction test ↑ Interaction (in males) NA Ferdman et al. (2007)

Neonatal ventral hippocampus lesion (rat) Social interaction test ↓ Interaction ± (clozapine) Sams-Dodd et al. (1997)

↑ Aggression ↓ (clozapine) ± 
(haloperidol)

Becker (2003)

Acute amphetamine (rat) Social interaction test ± NA Sams-Dodd (1995b)

Repeated amphetamine (rat) Social interaction test ± NA Der-Avakian and Markou, 2010, 
Sams-Dodd (1998)

Acute PCP (rat) Social interaction test ↓ Interaction NA Sams-Dodd (1995b)

Repeated PCP (mouse) Social interaction test ↓ Interaction + (risperidone with 
galantamine)

Wang et al. (2007)

DISC1 mutant (Q31L) Social interaction test ↓ Interaction NA Clapcote et al. (2007)

DISC1 mutant (L100P) ± NA

DISC1 mutant (truncated N-terminal, mouse) Social interaction test ↓ Interaction NA Pletnikov et al. (2008)

DISC1 mutant (truncated C-terminal, mouse) Social interaction test ± NA Hikida et al. (2007)

NRG1 overexpression (transgenic mouse) Resident-intruder test ↓ Interaction↑ aggression NA Kato et al. (2010)

NRG1 TM-domain heterozygous mutant 
(mouse)

Social interaction test ↓ Interaction NA O’Tuathaigh et al. (2007), 
O’Tuathaigh et al. (2008)

Social choice ↓ Preference

Resident-intruder test ↑ Aggression

DISC1 mutant + maternal immune challenge 
(mouse)

Social choice ↓ Time sniffing live  
mouse

NA Abazyan et al. (2010)

↓, decrease; ↑, increase; ±, no change; +, reversal of the induced effect; -, no drug-induced reversal; AP, antipsychotics; ICSS, intracranial self-stimulation; MAM, methylazoxymethanol acetate; NA, not applicable; 
PCP, phencyclidine.
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intracranial self-stimulation, which may be related to 
their ability to induce extrapyramidal side effects that are 
often very hard to differentiate from the negative symp-
toms of schizophrenia (Ellenbroek & Cools, 2000).

Most of the data available regarding avolition in schizo-
phrenia assess this affective symptom by either progres-
sive-ratio tasks or the FST. Some researchers (Strekalova 
et al., 2004) consider the FST to be a measure of anhedonia, 
whereas some (Corbett, 1999) use it as a measure of avoli-
tion. Significant criticisms have been made regarding the 
interpretation of the FST, and most antipsychotics do not 
affect behavior during FST (Borsini et al., 1986; Ellenbroek 
& Cools, 2000). Even though that modeling and assessing 
avolition is hard because it is difficult to determine if the 
results are caused by avolition or simply because of an 
overall reduction in motor performance, it is considered 
that the progressive-ratio task examines this dimension of 
the phenotype to an adequate degree. The models should 
lead to either an increase in immobility time in the FST 
or a lowered breaking point in the progressive-ratio task. 
In the progressive-ratio task, chronic amphetamine treat-
ment in rats and dopamine receptor knockout and stria-
tal dopamine D2 receptor overexpression in mice leads 
to a lowered breaking point, whereas, interestingly, hip-
pocampal lesions in rats lead to a higher breaking point. 
There is a lack of studies that attempt a reversal in the pro-
gressive-ratio task by antipsychotics in animal models of 
schizophrenia, but one group attempted an antipsychotic 
reversal in the repeated PCP model in rats and found 
that clozapine had no effect. Chronic methamphetamine 
in mice and repeated PCP in rats had no effects on the 
immobility time in the FST, whereas repeated PCP in rats 
did increase immobility time, which could be reversed 
by clozapine and AD-5423 (also an antipsychotic agent), 
but again, not haloperidol. Numerous genetic models of 
schizophrenia—such as the DISC1 mutant Q31L, DISC1 
mutant with a truncated C-terminal, and a DISC1 mutant 
combined with maternal immune challenge—all exhibit 
increased immobility time and in the Q31L model a drug 
reversal has been attempted, where bupropion success-
fully reversed the immobility, whereas rolipram had no 
effect. However, it seems difficult to relate this to efficacy 
of these drugs in schizophrenic patients.

Unlike the lack of research regarding avolition and 
anhedonia, a substantial amount of literature is available 
regarding alterations in social behavior. Most models 
from all the four categories of animal models of schizo-
phrenia (details in Table 2) exhibit social withdrawal 
and/or increased aggression. The models in which such 
an effect has not been observed include both acute and 
repeated amphetamine administration in rats and certain 
DISC1 mutants in mice (L100P and truncated C-terminal).  
Interestingly, in the postweaning social isolation, social 
behavior in males was increased after social isolation.  
It has been attempted to reverse these changes using 

antipsychotic administration, and it has been shown that 
although clozapine can reverse the effects of prenatal 
restraint stress in mice in regards to social behavior, it 
elicited no effects in the neonatal ventral hippocampus  
lesions in rats. In the repeated PCP model in mice,  
risperidone with galantamine reversed social deficits. 
In regards to aggression, it was found to be increased in 
rats with neonatal ventral hippocampus lesions, mice 
with NRG1 overexpression, and mice who are NRG1  
TM-domain heterozygous mutants. Clozapine (but not 
haloperidol) successfully decreased the aggressive behav-
ior of rats with neonatal ventral hippocampus lesions. 
Finally, in some cases, these models have also been used 
to assess the effects of compounds that are not yet used 
in the treatment of schizophrenia, such as valproate or 
oxytocin. Indeed, valproate as well as oxytocin have been 
shown to reverse social interaction defects in the prenatal 
stress model, suggesting they could be used to treat some 
negative symptoms in schizophrenic patients.

CONCLUSION

Overall, the findings summarized here show that nega-
tive/affective symptoms have been poorly studied in ani-
mal models of schizophrenia. However, even if sparse, 
some data exist. It reveals that few animal models of schizo-
phrenia recapitulate both anhedonia and avolition, which 
are the main features of affective symptoms in schizo-
phrenia. In most cases, one of these two phenotypes was 
present, whereas the other one remained untested or was 
not detectable. For example, regarding the neonatal hip-
pocampal lesion model, it induced decreased sucrose pref-
erence, which correlates with anhedonia, but it increased 
the breaking point in the progressive ratio, which is the 
reverse of the prediction. Pharmacological models yield 
the same results: amphetamine elicits contradictory results 
in the ICSS, even if it decreased the breaking point in the 
progressive ratio, acute PCP and acute MK 801 decreased 
sucrose preference but has not been tested in avolition 
readouts, repeated PCP decreased the breaking point but 
anhedonia had not been assessed. Similar findings are 
found with the genetic models, the sole exception being 
the DISC1 mutant (Q31L mouse) that exhibits both avoli-
tion and anhedonia. Because all these models have been 
able to detect positive-like symptoms of schizophrenia, one 
can suggest that, except for the DISC1 (Q31L) mouse, all 
models are not models of schizophrenia per se, but models  
inducing positive symptoms of schizophrenia. In this 
case, new models of schizophrenia, enabling detection 
of both kinds of symptoms, should be designed. Alter-
natively, it can be that the behavioral readouts used 
are not relevant for the schizophrenia-related negative  
symptoms and that new assays, rather than new  
models, should be developed or applied to better detect 
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them. This particularly applies to avolition. Indeed, as 
seen from Table 1, several more ethological tests have 
been developed to assess avolition in animal models of 
depression, including assessment of coat state, grooming 
behavior, and nest building. Some of them have already 
been used also in the field of schizophrenia research. One 
can mention, for example, that subchronic PCP, genetic 
deletion of neurexin-1alpha, NMDA receptor deficiency, 
and early postnatal deficit in the NR1 subunits of the 
NMDA receptor in GABAergic cells of the hippocam-
pus and the cortex, which have all been proposed as 
schizophrenia models, all induced nest building deficits  
(Belforte et al., 2010; Etherton, Blaiss, Powell, & Südhof, 
2009; Halene et al., 2009; Pedersen et al., 2014). Such etho-
logical assays should be included in the behavioral phe-
notyping of animal models of schizophrenia in a more 
systematic way and validated pharmacologically with 
treatments effective in achieving remission of the affective 
symptomatology in schizophrenic patients. Finally, some 
aspects of the affective symptomatology have been poorly 
tested in animal models of schizophrenia. This applies, for 
example, to emotional blunting, which is an important fea-
ture in schizophrenic patients. This is related to the fact that 
few assays measuring such phenotype are currently avail-
able, even if some authors proposed that poor response to 
classical fear condition can be considered a test of emotional 
blunting (Pietersen et al., 2007). Additional tests assessing 
emotional blunting should thus be designed.

References
Abazyan, B., Nomura, J., Kannan, G., Ishizuka, K., Tamashiro, K. L., 

Nucifora, F., et al. (2010). Prenatal interaction of mutant DISC1 
and immune activation produces adult psychopathology. Bio-
logical Psychiatry, 68(12), 1172–1181. http://dx.doi.org/10.1016/j.
biopsych.2010.09.022.

Addington, J., Shah, H., Liu, L., & Addington, D. (2014). Reliability 
and validity of the Calgary Depression Scale for Schizophrenia 
(CDSS) in youth at clinical high risk for psychosis. Schizophre-
nia Research, 153(1–3), 64–67. http://dx.doi.org/10.1016/j.
schres.2013.12.014.

Baird, J., Turgeon, S., Wallman, A., & Hulick, V. (2008). Behavioral 
processes mediating phencyclidine-induced decreases in volun-
tary sucrose consumption. Pharmacology, Biochemistry, and Behavior, 
88(3), 272–279.

Barnes, S. A., Der-Avakian, A., & Markou, A. (2014). Anhedonia, 
avolition, and anticipatory deficits: assessments in animals with 
relevance to the negative symptoms of schizophrenia. European 
Neuropsychopharmacology: The Journal of the European College of Neu-
ropsychopharmacology, 24(5), 744–758. http://dx.doi.org/10.1016/j.
euroneuro.2013.10.001.

Barrett, R. J., & White, D. K. (1980). Reward system depression fol-
lowing chronic amphetamine: antagonism by haloperidol. Phar-
macology, Biochemistry, and Behavior, 13(4), 555–559. http://dx.doi.
org/10.1016/0091-3057(80)90280-4.

Becker, A. (2003). Haloperidol and clozapine affect social behaviour in 
rats postnatally lesioned in the ventral hippocampus. Pharmacology, 
Biochemistry, and Behavior, 76(1), 1–8. http://dx.doi.org/10.1016/
S0091-3057(03)00139-4.

Belforte, J. E., Zsiros, V., Sklar, E. R., Jiang, Z., Yu, G., Li, Y., et al. (2010). 
Postnatal NMDA receptor ablation in corticolimbic interneurons 
confers schizophrenia-like phenotypes. Nature Neuroscience, 13(1), 
76–83. http://dx.doi.org/10.1038/nn.2447.

Belzung, C. (2014). Innovative drugs to treat depression: did ani-
mal models fail to be predictive or did clinical trials fail to detect 
effects? Neuropsychopharmacology, 39(5), 1041–1051. http://dx.doi.
org/10.1038/npp.2013.342.

Bitanihirwe, B. K. Y., Peleg-Raibstein, D., Mouttet, F., Feldon, J.,  
& Meyer, U. (2010). Late prenatal immune activation in mice  
leads to behavioral and neurochemical abnormalities relevant  
to the negative symptoms of schizophrenia. Neuropsychopharmacol-
ogy, 35(12), 2462–2478. http://dx.doi.org/10.1038/npp.2010.129.

Bleuler, E. (1951). Dementia praecox or the group of schizophrenias. 
Journal of the American Medical Association, 145(9), 685. http://
dx.doi.org/10.1001/jama.1951.02920270079043.

Borsini, F., Volterra, G., & Meli, A. (1986). Does the behavioral “despair” 
test measure “despair”? Physiology & Behavior, 38(3), 385–386. 
http://dx.doi.org/10.1016/0031-9384(86)90110-1.

Carlsson, A., Hansson, L. O., Waters, N., & Carlsson, M. L. (1997). Neu-
rotransmitter aberrations in schizophrenia: new perspectives and 
therapeutic implications. Life Sciences, 61(2), 75–94.

Carpenter, W., & Koenig, J. (2007). The evolution of drug develop-
ment in schizophrenia: past issues and future opportunities. Neu-
ropsychopharmacology, 2061–2079. http://dx.doi.org/10.1038/
sj.npp.1301639.

Cattabeni, F., & Di Luca, M. (1997). Developmental models of brain 
dysfunctions induced by targeted cellular ablations with methyl-
azoxymethanol. Physiological Reviews, 77(1), 199–215.

Clapcote, S. J., Lipina, T. V., Millar, J. K., Mackie, S., Christie, S., Ogawa, 
F., et al. (2007). Behavioral phenotypes of Disc1 missense muta-
tions in mice. Neuron, 54(3), 387–402. http://dx.doi.org/10.1016/j.
neuron.2007.04.015.

Corbett, R. (1999). Animal models of negative symptoms M100907 
antagonizes PCP-induced immobility in a forced swim test in 
Mice. Neuropsychopharmacology, 21(6), S211–S218. http://dx.doi.
org/10.1016/S0893-133X(99)00128-1.

Dawe, G. S., Hwang, E. H., & Tan, C. H. (2009). Pathophysiology and 
animal models of schizophrenia. Annals of the Academy of Medicine, 
Singapore, 38(5), 425–426.

Der-Avakian, A., & Markou, A. (2010). Withdrawal from chronic expo-
sure to amphetamine, but not nicotine, leads to an immediate and 
enduring deficit in motivated behavior without affecting social 
interaction in rats. Behavioural Pharmacology, 21(4), 359–368. http://
dx.doi.org/10.1097/FBP.0b013e32833c7cc8.

Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedo-
nia and other reward-related deficits. Trends in Neurosciences, 35(1), 
68–77. http://dx.doi.org/10.1016/j.tins.2011.11.005.

Drew, M. R., Simpson, E. H., Kellendonk, C., Herzberg, W. G., Lipatova, 
O., Fairhurst, S., et al. (2007). Transient overexpression of striatal 
D2 receptors impairs operant motivation and interval timing. Jour-
nal of Neuroscience, 27(29), 7731–7739. http://dx.doi.org/10.1523/
JNEUROSCI.1736-07.2007.

Dulawa, S. C., & Hen, R. (2005). Recent advances in animal models 
of chronic antidepressant effects: the novelty-induced hypophagia 
test. Neuroscience and Biobehavioral Reviews, 29, 771–783.

El-Ghundi, M., O’Dowd, B. F., Erclik, M., & George, S. R. (2003). Atten-
uation of sucrose reinforcement in dopamine D1 receptor deficient 
mice. European Journal of Neuroscience, 17(4), 851–862. http://dx.doi.
org/10.1046/j.1460-9568.2003.02496.x.

Ellenbroek, B. A., & Cools, A. R. (2000). Animal models for the nega-
tive symptoms of schizophrenia. Behavioural Pharmacology, 11(3–4), 
223–233.

Etherton, M. R., Blaiss, C. A., Powell, C. M., & Südhof, T. C. (2009). 
Mouse neurexin-1α deletion causes correlated electrophysiologi-
cal and behavioral changes consistent with cognitive impairments. 

http://dx.doi.org/10.1016/j.biopsych.2010.09.022
http://dx.doi.org/10.1016/j.biopsych.2010.09.022
http://dx.doi.org/10.1016/j.schres.2013.12.014
http://dx.doi.org/10.1016/j.schres.2013.12.014
http://dx.doi.org/10.1016/j.euroneuro.2013.10.001
http://dx.doi.org/10.1016/j.euroneuro.2013.10.001
http://dx.doi.org/10.1016/0091-3057(80)90280-4
http://dx.doi.org/10.1016/0091-3057(80)90280-4
http://dx.doi.org/10.1016/S0091-3057(03)00139-4
http://dx.doi.org/10.1016/S0091-3057(03)00139-4
http://dx.doi.org/10.1038/nn.2447
http://dx.doi.org/10.1038/npp.2013.342
http://dx.doi.org/10.1038/npp.2013.342
http://dx.doi.org/10.1038/npp.2010.129
http://dx.doi.org/10.1001/jama.1951.02920270079043
http://dx.doi.org/10.1001/jama.1951.02920270079043
http://dx.doi.org/10.1016/0031-9384(86)90110-1
http://dx.doi.org/10.1038/sj.npp.1301639
http://dx.doi.org/10.1038/sj.npp.1301639
http://dx.doi.org/10.1016/j.neuron.2007.04.015
http://dx.doi.org/10.1016/j.neuron.2007.04.015
http://dx.doi.org/10.1016/S0893-133X(99)00128-1
http://dx.doi.org/10.1016/S0893-133X(99)00128-1
http://dx.doi.org/10.1097/FBP.0b013e32833c7cc8
http://dx.doi.org/10.1097/FBP.0b013e32833c7cc8
http://dx.doi.org/10.1016/j.tins.2011.11.005
http://dx.doi.org/10.1523/JNEUROSCI.1736-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1736-07.2007
http://dx.doi.org/10.1046/j.1460-9568.2003.02496.x
http://dx.doi.org/10.1046/j.1460-9568.2003.02496.x


7. MODELING AFFECTIVE SYMPTOMS OF SCHIZOPHRENIA100

I. FROM CLINICAL DIMENSIONS TO ANIMAL MODELS

Proceedings of the National Academy of Sciences of the United States 
of America, 106(42), 17998–18003. http://dx.doi.org/10.1073/
pnas.0910297106.

Featherstone, R. E., Rizos, Z., Kapur, S., & Fletcher, P. J. (2008). A 
sensitizing regimen of amphetamine that disrupts attentional 
set-shifting does not disrupt working or long-term memory. Behav-
ioural Brain Research, 189(1), 170–179. http://dx.doi.org/10.1016/j.
bbr.2007.12.032.

Ferdman, N., Murmu, R. P., Bock, J., Braun, K., & Leshem, M. (2007).  
Weaning age, social isolation, and gender, interact to deter-
mine adult explorative and social behavior, and dendritic 
and spine morphology in prefrontal cortex of rats. Behavioural 
Brain Research, 180(2), 174–182. http://dx.doi.org/10.1016/j.
bbr.2007.03.011.

Flagstad, P., Mørk, A., Glenthøj, B. Y., van Beek, J., Michael-Titus, A. 
T., & Didriksen, M. (2004). Disruption of neurogenesis on ges-
tational day 17 in the rat causes behavioral changes relevant to 
positive and negative schizophrenia symptoms and alters amphet-
amine-induced dopamine release in nucleus accumbens. Neuro-
psychopharmacology, 29(11), 2052–2064. http://dx.doi.org/10.1038/
sj.npp.1300516.

Flint, J., & Shifman, S. (2008). Animal models of psychiatric disease. 
Current Opinion in Genetics & Development, 18(3), 235–240. http://
dx.doi.org/10.1016/j.gde.2008.07.002.

Fone, K. C. F., & Porkess, M. V. (2008). Behavioural and neurochemi-
cal effects of post-weaning social isolation in rodents-relevance 
to developmental neuropsychiatric disorders. Neuroscience and  
Biobehavioral Reviews. http://dx.doi.org/10.1016/j.neubiorev.2008. 
03.003.

Fortier, M.-E., Kent, S., Ashdown, H., Poole, S., Boksa, P., & Luheshi, 
G. N. (2004). The viral mimic, polyinosinic: polycytidylic acid, 
induces fever in rats via an interleukin-1-dependent mechanism. 
American Journal of Physiology. Regulatory, Integrative and Compara-
tive Physiology, 287(4), R759–R766. http://dx.doi.org/10.1152/
ajpregu.00293.2004.

Gardner, D. M., Baldessarini, R. J., & Waraich, P. (2005). Modern 
antipsychotic drugs: a critical overview. CMAJ: Canadian Medi-
cal Association Journal = Journal de l’Association Medicale Cana-
dienne, 172(13), 1703–1711. http://dx.doi.org/10.1503/cmaj. 
1041064.

Gobira, P. H., Ropke, J., Aguiar, D. C., Crippa, J. A. S., & Moreira, F. 
A. (2013). Animal models for predicting the efficacy and side 
effects of antipsychotic drugs. Revista Brasileira de Psiquiatria 
(São Paulo, Brazil: 1999), 35(Suppl. 2), S132–S139. http://dx.doi.
org/10.1590/1516-4446-2013-1164.

Halene, T. B., Ehrlichman, R. S., Liang, Y., Christian, E. P., Jonak, G. J., 
Gur, T. L., et al. (2009). Assessment of NMDA receptor NR1 subunit  
hypofunction in mice as a model for schizophrenia. Genes, Brain, 
and Behavior, 8(7), 661–675. http://dx.doi.org/10.1111/j.1601-183X. 
2009.00504.x.

Hall, F. S., Humby, T., Wilkinson, L. S., & Robbins, T. W. (1997). The 
effects of isolation-rearing on sucrose consumption in rats. Physiol-
ogy & Behavior, 62(2), 291–297.

Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene 
expression, and neuropathology: on the matter of their convergence. 
Molecular Psychiatry, 10(1), 40–68. http://dx.doi.org/10.1038/
sj.mp.4001558 image 5.

Hartling, L., Abou-Setta, A. M., Dursun, S., Mousavi, S. S., Pasich-
nyk, D., & Newton, A. S. (2012). Antipsychotics in adults with 
schizophrenia: comparative effectiveness of first-generation 
versus second-generation medications: a systematic review 
and meta-analysis. Annals of Internal Medicine, 157(7), 498–511. 
http://dx.doi.org/10.7326/0003-4819-157-7-201210020-00525.

Hertzmann, M., Reba, R. C., & Kotlyarov, E. V. (1990). Single photon 
emission computed tomography in phencyclidine and related drug 
abuse. American Journal of Psychiatry, 147(2), 255–256.

Hikida, T., Jaaro-Peled, H., Seshadri, S., Oishi, K., Hookway, C., Kong, 
S., et al. (2007). Dominant-negative DISC1 transgenic mice display 
schizophrenia-associated phenotypes detected by measures trans-
latable to humans. Proceedings of the National Academy of Sciences of 
the United States of America, 104(36), 14501–14506. http://dx.doi.
org/10.1073/pnas.0704774104.

Hradetzky, E., Sanderson, T. M., Tsang, T. M., Sherwood, J. L., Fitzjohn, 
S. M., Lakics, V., et al. (2012). The methylazoxymethanol acetate 
(MAM-E17) rat model: molecular and functional effects in the hip-
pocampus. Neuropsychopharmacology, 37(2), 364–377. http://dx.doi.
org/10.1038/npp.2011.219.

Jaaro-Peled, H. (2009). Gene models of schizophrenia: DISC1 mouse 
models. Progress in Brain Research, 179, 75–86. http://dx.doi.
org/10.1016/S0079-6123(09)17909-8.

Jaaro-Peled, H., Ayhan, Y., Pletnikov, M. V., & Sawa, A. (2010). 
Review of pathological hallmarks of schizophrenia: comparison 
of genetic models with patients and nongenetic models. Schizo-
phrenia Bulletin, 36(2), 301–313. http://dx.doi.org/10.1093/
schbul/sbp133.

James, W. (1985). The varieties of religious experience (Vol. 13, P. 669).
Japha, K., & Koch, M. (1999). Picrotoxin in the medial prefrontal cortex 

impairs sensorimotor gating in rats: reversal by haloperidol. Psy-
chopharmacology, 144(4), 347–354.

Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencycli-
dine model of schizophrenia. American Journal of Psychiatry, 148(10), 
1301–1308.

Jenkins, T. A., Harte, M. K., & Reynolds, G. P. (2010). Effect of sub-
chronic phencyclidine administration on sucrose preference and 
hippocampal parvalbumin immunoreactivity in the rat. Neu-
roscience Letters, 471(3), 144–147. http://dx.doi.org/10.1016/j.
neulet.2010.01.028.

Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacol-
ogy of phencyclidine: from NMDA receptor hypofunction to the 
dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 
http://dx.doi.org/10.1016/S0893-133X(98)00060-8.

Johnson, D. A. (1981). Studies of depressive symptoms in schizo-
phrenia. British Journal of Psychiatry, 139(2), 89–101. http://dx.doi.
org/10.1192/bjp.139.2.89.

Jones, C., Watson, D., & Fone, K. (2011). Animal models of schizophre-
nia. British Journal of Pharmacology, 164(4), 1162–1194. http://dx.doi.
org/10.1111/j.1476-5381.2011.01386.x.

Kato, T., Kasai, A., Mizuno, M., Fengyi, L., Shintani, N., Maeda, S., 
et al. (2010). Phenotypic characterization of transgenic mice over-
expressing neuregulin-1. PLoS One, 5(12), e14185. http://dx.doi.
org/10.1371/journal.pone.0014185.

Katz, R. J. (1982). Animal model of depression: pharmacological sensi-
tivity of a hedonic deficit. Pharmacology, Biochemistry, and Behavior, 
16(6), 965–968.

Kellendonk, C., Simpson, E. H., & Kandel, E. R. (2009). Model-
ing cognitive endophenotypes of schizophrenia in mice. Trends 
in Neurosciences, 32(6), 347–358. http://dx.doi.org/10.1016/j.
tins.2009.02.003.

Kollias, C. T., Kontaxakis, V. P., Havaki-Kontaxaki, B. J., Stamouli, S.,  
Margariti, M., & Petridou, E. (2008). Association of physical 
and social anhedonia with depression in the acute phase of 
schizophrenia. Psychopathology, 41(6), 365–370. http://dx.doi.
org/10.1159/000152378.

Kraepelin, E. (1919). Dementia praecox and paraphrenia. Chicago: Chicago 
Medical Book Co.

Leff, J. (1990). Depressive symptoms in the course of schizophrenia. 
In L. E. DeLisi (Ed.), Depression in Schizophrenia. Washington, DC: 
American Psychiatric Press.

Le Pen, G., Gaudet, L., Mortas, P., Mory, R., & Moreau, J.-L. (2002). 
Deficits in reward sensitivity in a neurodevelopmental rat model of 
schizophrenia. Psychopharmacology, 161(4), 434–441. http://dx.doi.
org/10.1007/s00213-002-1092-4.

http://dx.doi.org/10.1073/pnas.0910297106
http://dx.doi.org/10.1073/pnas.0910297106
http://dx.doi.org/10.1016/j.bbr.2007.12.032
http://dx.doi.org/10.1016/j.bbr.2007.12.032
http://dx.doi.org/10.1016/j.bbr.2007.03.011
http://dx.doi.org/10.1016/j.bbr.2007.03.011
http://dx.doi.org/10.1038/sj.npp.1300516
http://dx.doi.org/10.1038/sj.npp.1300516
http://dx.doi.org/10.1016/j.gde.2008.07.002
http://dx.doi.org/10.1016/j.gde.2008.07.002
http://dx.doi.org/10.1016/j.neubiorev.2008.
03.003
http://dx.doi.org/10.1016/j.neubiorev.2008.
03.003
http://dx.doi.org/10.1152/ajpregu.00293.2004
http://dx.doi.org/10.1152/ajpregu.00293.2004
http://dx.doi.org/10.1503/cmaj.
1041064
http://dx.doi.org/10.1503/cmaj.
1041064
http://dx.doi.org/10.1590/1516-4446-2013-1164
http://dx.doi.org/10.1590/1516-4446-2013-1164
http://dx.doi.org/10.1111/j.1601-183X.
2009.00504.x
http://dx.doi.org/10.1111/j.1601-183X.
2009.00504.x
http://dx.doi.org/10.1038/sj.mp.4001558
http://dx.doi.org/10.1038/sj.mp.4001558
http://dx.doi.org/10.7326/0003-4819-157-7-201210020-00525
http://dx.doi.org/10.1073/pnas.0704774104
http://dx.doi.org/10.1073/pnas.0704774104
http://dx.doi.org/10.1038/npp.2011.219
http://dx.doi.org/10.1038/npp.2011.219
http://dx.doi.org/10.1016/S0079-6123(09)17909-8
http://dx.doi.org/10.1016/S0079-6123(09)17909-8
http://dx.doi.org/10.1093/schbul/sbp133
http://dx.doi.org/10.1093/schbul/sbp133
http://dx.doi.org/10.1016/j.neulet.2010.01.028
http://dx.doi.org/10.1016/j.neulet.2010.01.028
http://dx.doi.org/10.1016/S0893-133X(98)00060-8
http://dx.doi.org/10.1192/bjp.139.2.89
http://dx.doi.org/10.1192/bjp.139.2.89
http://dx.doi.org/10.1111/j.1476-5381.2011.01386.x
http://dx.doi.org/10.1111/j.1476-5381.2011.01386.x
http://dx.doi.org/10.1371/journal.pone.0014185
http://dx.doi.org/10.1371/journal.pone.0014185
http://dx.doi.org/10.1016/j.tins.2009.02.003
http://dx.doi.org/10.1016/j.tins.2009.02.003
http://dx.doi.org/10.1159/000152378
http://dx.doi.org/10.1159/000152378
http://dx.doi.org/10.1007/s00213-002-1092-4
http://dx.doi.org/10.1007/s00213-002-1092-4


REfEREncES 101

I. FROM CLINICAL DIMENSIONS TO ANIMAL MODELS

Le Pen, G., Gourevitch, R., Hazane, F., Hoareau, C., Jay, T. M., Krebs, M.-O.,  
et al. (2006). Peri-pubertal maturation after developmental dis-
turbance: a model for psychosis onset in the rat. Neuroscience, 143(2), 
395–405. http://dx.doi.org/10.1016/j.neuroscience.2006.08.004.

Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M., & Koenig, J. I. 
(2007). Prenatal stress generates deficits in rat social behavior: 
reversal by oxytocin. Brain Research, 1156, 152–167. http://dx.doi.
org/10.1016/j.brainres.2007.04.042.

Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neuro-
development. Annual Review of Neuroscience, 25, 409–432. http://
dx.doi.org/10.1146/annurev.neuro.25.112701.142754.

Ma, L., Liu, Y., Ky, B., Shughrue, P. J., Austin, C. P., & Morris, J. A. 
(2002). Cloning and characterization of Disc1, the mouse ortholog 
of DISC1 (Disrupted-in-Schizophrenia 1). Genomics, 80(6), 662–672. 
http://dx.doi.org/10.1006/geno.2002.7012.

Marcotte, E. R., Pearson, D. M., & Srivastava, L. K. (2001). Animal mod-
els of schizophrenia: a critical review. Journal of Psychiatry and Clini-
cal Neuroscience, 26(5), 395–410.

Markou, A., & Koob, G. F. (1992). Construct validity of a self-stimu-
lation threshold paradigm: effects of reward and performance 
manipulations. Physiology & Behavior, 51(1), 111–119.

Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, 
J. M., et al. (2013). Epigenetic modifications of GABAergic interneu-
rons are associated with the schizophrenia-like phenotype induced 
by prenatal stress in mice. Neuropharmacology, 68, 184–194. http://
dx.doi.org/10.1016/j.neuropharm.2012.04.013.

McArthur, R., & Borsini, F. (2006). Animal models of depression in drug 
discovery: a historical perspective. Pharmacology, Biochemistry, and 
Behavior, 84(3), 436–452. http://dx.doi.org/10.1016/j.pbb.2006.06.005.

Mei, L., & Xiong, W. (2008). Neuregulin 1 in neural development, syn-
aptic plasticity and schizophrenia. Nature Reviews Neuroscience, 9(6), 
437–452. http://dx.doi.org/10.1038/nrn2392.Neuregulin.

Meng, Z. H., Feldpaush, D. L., & Merchant, K. M. (1998). Clozapine 
and haloperidol block the induction of behavioral sensitization 
to amphetamine and associated genomic responses in rats. Brain 
Research. Molecular Brain Research, 61(1–2), 39–50.

Meyer, U., & Feldon, J. (2010). Epidemiology-driven neurodevelop-
mental animal models of schizophrenia. Progress in Neurobiology, 
90(3), 285–326. http://dx.doi.org/10.1016/j.pneurobio.2009.10.018.

Mineur, Y. S., Prasol, D. J., Belzung, C., & Crusio, W. E. (2003). Agonistic 
behavior and unpredictable chronic mild stress in mice. Behavior 
Genetics, 33(5), 513–519.

Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P., & Haefely, W. E. (1992). 
Antidepressant treatment prevents chronic unpredictable mild stress-
induced anhedonia as assessed by ventral tegmentum self-stimula-
tion behavior in rats. European Neuropsychopharmacology, 2, 43–49.

Morrissette, D. A., & Stahl, S. M. (2011). Affective symptoms in schizo-
phrenia. Drug Discovery Today: Therapeutic Strategies, 8(1–2), 3–9. 
http://dx.doi.org/10.1016/j.ddstr.2011.10.005.

Mouri, A., Nagai, T., Ibi, D., & Yamada, K. (2013). Animal models of 
schizophrenia for molecular and pharmacological intervention and 
potential candidate molecules. Neurobiology of Disease, 53, 61–74. 
http://dx.doi.org/10.1016/j.nbd.2012.10.025.

Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., et al. 
(2004). Automated apparatus for quantitation of social approach 
behaviors in mice. Genes, Brain, and Behavior, 3(5), 303–314. http://
dx.doi.org/10.1111/j.1601-183X.2004.00071.x.

Nagai, T., Ibi, D., & Yamada, K. (2011). Animal model for schizophre-
nia that reflects gene-environment interactions. Biological & Phar-
maceutical Bulletin, 34(9), 1364–1368. http://dx.doi.org/10.1016/j.
bbr.2009.04.010.

Nagai, T., Noda, Y., Une, T., Furukawa, K., Furukawa, H., Kan, Q. M., &  
Nabeshima, T. (2003). Effect of AD-5423 on animal models of  
schizophrenia: phencyclidine-induced behavioral changes in mice.  
Neuroreport, 14(2), 269–272. http://dx.doi.org/10.1097/00001756- 
200302100-00023.

Nakatani-Pawlak, A., Yamaguchi, K., Tatsumi, Y., Mizoguchi, H., 
& Yoneda, Y. (2009). Neonatal phencyclidine treatment in mice 
induces behavioral, histological and neurochemical abnormalities 
in adulthood. Biological & Pharmaceutical Bulletin, 32(9), 1576–1583.

Neill, J. C., Barnes, S., Cook, S., Grayson, B., Idris, N. F., McLean, S. L., 
et al. (2010). Animal models of cognitive dysfunction and nega-
tive symptoms of schizophrenia: focus on NMDA receptor antago-
nism. Pharmacology & Therapeutics, 128(3), 419–432. http://dx.doi.
org/10.1016/j.pharmthera.2010.07.004.

Nielsen, C. K., Arnt, J., & Sánchez, C. (2000). Intracranial self-stimu-
lation and sucrose intake differ as hedonic measures following 
chronic mild stress: interstrain and interindividual differences. 
Behavioural Brain Research, 107(1–2), 21–33.

Noda, Y., Kamei, H., Mamiya, T., Furukawa, H., & Nabeshima, 
T. (2000). Repeated phencyclidine treatment induces negative 
symptom-like behavior in forced swimming test in mice: imbal-
ance of prefrontal serotonergic and dopaminergic functions. Neu-
ropsychopharmacology, 23(4), 375–387. http://dx.doi.org/10.1016/
S0893-133X(00)00138-X.

Noda, Y., Yamada, K., Furukawa, H., & Nabeshima, T. (1995). Enhance-
ment of immobility in a forced swimming test by subacute or 
repeated treatment with phencyclidine: a new model of schizophre-
nia. British Journal of Pharmacology, 116(5), 2531–2537.

Nollet, M., Gaillard, P., Tanti, A., Girault, V., Belzung, C., & Leman, 
S. (2012). Neurogenesis-independent antidepressant-like effects on 
behavior and stress axis response of a dual orexin receptor antago-
nist in a rodent model of depression. Neuropsychopharmacology, 
37(10), 2210–2221. http://dx.doi.org/10.1038/npp.2012.70.

Nollet, M., Le Guisquet, A.-M., & Belzung, C. (June 2013). Models 
of depression: unpredictable chronic mild stress in mice. Current 
Protocols in Pharmacology. http://dx.doi.org/10.1002/0471141755.
ph0565s61 Chapter 5: Unit 5.65.

Orsetti, M., Canonico, P. L., Dellarole, A., Colella, L., Di Brisco, F., & 
Ghi, P. (2007). Quetiapine prevents anhedonia induced by acute or 
chronic stress. Neuropsychopharmacology, 32(8), 1783–1790. http://
dx.doi.org/10.1038/sj.npp.1301291.

O’Tuathaigh, C. M. P., Babovic, D., O’Sullivan, G. J., Clifford, J. J., 
Tighe, O., Croke, D. T., et al. (2007). Phenotypic characterization 
of spatial cognition and social behavior in mice with “knockout” 
of the schizophrenia risk gene neuregulin 1. Neuroscience, 147(1), 
18–27. http://dx.doi.org/10.1016/j.neuroscience.2007.03.051.

O’Tuathaigh, C. M. P., Kirby, B. P., Moran, P. M., & Waddington, J. L. 
(2010). Mutant mouse models: genotype-phenotype relationships 
to negative symptoms in schizophrenia. Schizophrenia Bulletin, 
36(2), 271–288. http://dx.doi.org/10.1093/schbul/sbp125.

O’Tuathaigh, C. M. P., O’Connor, A.-M., O’Sullivan, G. J., Lai, D., 
Harvey, R., Croke, D. T., et al. (2008). Disruption to social dyadic 
interactions but not emotional/anxiety-related behaviour in 
mice with heterozygous “knockout” of the schizophrenia risk 
gene neuregulin-1. Progress in Neuro-Psychopharmacology & Bio-
logical Psychiatry, 32(2), 462–466. http://dx.doi.org/10.1016/j.
pnpbp.2007.09.018.

Pascual, R., Zamora-León, S. P., & Valero-Cabré, A. (2006). Effects of 
postweaning social isolation and re-socialization on the expression 
of vasoactive intestinal peptide (VIP) and dendritic development 
in the medial prefrontal cortex of the rat. Acta Neurobiologiae Experi-
mentalis, 66(1), 7–14.

Pedersen, C. S., Sørensen, D. B., Parachikova, A. I., & Plath, N. (2014). 
PCP-induced deficits in murine nest building activity: employment 
of an ethological rodent behavior to mimic negative-like symptoms 
of schizophrenia. Behavioural Brain Research, 273C, 63–72. http://
dx.doi.org/10.1016/j.bbr.2014.07.023.

Pietersen, C. Y., Bosker, F. J., Doorduin, J., Jongsma, M. E., Postema, F., 
Haas, J. V., et al. (2007). An animal model of emotional blunting in 
schizophrenia. PLoS One, 2(12), e1360. http://dx.doi.org/10.1371/
journal.pone.0001360.

http://dx.doi.org/10.1016/j.neuroscience.2006.08.004
http://dx.doi.org/10.1016/j.brainres.2007.04.042
http://dx.doi.org/10.1016/j.brainres.2007.04.042
http://dx.doi.org/10.1146/annurev.neuro.25.112701.142754
http://dx.doi.org/10.1146/annurev.neuro.25.112701.142754
http://dx.doi.org/10.1006/geno.2002.7012
http://dx.doi.org/10.1016/j.neuropharm.2012.04.013
http://dx.doi.org/10.1016/j.neuropharm.2012.04.013
http://dx.doi.org/10.1016/j.pbb.2006.06.005
http://dx.doi.org/10.1038/nrn2392.Neuregulin
http://dx.doi.org/10.1016/j.pneurobio.2009.10.018
http://dx.doi.org/10.1016/j.ddstr.2011.10.005
http://dx.doi.org/10.1016/j.nbd.2012.10.025
http://dx.doi.org/10.1111/j.1601-183X.2004.00071.x
http://dx.doi.org/10.1111/j.1601-183X.2004.00071.x
http://dx.doi.org/10.1016/j.bbr.2009.04.010
http://dx.doi.org/10.1016/j.bbr.2009.04.010
http://dx.doi.org/10.1097/00001756-
200302100-00023
http://dx.doi.org/10.1097/00001756-
200302100-00023
http://dx.doi.org/10.1016/j.pharmthera.2010.07.004
http://dx.doi.org/10.1016/j.pharmthera.2010.07.004
http://dx.doi.org/10.1016/S0893-133X(00)00138-X
http://dx.doi.org/10.1016/S0893-133X(00)00138-X
http://dx.doi.org/10.1038/npp.2012.70
http://dx.doi.org/10.1002/0471141755.ph0565s61
http://dx.doi.org/10.1002/0471141755.ph0565s61
http://dx.doi.org/10.1038/sj.npp.1301291
http://dx.doi.org/10.1038/sj.npp.1301291
http://dx.doi.org/10.1016/j.neuroscience.2007.03.051
http://dx.doi.org/10.1093/schbul/sbp125
http://dx.doi.org/10.1016/j.pnpbp.2007.09.018
http://dx.doi.org/10.1016/j.pnpbp.2007.09.018
http://dx.doi.org/10.1016/j.bbr.2014.07.023
http://dx.doi.org/10.1016/j.bbr.2014.07.023
http://dx.doi.org/10.1371/journal.pone.0001360
http://dx.doi.org/10.1371/journal.pone.0001360


7. MODELING AFFECTIVE SYMPTOMS OF SCHIZOPHRENIA102

I. FROM CLINICAL DIMENSIONS TO ANIMAL MODELS

Pletnikov, M. V., Ayhan, Y., Nikolskaia, O., Xu, Y., Ovanesov, M. V., 
Huang, H., et al. (2008). Inducible expression of mutant human 
DISC1 in mice is associated with brain and behavioral abnormalities 
reminiscent of schizophrenia. Molecular Psychiatry, 13(2), 173–186. 
http://dx.doi.org/10.1038/sj.mp.4002079 115.

Porkess, M. (2008). The impact of social isolation on rat behaviour.
Porsolt, R. D., Anton, G., Blavet, N., & Jalfre, M. (1978). Behavioural 

despair in rats: a new model sensitive to antidepressant treatments. 
European Journal of Pharmacology, 47, 379–391.

Pothion, S., Bizot, J.-C., Trovero, F., & Belzung, C. (2004). Strain differ-
ences in sucrose preference and in the consequences of unpredict-
able chronic mild stress. Behavioural Brain Research, 155(1), 135–146. 
http://dx.doi.org/10.1016/j.bbr.2004.04.008.

Pratt, J., Winchester, C., Dawson, N., & Morris, B. (2012). Advancing 
schizophrenia drug discovery: optimizing rodent models to bridge 
the translational gap. Nature Reviews Drug Discovery, 11(7), 560–579. 
http://dx.doi.org/10.1038/nrd3649.

Rajagopal, L. (2011). Neonatal phencyclidine (PCP) induced deficits in 
rats: A behavioural investigation of relevance to schizophrenia. School of 
Pharmacy.

Roy, K., Murtie, J. C., El-Khodor, B. F., Edgar, N., Sardi, S. P., Hooks,  
B. M., et al. (2007). Loss of erbB signaling in oligodendrocytes alters 
myelin and dopaminergic function, a potential mechanism for 
neuropsychiatric disorders. Proceedings of the National Academy of 
Sciences of the United States of America, 104(19), 8131–8136. http://
dx.doi.org/10.1073/pnas.0702157104.

Sams-Dodd, F. (1995a). Automation of the social interaction test by a 
video-tracking system: behavioural effects of repeated phencycli-
dine treatment. Journal of Neuroscience Methods, 59(2), 157–167.

Sams-Dodd, F. (1995b). Distinct effects of d-amphetamine and phen-
cyclidine on the social behaviour of rats. Behavioural Pharmacology. 
http://dx.doi.org/10.1097/00008877-199501000-00009.

Sams-Dodd, F. (1998). Effects of continuous d-amphetamine and phen-
cyclidine administration on social behaviour, stereotyped behav-
iour, and locomotor activity in rats. Neuropsychopharmacology, 19(1), 
18–25.

Sams-Dodd, F., Lipska, B. K., & Weinberger, D. R. (1997). Neonatal 
lesions of the rat ventral hippocampus result in hyperlocomotion 
and deficits in social behaviour in adulthood. Psychopharmacology, 
132(3), 303–310.

Sankoorikal, G. M. V., Kaercher, K. A., Boon, C. J., Lee, J. K., & Brodkin,  
E. S. (2006). A mouse model system for genetic analysis of  
sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biological  
Psychiatry, 59(5), 415–423. http://dx.doi.org/10.1016/j.biopsych. 
2005.07.026.

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., 
et al. (2003). Requirement of hippocampal neurogenesis for the 
behavioral effects of antidepressants. Science, 301, 805–809.

Schmelzeis, M. C., & Mittleman, G. (1996). The hippocampus and 
reward: effects of hippocampal lesions on progressive-ratio 
responding. Behavioral Neuroscience, 110, 1049–1066. http://dx.doi.
org/10.1037/0735-7044.110.5.1049.

Smith, S. E. P., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). 
Maternal immune activation alters fetal brain development through 
interleukin-6. Journal of Neuroscience, 27(40), 10695–10702. http://
dx.doi.org/10.1523/JNEUROSCI.2178-07.2007.

Spielewoy, C., & Markou, A. (2003). Withdrawal from chronic phency-
clidine treatment induces long-lasting depression in brain reward 
function. Neuropsychopharmacology, 28(6), 1106–1116. http://dx.doi.
org/10.1038/sj.npp.1300124.

Stefansson, H., & Petursson, H. (2002). Neuregulin 1 and susceptibility 
to schizophrenia. American Journal of Human Genetics, 877–892.

Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspen-
sion test: a new method for screening antidepressants in mice. Psy-
chopharmacology (Berl), 85, 367–370.

Strekalova, T., Spanagel, R., Bartsch, D., Henn, F. A., & Gass, P. (2004). 
Stress-induced anhedonia in mice is associated with deficits in 
forced swimming and exploration. Neuropsychopharmacology, 
29(11), 2007–2017. http://dx.doi.org/10.1038/sj.npp.1300532.

Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as 
a complex trait: evidence from a meta-analysis of twin studies. 
Archives of General Psychiatry, 60(12), 1187–1192. http://dx.doi.
org/10.1001/archpsyc.60.12.1187.

Surget, A., Tanti, A., Leonardo, E. D., Laugeray, A., Rainer, Q., Touma, 
C., et al. (2011). Antidepressants recruit new neurons to improve 
stress response regulation. Molecular Psychiatry, 16(12), 1177–1188. 
http://dx.doi.org/10.1038/mp.2011.48.

Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in 
depression: lessons from translational neuroscience. Neurosci-
ence and Biobehavioral Reviews, 35(3), 537–555. http://dx.doi.
org/10.1016/j.neubiorev.2010.06.006.

Turgeon, S. M., & Hulick, V. C. (2007). Differential effects of acute and 
subchronic clozapine and haloperidol on phencyclidine-induced 
decreases in voluntary sucrose consumption in rats. Pharmacol-
ogy, Biochemistry, and Behavior, 86(3), 524–530. http://dx.doi.
org/10.1016/j.pbb.2007.01.014.

Vardigan, J. D., Huszar, S. L., McNaughton, C. H., Hutson, P. H., & 
Uslaner, J. M. (2010). MK-801 produces a deficit in sucrose prefer-
ence that is reversed by clozapine, D-serine, and the metabotropic 
glutamate 5 receptor positive allosteric modulator CDPPB: rel-
evance to negative symptoms associated with schizophrenia? Phar-
macology, Biochemistry, and Behavior, 95(2), 223–229. http://dx.doi.
org/10.1016/j.pbb.2010.01.010.

Wang, D., Noda, Y., Zhou, Y., Nitta, A., Furukawa, H., & Nabeshima, 
T. (2007). Synergistic effect of galantamine with risperidone on 
impairment of social interaction in phencyclidine-treated mice as 
a schizophrenic animal model. Neuropharmacology, 52(4), 1179–1187. 
http://dx.doi.org/10.1016/j.neuropharm.2006.12.007.

Ward, R. D., Simpson, E. H., Richards, V. L., Deo, G., Taylor, K., 
Glendinning, J. I., et al. (2012). Dissociation of hedonic reaction to 
reward and incentive motivation in an animal model of the nega-
tive symptoms of schizophrenia. Neuropsychopharmacology, 37(7), 
1699–1707. http://dx.doi.org/10.1038/npp.2012.15.

Wauquier, A. (1979). International review of neurobiology Volume 21. 
International review of neurobiology (Vol. 21). Elsevier. http://dx.doi.
org/10.1016/S0074-7742(08)60643-1 pp. 335–403.

Wiley, J., & Compton, A. (2004). Progressive ratio performance fol-
lowing challenge with antipsychotics, amphetamine, or NMDA 
antagonists in adult rats treated perinatally with phencyclidine. 
Psychopharmacology, 177, 170–177. http://dx.doi.org/10.1007/
s00213-004-1936-1.Progressive.

Willner, P. (1997). Validity, reliability and utility of the chronic mild 
stress model of depression: a 10-year review and evaluation. Psy-
chopharmacology, 134(4), 319–329.

Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. 
(1987). Reduction of sucrose preference by chronic unpredict-
able mild stress, and its restoration by a tricyclic antidepressant. 
Psychopharmacology, 93(3), 358–364. http://dx.doi.org/10.1007/
BF00187257.

http://dx.doi.org/10.1038/sj.mp.4002079
http://dx.doi.org/10.1016/j.bbr.2004.04.008
http://dx.doi.org/10.1038/nrd3649
http://dx.doi.org/10.1073/pnas.0702157104
http://dx.doi.org/10.1073/pnas.0702157104
http://dx.doi.org/10.1097/00008877-199501000-00009
http://dx.doi.org/10.1016/j.biopsych.
2005.07.026
http://dx.doi.org/10.1016/j.biopsych.
2005.07.026
http://dx.doi.org/10.1037/0735-7044.110.5.1049
http://dx.doi.org/10.1037/0735-7044.110.5.1049
http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007
http://dx.doi.org/10.1038/sj.npp.1300124
http://dx.doi.org/10.1038/sj.npp.1300124
http://dx.doi.org/10.1038/sj.npp.1300532
http://dx.doi.org/0.1001/archpsyc.60.12.1187
http://dx.doi.org/0.1001/archpsyc.60.12.1187
http://dx.doi.org/10.1038/mp.2011.48
http://dx.doi.org/10.1016/j.neubiorev.2010.06.006
http://dx.doi.org/10.1016/j.neubiorev.2010.06.006
http://dx.doi.org/10.1016/j.pbb.2007.01.014
http://dx.doi.org/10.1016/j.pbb.2007.01.014
http://dx.doi.org/10.1016/j.pbb.2010.01.010
http://dx.doi.org/10.1016/j.pbb.2010.01.010
http://dx.doi.org/10.1016/j.neuropharm.2006.12.007
http://dx.doi.org/10.1038/npp.2012.15
http://dx.doi.org/10.1016/S0074-7742(08)60643-1
http://dx.doi.org/10.1016/S0074-7742(08)60643-1
http://dx.doi.org/10.1007/s00213-004-1936-1.Progressive
http://dx.doi.org/10.1007/s00213-004-1936-1.Progressive
http://dx.doi.org/10.1007/BF00187257
http://dx.doi.org/10.1007/BF00187257


P A R T  II

NEUROBIOLOGY OF PSYCHOTIC 
DISORDERS



     

This page intentionally left blank



Non-Genetic Models



     

This page intentionally left blank



Handbook of Behavioral Neuroscience
http://dx.doi.org/10.1016/B978-0-12-800981-9.00008-0 © 2016 Elsevier B.V. All rights reserved.

107

Schizophrenia is a complex, uniquely human dis-
order. Nonetheless, significant insight into the patho-
physiology of schizophrenia has been obtained by 
studying systems that have been shown in imaging 
and postmortem studies to play a significant role in 
this disorder. Among these are the dopamine system, 
the hippocampus, and the prefrontal cortex (Bogerts, 
1997; Laurelle, Frankle, Narendran, Kegeles, & Abi-
Dargham, 2005; Tan, Callicott, & Weinberger, 2007). 
However, to best understand the disease process, it is 
most rigorous to study these systems and their altera-
tions in an animal model of this disease. Although it 
is clear that a precise model that replicates all features 
of the human condition is not likely to be produced, 
studies based on disruption of development, in which 
an insult occurring early in life sets into motion a 
series of changes in the brain that ultimately lead to 
pathology in these systems, have been a promising 
avenue of investigation. In this chapter, we review the 
evidence for schizophrenia as a developmental disor-
der, discuss one of the more powerful models that has 
been used by us and others to investigate the devel-
opment of pathophysiological changes that mimic 
many aspects of schizophrenia in humans, and build 
upon this model to predict what therapeutic avenues 
could be employed to address the treatment and ulti-
mately prevention of schizophrenia in susceptible 
individuals.

SCHIZOPHRENIA AS A 
NEURODEVELOPMENTAL DISORDER

There are multiple systems that appear pathologi-
cally altered in the postmortem brain of schizophrenia 
patients. However, in contrast to major neurodegen-
erative diseases such as Parkinson’s and Alzheimer’s 
disease in which massive degeneration and abnormal 
deposits are qualitatively apparent, the brain altera-
tions observed in schizophrenia are more subtle and 
require quantitative analyses (Bogerts, 1993). Given 
the obvious limitations of postmortem analysis, it 
is difficult to pinpoint when these neuroanatomical 
abnormalities arise, but multiple lines of evidence 
point to an early neurodevelopmental, rather than 
a late neurodegenerative, origin of the disease. For 
instance, reactive gliosis, a hallmark sign of degen-
eration in the postmortem brain, is essentially absent 
from schizophrenia postmortem tissue (Arnold, 1999). 
The first psychotic episode is typically during young 
adulthood (van der Welf et al., 2014), and furthermore, 
the cognitive symptoms of schizophrenia can be iden-
tified retrospectively to exhibit an onset in childhood 
(Ambelas, 1992; Fuller et al., 2002). The disease does 
not progress precipitously after its onset, nor in pro-
portion to neuron loss as in Parkinson’s or Alzheim-
er’s disease; instead, the disease is said to have a 
“critical period” in which positive symptoms manifest 
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but stabilize afterward (Crumlish et al., 2009). Schizo-
phrenia is also associated with gestational abnormali-
ties. Gyri/sulci formations that typically develop in 
the later trimesters are disrupted in schizophrenia (for 
review, Bogerts, 1993). Altered placement of neurons 
in schizophrenia postmortem tissue has been reported 
and interpreted as disrupted migration in cortical and 
limbic areas (Akbarian, Bunny, et al., 1993; Akbarian, 
Viñuela, et al., 1993). Other developmental abnormali-
ties, such as low-set ears, have been reported (Lane 
et al., 1997). Primary risk factors in individuals who 
ultimately develop schizophrenia include maternal 
complications during pregnancy (such as malnutri-
tion, viral infection, or diabetes) or complications 
during delivery—such as fetal distress or premature 
membrane rupture (Boog, 2004; Cannon, Jones, & 
Murray, 2002; O’Callaghan et al., 1992). Finally, several 
schizophrenia-associated genes play critical roles in 
normal neurodevelopment; for instance, neuregulin 1  
and its receptor tyrosine kinase ErbB4, Disrupted-in-
Schizophrenia 1, and Nitric Oxide Synthase 1 Adaptor 
Protein play critical roles in the radial and/or tangen-
tial migration of cortical neurons (Carrel et al., 2014; 
Kamiya et al., 2005; Mei & Xiong, 2008; Steinecke, 
Gampe, Valkova, Kaether, & Boltz, 2012).

Altogether, a multifaceted approach in the study of 
schizophrenia has revealed a multitude of risk factors 
in the genetic as well as in utero and early life domains. 
Although the schizophrenic population is certainly het-
erogeneous with respect to risk factors, these varying 
risk factors may converge by altering similar neuroana-
tomical substrates, thereby similarly disrupting brain 
processes at the systems level. During midgestation, 
limbic brain regions implicated in schizophrenia are 
rapidly growing and are especially vulnerable to per-
turbation by risk factors. This is clearly demonstrated 
in the methylazoxymethanol (MAM)-17 rodent model 
described in this chapter, in which a single prenatal 
disruption leads to a constellation of symptoms con-
sistent with that observed in schizophrenia patients. 
In this model, embryonic neurogenesis is transiently 
disrupted on gestational day (GD) 17 via acute admin-
istration of the mitotoxin MAM, which leads to aber-
rant methylation of DNA. We should emphasize to 
those unfamiliar with this model that accidental MAM 
exposure is exceedingly rare and therefore is not an 
environmental factor for the emergence of schizophre-
nia. Rather, it appears that by producing cytoarchitec-
tural abnormalities in areas such as the hippocampus, 
MAM-17 treatment engenders schizophrenia-like circuit  
abnormalities that ultimately give rise to hyperdopami-
nergia and behavioral deficits. Thus, this model is ideal 
for exploring the link between altered embryonic neu-
rogenesis and the emergence of a schizophrenia-like 
phenotype in the adult.

CELLULAR MECHANISMS OF PRENATAL 
MAM EXPOSURE

Interest in the compound methylazoxymethanol 
arose in the 1960s as a part of a study of Guam neurode-
generative disease (Matusomo & Strong, 1963). Part of 
the indigenous diet held suspect were two toxins found 
in cycad seed flour: BMAA and cycasin (Brimer, 2011; 
Spencer et al., 1987). When consumed, cycasin (meth-
ylazoxymethanol β-d-glucoside) is hydrolyzed into two 
components: glucose and the aglycone, MAM (Brimer, 
2011). Whether Guam neurodegenerative disease is 
truly caused by cycasin exposure remains controversial  
(Cox & Sacks, 2002), but the inquiry lead to the discovery 
and isolation of MAM, the investigation of its cellular 
effects in different tissues, and, finally, its use as an anti-
proliferative agent in studying the neurodevelopment of 
laboratory animals.

Like X-irradiation, MAM administration interferes 
with neurogenesis. A decrease in the number of hip-
pocampal neurons incorporating bromodeoxyuridine 
(BrdU), indicative of DNA replication during prolifera-
tion, is observed when BrdU and MAM are coadminis-
tered on E16 or E17 (Hoareau, Hazane, Le Pen, & Krebs, 
2006); even beyond embryogenesis, in the case of adult 
neurogenesis, MAM treatment dramatically decreases 
BrdU labeling in the hippocampus (Shors et al., 2001). 
Although the effects of X-irradiation and MAM are com-
parable in the brain, MAM has the distinct advantage of 
preferentially interfering with neurogenesis while spar-
ing peripheral organs and causing few bodily malfor-
mations (Rodier, 1986). In vivo administration of MAM  
induces apoptosis of progenitor cells; for example,  
administering MAM during the rapid proliferation of 
cerebellar granule cells within the external granular layer 
results in apoptosis in this proliferative zone, as inferred 
by ribosomal degradation and ultrastructural analy-
sis (Lafarga et al., 1997). The selective vulnerability of 
actively dividing neurons to MAM compared with non-
dividing neurons and dividing astrocytes has also been 
observed in vitro (Cattaneo, Reinach, Caputi, Cattabeni, 
& Di Luca, 1995). Nonetheless, cell degeneration is not 
restricted to proliferative zones. Signs of degeneration 
such as chromatin aggregation have been found in cortex 
24 h after MAM administration (Bassanini et al., 2007).

The molecular action underlying MAM’s antiprolif-
erative effects is DNA guanine methylation at the N7  
and O6 positions, and both types of adducts contribute 
to the neurotoxic effects of MAM (for a review, see Kisby, 
Kabel, Hugon, & Spencer, 1999). The formation of the 
N7- and O6-meG adducts by MAM can be reversed by 
separate repair mechanisms, involving the enzymes apu-
rinic/apyrimidinic endonuclease and O6-methylguanine 
methyltransferase, such that expression levels of these 
enzymes can dramatically affect repair processes and the 
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longevity of DNA adducts (Gelman et al., 1994; Kisby 
et al., 2009; Shiraishi, Sakumi, & Sekiguchi, 2000; for a 
review, see Fu, Calvo, & Samson, 2012). Thus, the sur-
prising paucity of O6-methylguanine methyltransferase 
activity in the brain compared with other organs (Kaina, 
Christmann, Naumann, & Roos, 2007) can explain, at 
least in part, why the brain is most susceptible to DNA 
alkylating agents like MAM and why the reversal of O6-
meG adducts is especially inefficient in nervous tissue 
compared with other organs (Kleihues & Bucheler, 1977).

It is thought that the accumulation of uncorrected O6-
meG adducts makes subsequent cell death more likely; 
the finding that graded doses (0, 14, 22, and 30 mg/kg) 
of MAM delivered on GD15 produce graded effects on 
brain size is consistent with this mechanism (Damb-
ska, Haddad, Kozlowski, Lee, & Shek, 1982). Regarding 
MAM’s antiproliferative effects, dividing cells undergo-
ing DNA replication in S-phase are well positioned to 
undergo apoptosis when sufficiently burdened by DNA 
adducts. The mechanistic details underlying this phe-
nomenon are thoroughly described elsewhere (Fu et al., 
2012; Noonan, Shah, Yaffe, Lauffenburger, & Samson, 
2012), although we summarize briefly here. In a cell 
undergoing DNA replication in S-phase, uncorrected O6-
meG adducts change the affinity of the associated gua-
nine, resulting in a consistent nucleotide mismatch with 
thymine; mismatch repair mechanisms deployed dur-
ing S-phase cannot remedy the mismatch in the usual 
way since the O6-meG adducts bind thymine strictly. 
Ultimately, mismatch repair mechanisms leave nicks 
and single-strand breaks that will cause problems for 
the replication machinery and initiate apoptotic signal-
ing should another S-phase be encountered. In this way, 
cell cycle plays a determinant role in MAM’s neurotoxic 
effects. To summarize the effects of MAM, Rodier (1986) 
explains that although MAM is not an antimitotic agent 
in a strict sense (e.g., it does not interfere with mitotic 
spindle formation), dividing neural precursors has an 
enhanced vulnerability to MAM and die in its presence 
rendering MAM a selective antiproliferative agent.

The notion that a threshold level of DNA damage 
needs to be realized before apoptotic pathways are 
commenced implies the existence of neurons that sur-
vive MAM exposure but remain MAM-compromised. 
Consistent with this, although an immediate degen-
eration event is apparent in cortex 2 days after admin-
istration (Bassanini et al., 2007), it has been shown that 
N7-meG adducts remain detectable in cerebral tissue in 
the 30-day-old rat after MAM prenatal administration 
(Kisby et al., 1999); furthermore, the O6-meG adducts 
caused by N-nitrosomethylurea, an alkylating agent very 
similar to MAM, are detectable in brain tissue for at least 
180 days following the acute injection and, by extrapola-
tion, the authors estimated that the return to undetect-
able levels would require one year (Kleihues & Bucheler, 

1977). Delivering MAM at GD15, Dambska et al. (1982) 
observed periventricular nodular heterotopias—abnor-
mal clusters of neurons that failed to migrate from the 
periventricular region. They also reported other abnor-
malities as well such as aberrant myelinated bundles, 
hippocampal ectopias—in which pyramidal neurons are 
found in nonpyramidal layers, decreases in spine den-
sity, and altered morphology. Because direct application 
of MAM to neurons in vitro causes neurites and axons to 
retract permanently (Hoffman, Boyne, Levitt, & Fischer, 
1996)—that is, the effect outlasts MAM exposure—the 
neurons with abnormal morphologies and placements 
could be MAM-compromised.

MAM exposure has additional subtle yet widespread 
effects on the integrity of the neural tissue. For exam-
ple, Bassanini et al. (2007) report subdural enlargement 
and cortical edema that subsided 4 days after injection 
at GD15, suggesting that inflammatory processes may 
contribute to the MAM mechanism. In the same study, 
MAM exposure was found to alter vasculogenesis and 
angiogenesis, resulting in vessels that were less dense, 
abnormally branched, and contacted by unusual clus-
ters of neurons. The authors demonstrated that in vitro, 
MAM inhibits VEGF signaling and angiogenesis directly. 
These observations imply a sparse exchange of oxy-
gen, nutrients, and metabolites in the cortex as well as  
vessel-associated growth cues. Potentially contributing 
to inflammatory responses, MAM administration on 
PD5 activates cerebellar Bergmann glial cell phagocyto-
sis of injured neuron precursors (Lafarga, Andres, Calle, 
& Berciano, 1998); furthermore, the cortical density of 
microglia is increased until adulthood following MAM 
treatment at GD17 (Ciaroni, Buffi, Ambrogini, Cecchini, 
& Del Grande, 1996). Thus, apart from its antiprolifera-
tive effects, there are several known avenues by which 
MAM may alter the milieu of expanding structures: 
impairing blood flow and the associated nutrient–waste 
exchange, transient edema, and increases in glial density 
and activity.

EFFECTS OF PRENATAL MAM EXPOSURE 
ON CORTICAL DEVELOPMENT

Because a slight change in the time point of MAM 
administration (e.g., E14 vs E15) can determine, with 
high reliability, what structures are affected (e.g., dis-
ruption of particular cortical layers), MAM’s neurotoxic 
effects are assumed to occur within a short time frame 
(Cattabeni & Di Luca, 1997). A recent study reported a  
longer-than-expected MAM half-life of 32 h in the fetal 
brain following an in utero injection of MAM acetate 
(Bassanini et al., 2007); however, it is unclear how 
low MAM concentrations must drop before its anti-
proliferative actions cease; in fact, MAM has a steep 
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dose–response curve: at 12 mg/kg MAM has no effect, 
whereas it is lethal at 25 mg/kg (Rodier, 1986). Regard-
less, MAM’s temporal precision is sufficient in pro-
ducing qualitatively different neuroanatomical and 
behavioral effects at different stages of embryogenesis, 
making it a valuable tool in the studying the timetable of 
brain development.

MAM exerts its maximal effects on cerebral cortex on 
GD14 and 15, when neurogenesis of cortical neurons is 
greatest; this results in dramatic microcephaly and a dra-
matic imbalance between the major neurotransmitters 
(glutamate and gamma-aminobutyric acid (GABA)) and 
neuromodulators (dopamine, norepinephrine, serotonin; 
Johnston, Grzanna, & Coyle, 1979; Jonsson & Hallman, 
1981; Rodier, 1986). Venturing to generate a brain with 
more moderate hyperdopaminergia and fewer global 
abnormalities, Moore et al. (2006) compared the effects 
of MAM administration (22 mg/kg, intraperitoneal) on 
GD15 and GD17, with the prediction that administra-
tion at the later time point would not disturb peak cor-
ticogenesis occurring at GD 14–15, making reductions 
in brain size less severe. Indeed, MAM-17 treatment 
produced brains with more subtle volume reductions, 
affecting chiefly limbic cortical areas (medial prefrontal 
cortex (mPFC), hippocampus, and parahippocampus) 
and mediodorsal thalamus without affecting senso-
rimotor areas or cerebellum (Moore, Jentsch, Ghajarnia, 
Geyer, & Grace, 2006). The mPFC, nucleus accumbens, 
and hippocampus were approximately 20% less massive 
in MAM-17 rats than controls (Moore et al., 2006), and the 
reductions in hippocampal mass and volume have also 
been reported by others (Chin et al., 2011; Featherstone, 
Rizos, Nobrega, Kapur, & Fletcher, 2007). Thinning of 
cortices was associated with increased cell packing, indi-
cating a loss of neuropil (Moore et al., 2006), although 
unusual dispersion of neurons has been reported for 
entorhinal, perirhinal, and retrosplenial cortices (Goure-
vitch, Rocher, Le Pen, Krebs, & Jay, 2004). Pyramidal 
cells are more diffuse and disorganized (Flagstad et al., 
2004; Gourevitch et al., 2004; Moore et al., 2006). Enlarge-
ment of lateral and third ventricles, a recognized feature 
in schizophrenia patients (Mueser & McGurk, 2004), is 
also reported in MAM rats when a larger dose is admin-
istered on GD17; this larger dose (25 mg/kg) also makes 
the hippocampal-specific ablations qualitatively obvious 
(Chin et al., 2011; Le Pen et al., 2006).

These limbic abnormalities induced by a prena-
tal insult resemble those observed in schizophrenia. 
The human ventromedial temporal lobe (hippocam-
pus, amygdala, and the parahippocampal gyrus) and 
its major cortical target, the heteromodal association 
cortex—including the dorsolateral prefrontal cortex 
(DLPFC)—are abnormal in schizophrenia, and abnor-
malities tend to be greater in the left hemisphere, per-
haps predisposing left-side language centers to aberrant 

activation during auditory hallucinations (Bogerts, 
1997). One of the most robust findings in schizophrenia 
patients is reduced hippocampal volume (∼5%) both in 
magnetic resonance imaging and postmortem studies 
as well as reduced volume of cortical targets of hippo-
campal projections (Bogerts, 1997; Heckers & Konradi, 
2002; Steen, Mull, McClure, Hamer, & Lieberman, 2006); 
smaller neuron size has also been reported (Benes et al., 
1991). A wide array of neurochemical abnormalities has 
been found in postmortem hippocampal tissue; proteins 
important in glutamatergic, GABAergic, and neuro-
modulatory signaling and synapse maintenance have 
all been implicated (Lisman et al., 2008). There is also 
evidence for functional deviations in the hippocam-
pus: the comorbidity of temporal lobe epilepsy with 
schizophrenia has been an important clue in associating  
hippocampal hyperactivity with psychosis (Harrison, 
2004); basal hippocampal blood flow (Tamminga, Stan, & 
Wagner, 2010), and metabolism (Medoff, Holcomb, Lahti, 
& Tamminga, 2001) are elevated in schizophrenia; further-
more, hippocampal Blood Oxygenation Level Dependent 
(BOLD) response is reduced during a variety of cogni-
tive tasks among schizophrenic patients, is not properly 
recruited by saccadic eye movements, and responds dif-
ferentially to drugs like nicotine (Tamminga et al., 2010).

In addition, functional imaging work has brought 
cortical, especially prefrontal, abnormalities to the fore-
front of schizophrenia research. In particular, DLPFC 
dysfunction has been correlated with cognitive symp-
toms and is a predictor of long-term outcome (Winterer 
& Weinberger, 2004). The obvious strength of this tech-
nique, the ability to probe diverse cognitive processes 
in real time, is a double-edged sword because the  
diversity of tasks employed has generated conflict-
ing results. Nonetheless, a pattern is emerging: when 
asked to perform prefrontal-dependent cognitive tasks 
beyond their abilities resulting in poor performance, 
schizophrenia patients fail to recruit prefrontal cortex 
to the same extent as controls; cognitive tasks that are 
difficult but doable for this population tend to activate 
the prefrontal cortex more than healthy controls, sug-
gesting that cognitive processing in the DLPFC is “inef-
ficient” among schizophrenics (Weinberger & Berman, 
1996). Genetic screens and postmortem analyses have 
also implicated prefrontal cortex in schizophrenia. 
For example, there is evidence for reduced dopamine 
neuromodulation in prefrontal cortex, and a deficient 
D1:D2 receptor ratio has been proposed; if D1 recep-
tors do facilitate working memory by enhancing the 
formation of stable, persistently active ensembles, then 
a decreased D1:D2 ratio may contribute to working 
memory impairments (Winterer & Weinberger, 2004); 
this is consistent with hypotheses of prefrontal dopa-
minergic abnormalities that arose from animal studies. 
Atrophy in the DLPFC has also been observed, in terms 
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of soma size, dendritic lengths, spine densities, and ter-
minal marker proteins (Volk & Lewis, 2010).

Although it is clear now that the hippocampus and 
DLPFC are involved in schizophrenia, identifying spe-
cific cell types or microcircuits that drive pathological 
symptoms is an ongoing endeavor. There is increasing 
evidence that interneuron dysfunction drives both pre-
frontal and hippocampal pathology in schizophrenia. A 
decrease in the density of nonpyramidal, but not pyra-
midal, neurons has been found in CA2 (Benes, Kwok, 
Vincent, & Todtenkopf, 1998); Zhang and Reynolds 
(2002) compared the hippocampal densities of parvalbu-
min, calretinin, and calbindin interneurons and found a 
decrease in the parvalbumin populations in schizophre-
nia patients across all subfields. In parallel, magnetic 
resonance imaging studies parsing pyramidal and non-
pyramidal changes found reductions in the volume of 
hippocampal white matter (strata oriens, radiatum, lacu-
nosum-moleculare), but not the pyramidal layer, have 
been shown to drive the total volume reduction (Heckers 
& Konradi, 2002). In neocortex, layer-specific decreases in 
nonpyramidal neurons of the anterior cingulate and pre-
frontal cortex have been reported, but attempts to show 
changes in density of specific interneuron subtypes has 
yielded mixed results (Benes & Berretta, 2001). It has been 
suggested that DLPFC parvalbumin-containing neu-
rons are hypofunctional in schizophrenia because they 
contain lower GAD67 messenger RNA levels (Lewis, 
Hashimoto, & Volk, 2005). Because it is well established 
that parvalbumin interneurons in cortical areas are fast-
spikers that contribute to gamma oscillations (Buszaki & 
Wang, 2012), parvalbumin hypofunction may give rise 
to reductions in evoked gamma oscillations during cog-
nitive tasks (Lewis et al., 2005).

Given that parvalbumin interneurons are impli-
cated in schizophrenia, immunohistochemical analyses 
of MAM-17 brain tissue was performed, revealing a 
decreased density of parvalbumin-positive interneu-
rons in the adult MAM-17 ventral (but not dorsal) hip-
pocampus, mPFC, and anterior cingulate; furthermore, 
the decrease in parvalbumin staining correlated with 
fear-evoked gamma in these regions (Lodge, Behrens, 
& Grace, 2009). Using a larger dose at GD17, Penschuck 
et al. (2006) observed decreased hippocampal staining 
for parvalbumin (but not calretinin or calbindin) in the 
dorsal hippocampus and found no change in mPFC. 
The larger dose may explain discrepancies in dorsal 
hippocampus, but reason for the mPFC discrepancy is 
unclear. Given the activity-dependence of parvalbumin 
expression, these studies do not address whether the 
reduction in parvalbumin staining reflects a change in 
protein expression or a loss of the interneurons that typi-
cally express parvalbumin. Taking advantage of the fact 
that parvalbumin-containing interneurons also express 
substance P receptors constitutively, Gill and Grace 

(2014) determined that there were fewer of the substance 
P-expressing cell type in the ventral dentate as early as 
PN27 but there appeared to be a loss of parvalbumin 
content in the dorsal dentate and dorsal/ventral CA3 
fields. Whether this ventral dentate loss is attributed to 
a disruption of parvalbumin-containing interneurons’ 
proliferation or migration to the hippocampus during 
embryogenesis, to necrosis or apoptosis of hippocampal 
parvalbumin interneurons at a later time as suggested 
by the oxidative stress models (Steullet et al., 2010), to 
impaired adult neurogenesis or a combination of these 
events remains unresolved. For instance, although it is 
true that MAM-17 treatment reduces gestational neuro-
genesis (Hoareau et al., 2006), the identity of the affected 
cell types remains unknown. Notably, parvalbumin-
staining increases during adolescence in both the hippo-
campus and prefrontal cortex of normal rats (Caballero, 
Diah, & Tseng, 2013), but this increase in hippocampal 
parvalbumin protein levels across postnatal develop-
ment is blunted in MAM rats, beginning as early as 
PN25 and lasting through adulthood (Chen, Perez, & 
Lodge, 2014).

SUBCORTICAL HYPERDOPAMINERGIA 
IN MAM: BEHAVIORAL CORRELATES, 

DIRECT MEASURES, AND HIPPOCAMPAL 
INVOLVEMENT

Although dopamine abnormalities do not account for 
all symptoms of schizophrenia, there is abundant, long-
standing evidence that subcortical hyperdopaminergia 
is highly correlated with psychosis (Howes & Kapur, 
2009). Psychostimulants that artificially elevate dopami-
nergic signaling cause psychosis in healthy subjects and 
furthermore, acute, low-dose psychostimulant expo-
sure that is insufficient to induce psychotic symptoms 
in healthy subjects has been shown to exacerbate psy-
chosis in schizophrenia patients, suggesting that active 
endogenous dopaminergic activity and psychostimu-
lant-induced dopaminergic activity can have an additive 
effect in schizophrenia (Lieberman, Kinon, & Loebel, 
1990). Studies employing the radiolabeled dopamine 
precursors [11C]-l-dopa and 6-[18F]-dopa to measure 
synthesis and storage of presynaptic dopamine indicate 
greater dopamine synthesis in psychotic schizophrenic 
patients (reviewed in Howes & Kapur, 2009). Schizo-
phrenic patients, compared with healthy controls, also 
show an increase in baseline extracellular dopamine 
as measured by D2 receptor radioligand displacement 
(Abi-Dargham et al., 2000). Using the same method, psy-
chostimulant-induced increases in positive symptoms is 
associated with enhanced mesolimbic dopamine release; 
moreover, response to challenge is correlated with the 
phase of illness, being pronounced at onset and relapse 



8. DYSREGULATION OF DOPAMINE SYSTEMS IN A DEVELOPMENTAL DISRUPTION MODEL OF SCHIZOPHRENIA112

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

phases but not remission (Laruelle & Abi-Dargham, 
1999).

Similarly, a significant feature of MAM-17 rats is their 
heightened locomotor responses to psychostimulants 
such as phencyclidine (Moore et al., 2006;  Penschuck, 
Flagstad, Didriksen, Leist, & Michael-Titus, 2006), 
amphetamine (Flagstad et al., 2004; Moore et al., 2006), 
MK-801 (Le Pen, Jay, & Krebs, 2011), and ketamine 
(Phillips, Cotel, et al., 2012). The enhanced response to 
amphetamine among MAM-17 rats corresponds to an 
increase in amphetamine-evoked dopamine efflux in the 
nucleus accumbens, whereas, in contrast, basal dopa-
mine levels appear either normal or decreased (Flagstad 
et al., 2004).

A reasonable hypothesis stemming from these micro-
dialysis results is that baseline dopamine activity is 
intact or diminished in the MAM-17 model, whereas 
stimulant/stimulus-induced dopamine activity is exag-
gerated. Dopamine neurons do exhibit two distinct 
firing patterns: when not in a hyperpolarized state of 
quiescence, dopamine neurons can fire tonically (single 
spikes at irregular intervals) or phasically (in bursts), 
the latter of which is thought to be a neural correlate 
of salient stimuli (reviewed in Grace, Floresco, Goto, & 
Lodge, 2007). However, the hypothesis that tonic activity 
does not contribute to amphetamine-induced dopamine 
efflux was not supported by further testing. Floresco, 
West, Ash, Moore, and Grace (2003) observed that dis-
tinct afferents to the ventral tegmental area (VTA) could 
be manipulated to independently alter tonic and phasic 
firing. In one manipulation, VTA dopaminergic neu-
rons were transitioned from quiescence to tonic firing 
by inactivating inhibitory ventral pallidal inputs. In a 
second manipulation, dopaminergic neurons were tran-
sitioned from tonic firing to phasic firing by activating 
the pedunculopontine tegmentum. Surprisingly, the first 
manipulation evoked greater dialysate dopamine than 
the second, emphasizing the contribution that tonic fir-
ing can have to the amphetamine response (Floresco 
et al., 2003).

We now know that MAM-17 animals exhibit an 
increase in tonic dopaminergic neuron firing. In the 
normal anesthetized (Grace et al., 2007) or awake (Free-
man, Meltzer, & Bunney, 1985) rat, it is estimated that 
about 50% of dopaminergic neurons are in the hyper-
polarized, quiescent state. In contrast, the number of 
active neurons in the MAM-17 animal is roughly twice 
that of controls, so that nearly all dopaminergic neu-
rons are spontaneously active (Lodge & Grace, 2007). 
This has been directly measured in anesthetized MAM-
17 rats by lowering glass electrodes nine times through 
the VTA in a preset pattern and counting the number of 
active dopamine neurons encountered; in this prepa-
ration, dopamine neurons can be estimated with 90% 
accuracy based on waveform and firing characteristics 

(Ungless & Grace, 2012). By driving GABAergic projec-
tions from the accumbens to the ventral pallidum, the 
ventral hippocampus (vHPC) can inhibit the ventral 
pallidum, thereby disinhibiting dopaminergic neurons 
and increasing tonic firing in the VTA (Floresco, Todd, 
& Grace, 2001; Floresco et al., 2003). Activating vHPC of 
SAL-17 animals increases the number of spontaneously 
active neurons in the VTA but has no effect in MAM-17 
animals, presumably because of a ceiling effect; on the 
other hand, tetrodotoxin (TTX) inactivation of the vHPC 
normalizes the number of spontaneously active neurons 
in the VTA in MAM-17 animals but has no effect in saline 
controls (Lodge & Grace, 2007), suggesting that the 
vHPC contributes substantially more to baseline dopa-
minergic activity in MAM-17 than in saline animals.

What is the function of tonic dopamine neuron fir-
ing? Studies show that when an organism is exposed to 
a behaviorally salient stimulus, there is an activation of 
burst firing of dopamine neurons (Schultz, 1998). This is 
driven by the pedunculopontine tegmentum (PPTg); a 
region known to show activation to conditioned stimuli 
(Pan & Hyland, 2005). However, for a dopamine neuron 
to burst-fire in response to glutamatergic input, it must 
be already depolarized and tonically firing; otherwise, 
there is a magnesium block of the N-methyl-d-aspartate 
receptor (NMDA) channel and no change in dopamine 
neuron state occurs (Grace et al., 2007). Thus, the frac-
tion of dopamine neurons that are in a depolarized, tonic 
firing state before PPTg activation determines the extent 
of burst-firing on the population level upon activation 
(Figure 1). If PPTg-driven burst-firing is the behaviorally 
salient signal of the dopamine system, then the ampli-
tude of this signal depends on the number of dopamine 
neurons engaged in tonic firing, with more firing neu-
rons producing a larger phasic response (Lodge & Grace, 
2006). In the case of the MAM-17 rat and presumably 
the schizophrenia patient, an increase in the number 
of dopamine neurons firing would render the system 
hyperresponsive to stimuli, potentially leading to a state 
of aberrant salience (Kapur, 2003). Indeed, the increase 
in fluorodopa uptake in the striatum of schizophrenia 
patients (reviewed in Howes & Kapur, 2009), which is 
indicative of increased number of active terminals, is 
consistent with the increase in tonic dopamine neuron 
firing observed in the MAM-17 rat.

Excessive hippocampal drive of the dopamine sys-
tem observed in MAM-17 is consistent with data from 
schizophrenia patients. For instance, psychosis is cor-
related with hyperactivity in the limbic hippocampus 
(Medoff et al., 2001; Molina et al., 2003; Schobel et al., 
2009). Among ultra-high-risk individuals, increased pre-
synaptic indices of dopaminergic function correlated 
with alterations in hippocampal glutamate levels (Stone 
et al., 2010). Last, excessive hippocampal drive is con-
sistent with the loss of parvalbumin interneurons in the 
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MAM-17 animals (Lodge et al., 2009; Penschuck et al., 
2006), similar to the postmortem observations in schizo-
phrenia brains (Zhang & Reynolds, 2002).

PRODROMAL HYPERSENSITIVITY TO 
STRESS IN MAM-17

Psychological stress has long believed to be a risk fac-
tor in the onset and development of multiple psychiatric 
disorders, including schizophrenia. Schizophrenia sub-
jects may not necessarily experience more traumatic life 
events but feel life events as being more uncontrollable 

and intolerable (Thompson, Pogue-Geile, & Grace, 2004; 
van Winkel, Stefanis, & Myin-Germeys, 2008). This is 
consistent with reports of elevated basal cortisol and 
impaired dexamethasone suppression among schizo-
phrenic patients (for a review, Walker & Diforio, 1997). 
In accordance with this model, MAM rats are more 
vulnerable to stress exposure. Following saline injec-
tion, a mildly stressful event, these rats exhibit a greater 
increase in locomotor activity (Flagstad et al., 2004; Le 
Pen et al., 2006). In addition, stress has a greater impact 
on their synaptic plasticity; minor levels of stress expo-
sure impair hippocampal-mPFC long-term potentiation 
in MAM rats but not in controls (Goto & Grace, 2006).
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FIGURE 1 A hyperpolarized (−) dopamine neuron is quiescent (depicted in gray), but when depolarized (+), it can fire either in tonic mode 
(brown) or in phasic mode (red). (A) In an unaroused state, about 50% of dopamine neurons are tonic firing while the rest are quiescent. (B) When 
an arousing sensory stimulus activates ascending glutamatergic afferents to ventral tegmental area (VTA) (here, pedunculopontine tegmentum, 
PPTg), already depolarized VTA neurons will transition to a bursting state in an N-methyl-d-aspartate receptor–dependent manner, increasing 
synaptic dopamine release. (C) In the MAM-17 animal, the number of dopamine neurons firing in tonic mode is increased. This is due to hip-
pocampal hyperactivity, which activates accumbens (NAc) neurons, inhibiting ventral pallidal (VP) neurons, thereby disinhibiting dopaminergic 
neurons, and releasing them from a quiescent state. (D) Having a greater number of tonically active dopamine neurons at baseline means that 
more neurons can burst fire in response to ascending activation, resulting in augmented dopamine efflux.
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Given the putative influence of stress on disease onset, 
it is natural to examine the effects of stress in the prodro-
mal phase, a critical period in the disease that has been 
the focus of many studies over the past decade. High-
risk individuals for schizophrenia can be identified 
based on genetic background, family history, and struc-
tured interviews that reliably evaluate psychosis risk, 
including the Structured Interview for Psychosis Risk 
Syndromes (Miller et al., 2003) and the Comprehensive 
Assessment of At-Risk Mental States (Miller et al., 2003; 
Straub & Weinberger, 2006; Sullivan, Kendler, & Neale, 
2003; Yung et al., 2005). Among individuals identified as 
at-risk for schizophrenia, measures of situational anxiety, 
emotion and affect, and tolerance to stress are predictive 
of psychosis onset (Owens, Miller, Lawrie, & Johnstone, 
2005; Yung et al., 2005). In the prodromal phase, altered 
cortisol levels are associated with “subthreshold” levels 
of paranoid suspicion (Corcoran et al., 2012) and concep-
tual disorganization (Devylder et al., 2013).

In MAM-17 rats, hypersensitivity to stress is also 
observed before the emergence of behavioral hyper-
responsivity to psychostimulants. Prepubertal MAM-17  
rats exhibit a higher level of anxiety as measured in 
an elevated plus maze (Du & Grace, 2013). They emit 
a greater than 22 kHz vocalization, which reflects affec-
tive state, following foot shock and exhibit more freezing 
behavior (Zimmerman, Bellaire, Ewing, & Grace, 2013). 
In addition, plasma corticosterone levels in response 
to foot shock exposure are blunted (Zimmerman et al., 
2013). This is significant, given that a substantial corticos-
terone response is necessary for adaptation to stressors 
(McEwen & Gianaros, 2010; Rao, Anilkumar, McEwen, 
& Chattarji, 2012).

These observations are consistent with abnormalities 
in vHPC function. In addition to its role in hyperdopa-
minergia, the vHPC is involved in emotional processing. 
Unlike the dorsal aspect, vHPC is dispensable for spa-
tial memory tasks such as the Morris water maze, but 
lesions interfere with fear conditioning to a tone and 
decrease anxiety-like behavior in the elevated plus maze 
(Fanselow & Dong, 2010). Importantly, its activation cur-
tails both stressor-induced and circadian corticosteroid 
elevations (Herman & Mueller, 2006). In response to a 
stressor, autonomic nervous system responses and the 
hypothalamic–pituitary–adrenal axis response are trig-
gered by the hypothalamic paraventricular nucleus; in 
turn, the vHPC extends glutamatergic projections to the 
bed nucleus of the stria terminalis and multiple hypo-
thalamic nuclei that inhibit the paraventricular nucleus 
(Ulrich-Lai & Herman, 2009). The vHPC is also laden 
with glucocorticoid receptors and is thus fully equipped 
to provide feedback inhibition on the hypothalamic–pitu-
itary–adrenal axis (Herman & Mueller, 2006). Altogether, 
the blunted corticosteroid response reported in MAM-
17 rats is consistent with a hyperactive hippocampus 

(Zimmerman et al., 2013). Furthermore, activation of 
dentate parvalbumin neurons is implicated in exercise-
induced resilience toward aversive, stressful events in 
normal mice, and enhancement of inhibitory processes 
in vHPC artificially creates resilience (Schoenfeld, Rada, 
Pieruzzini, Hsueh, & Gould, 2013), such that the loss of 
these neurons in MAM-17 may reasonably contribute to 
their hypersensitivity to stress.

Thus, the vHPC may be a critical locus where stress-
related circuitry can contribute to MAM-17 hyperdo-
paminergic phenotype. Testing the hypothesis that 
stress can induce hyperdopaminergia via the vHPC, 
Valenti, Lodge, and Grace (2011) demonstrated that 
acute restraint, a psychogenic stressor that induces c-fos 
expression in mPFC and ventral (but not dorsal) hip-
pocampus, also increases spontaneous activity of dopa-
minergic VTA neurons. The authors also found stress 
to increase AMPH-induced locomotion, and both the 
increases in dopaminergic activity and locomotion were 
reversed by TTX inactivation of vHPC.

Finally, addressing the contribution of stress to the ado-
lescent onset of the MAM-17 behavioral phenotype, Du 
and Grace (2013) found that administering the antianxi-
ety drug diazepam to alleviate stress hypersensitivity in 
peripubertal MAM-17 rats prevented the development of 
hyperactivity of VTA dopamine neurons and hypersen-
sitivity to amphetamine in adulthood. Altogether, these 
results support the application of the two-hit hypoth-
esis to the MAM-17 model, in which the coincidence of 
MAM-17 neuroanatomical alterations (say, parvalbumin 
neuron dysfunction) and stressors are required for the 
emergence of hyperdopaminergia. However, the emer-
gence of hyperdopaminergia appears to be a gradual, not 
step-function, process. VTA recordings in anesthetized 
MAM-17 rats indicate that a hyperdopaminergic state 
is present even during preadolescence; hypersensitiv-
ity between preadolescent MAM-17 and SAL-17 can be 
observed with high doses of amphetamine (Chen et al., 
2014). Thus, one should bear in mind that defining the 
onset of a phenotype does depend on how that pheno-
type tested, both in animal models and the clinic.

SENSORIMOTOR GATING DEFICITS IN 
MAM-17

An abrupt, salient stimulus (such as an intense light, 
touch, or loud sound) causes a reflexive muscle con-
traction, referred to as the “startle response.” This is 
measured as an eye-blink response in humans and a 
whole-body flinch in rodents (Braff, 2010). The startle 
response is neurologically a reflex; auditory, tactile, and 
vestibular sensory signals are routed through sensory 
pathways to the caudal portion of the pontine reticu-
lar nucleus, which in turn commands motoneurons 
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that elicit the startle (reviewed in Fendt, Li, & Yeomans, 
2001). If the startle stimulus is immediately preceded 
(30–500 ms prior) by a less-salient stimulus (termed a 
“prepulse”), the startle response is attenuated—an effect 
termed prepulse inhibition (PPI). Lesion studies have 
identified brain areas that do not participate in the startle 
response but do modulate PPI, indicating that the reflex-
ive startle pathway is extrinsically gated (Fendt et al., 
2001; Swerdlow, Geyer, & Braff, 2001).

PPI disruptions in schizophrenia patients were first 
reported in the late 1970s. In contrast to the higher order 
deficits reported in schizophrenia patients, PPI deficits 
are remarkably robust in unmedicated schizophrenia 
patients across the spectrum and in their nonafflicted rel-
atives, making PPI deficits especially tractable for study 
(Braff, 2010). Furthermore, although individuals adapt 
their startle responses across multiple presentations, PPI 
does not adapt readily, allowing repeated testing in the 
same individual (Braff, 2010). Although there is no evi-
dence that PPI deficits themselves contribute to clinical 
symptoms, PPI is correlated with positive symptoms 
(Perry & Braff, 1994) and is normalized most reliably by 
atypical antipsychotics (Kumari & Sharma, 2002). Alto-
gether, PPI deficits seem to reflect alterations in the neu-
ral systems that also underlie positive symptoms.

Unlike thought disorder and psychosis, PPI can 
be studied in lower mammals. In this endeavor, it has 
been repeatedly shown that amphetamine and dopa-
mine receptor agonists can induce PPI deficits, similar 
to the human case. A vast array of higher ordered brain 
areas—including mPFC, hippocampus, amygdala, 
nucleus accumbens, mediodorsal thalamus—have also 
been shown to be capable of influencing PPI (Swerdlow 
et al., 2001), and it has been suggested that the normally 
functioning basal ganglia, via the substantia nigra pars 
reticulata—its GABAergic output region—may inhibit 
pontine reticular nucleus following a prepulse (Koch, 
Fendt, & Kretschmer, 2000). Especially in light of increas-
ing evidence of PPI deficits in psychiatric disorders other 
than schizophrenia (Kohl, Heekeren, Klosterkotter, & 
Kuhn, 2013), PPI deficits may be a common result of 
multiple basal ganglia-related abnormalities.

MAM-17 animals show adolescent-onset PPI deficits 
(Hazane, Krebs, Jay, & Le Pen, 2009; Moore et al., 2006), 
consistent with the hyperdopaminergia. Although we 
have emphasized aberrant hippocampal regulation of 
dopamine in MAM-17 animals, hippocampal contri-
butions to PPI may be more complex and may involve 
other neuromodulators or other brain structures such 
as amygdala. Activation of the vHPC with infusions of 
NMDA, picrotoxin, or carbachol generates PPI deficits, 
but so does inactivation by TTX and muscimol (reviewed 
in Bast & Feldon, 2003). Clozapine (but not haloperidol) 
reverses PPI deficits in rats with vHPC NMDA microin-
fusions (Zhang, Pouzet, Jongen-Rêlo, Weiner, & Feldon, 

1999) despite the fact that haloperidol can counter the 
dopamine efflux elicited by this manipulation. Nonethe-
less, given that haloperidol’s effects diametrically differ 
between MAM-17 animals and those allowed to develop 
normally (Valenti, Cifelli, Gill, & Grace, 2011), it remains 
possible that haloperidol may be effective in revers-
ing PPI deficits in the MAM-17 model—but this awaits 
experimental testing.

DEFICITS IN PREFRONTAL-DEPENDENT 
BEHAVIORS AND ABERRANT 

PREFRONTAL ACTIVITY

Impairments in both declarative and working memory 
are psychological features of schizophrenia, and some 
forms are dependent on prefrontal function ( Tamminga 
et al., 2010; Tan et al., 2007). Similar impairments have 
been observed in MAM-17 animals. In the rat, the hip-
pocampus is well known to encode place informa-
tion essential for navigation and foraging. Although  
hippocampal–accumbens connectivity is sufficient for 
exploratory foraging behavior, hippocampal–prefrontal 
connectivity is critical for successful foraging guided 
by short-term memory (Floresco, Seamans, & Phillips, 
1997). The delay-interposed radial maze learning task 
is used to test memory-guided foraging. In this task, all 
arms are baited but some arms of the maze are blocked 
during the animal’s initial exploration; after a delay dur-
ing which the blockades are removed, animals are placed 
again into the maze and are expected to visit the novel, 
still-baited arms. Compared with controls, MAM-17 
rats perform poorly with a 30-min, but not 5-min delay 
interposed, which is consistent with the poorer perfor-
mance of schizophrenia patients with heavy working 
memory load (Gourevitch et al., 2004). The spontaneous 
alternation test is a well-established spatial working test 
that measures the tendency of an animal to explore an 
entire radial maze with optimal efficiency and has been 
shown to also require an intact PFC and hippocampus 
(Lalonde, 2002). MAM-17 rats were less likely to alter-
nate between arms, suggesting deficits in spatial work-
ing memory (Hazane et al., 2009). However, in this same 
study, MAM-17 rats also showed impaired Morris water 
maze performance, indicating that impairments in spa-
tial learning may also play a role in these deficits.

Behavioral flexibility is also mediated by the rodent 
prefrontal cortex and is limited in MAM-17 animals, 
further implicating prefrontal malfunction (Ragozzino, 
2007). For instance, although the initial associational 
learning is not impaired, MAM-17 rats require a greater 
number of trials to switch strategies in a y-maze task as 
well as in extradimensional set-shifting (Featherstone 
et al., 2007; Moore et al., 2006) in which attention must be 
shifted to previously ignored attributes of the presented 
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stimuli. This task was designed as the rodent analogue to 
the Wisconsin card-sorting task, in which schizophrenia 
patients fail to use feedback to shift attention between 
suit and value between two card decks. Impairment of 
MAM-17 rats in reversal learning has also been reported 
in a water maze task (Flagstad et al., 2005). These deficits 
in extradimensional set shifting and reversal learning 
are due to a perseverative behavior (Gastambide et al., 
2012).

In contrast, purely attention deficits can be measured 
using the five-choice serial reaction time task, where the 
animal must maintain attention across five LEDs and 
nose-poke at the appropriate port when the associated 
LED activates. Featherstone et al. (2007) used this para-
digm as the rodent analogue to the Continuous Perfor-
mance Task, in which human participants must respond 
to each stimulus presentation with a key press. In both 
versions, omitted trials are interpreted as failures in sus-
taining attention. Schizophrenia patients show Continu-
ous Performance Task impairments, suggesting deficits 
in attentional vigilance. Notably, the intensity of the 
stimulus can influence the results, such that ambiguous 
stimuli that require more deliberate attention to resolve 
are typically better for detecting differences between 
schizophrenic patients and controls. MAM-17 animals 
are capable of sustained attention—as measured by 
response accuracy and omissions—in the five-choice 
serial reaction time task even when stimuli flicker very 
briefly. Although attention appears intact, MAM-17 
animals demonstrated more impulsive-like premature 
responding (Featherstone et al., 2007) in this paradigm. 
The behavioral inhibition that occurs when an animal 
bears in mind an intention to act during a delay period 
but must wait to execute the action is thought to be medi-
ated by prefrontal cortex. This executive behavioral inhi-
bition can be measured in a task in which subjects are 
rewarded only when their response rate is sufficiently 
slow; MAM-17 animals are impaired in this task (Feath-
erstone et al., 2007).

In the MAM-17 prefrontal cortex, there is electro-
physiological evidence of alterations in local circuitry 
that could give rise to aberrant activity. For example, 
the ability of basolateral amygdala stimulation and hip-
pocampal stimulation to recruit inhibitory processes in 
the mPFC is attenuated and enhanced, respectively, in 
MAM-17 animals, suggesting that MAM-17 treatment 
alters the strength of afferent inputs to mPFC (Esmaeli & 
Grace, 2013). Phencyclidine, an NMDA receptor antago-
nist that can preferentially obstruct interneuron activa-
tion, also disturbs amygdalar recruitment of inhibitory 
processes when given to normal animals, mimicking the 
effects of MAM-17 treatment (Esmaeli & Grace, 2013); 
this suggests that hypofunction of the interneuron class 
that the amygdala innervates (Gabbott, Warner, & Busby, 
2006) may mediate the changes observed in MAM-17 

rats (Esmaeli & Grace, 2013). Dopamine neuromodula-
tion in the mPFC is also altered by MAM-17 exposure; 
VTA stimulation has opposite short-latency effects on 
mPFC neuron depolarization in MAM-17 and SAL-17 
animals, with VTA stimulation producing long-lasting 
depolarizations in MAM-17 rats only (Lavin, Moore, & 
Grace, 2005). MAM-17 animals also exhibit increases 
in psychostimulant-induced norepinephrine release in 
the prefrontal cortex (Lena, Chessel, Le Pen, Krebs, & 
 Garcia, 2007).

The normal gating mechanisms that regulate pre-
frontal activity are disrupted in MAM-17. Because these 
gating mechanisms are theorized to gate afferent input 
based on contextual relevance (Tseng & O’Donnell, 
2005), their disruption in MAM-17 animals likely con-
tributes their cognitive impairments mentioned above 
as well as impairments in hippocampal-dependent fear 
conditioning (Lodge, Behrens, & Grace, 2009). Normally, 
cortical and striatal neurons exhibit a bistable rest-
ing membrane potential in vivo, alternating between a 
DOWN state (a lower membrane potential) and an UP 
state (a higher membrane potential), where the differ-
ence between these two states is approximately 8–22 mV 
(Lewis & O’Donnell, 2000; O’Donnell & Grace, 1995). 
During DOWN states, neurons are markedly less excit-
able than in UP states, such that spiking is confined to 
the UP states. Thus, any afferent input endowed with the 
ability to modulate the DOWN-to-UP state transition will 
be able to designate which neural ensembles are excit-
able at a given time. For example, in the accumbens, the 
hippocampal input has this unique ability (O’Donnell & 
Grace, 1995). In the prefrontal cortex, bistability occurs 
spontaneously but VTA “burst” stimulation can evoke 
UP states in most neurons (Lewis & O’Donnell, 2000). In 
the MAM-17 rat, PFC and NAc neurons tend to exist in 
a sustained (monostable) depolarized state (Moore et al., 
2006), consistent with hippocampal hyperactivity and 
hyperdopaminergia in these animals. As a consequence, 
prefrontal neurons exhibit higher spontaneous firing 
rates (Lavin et al., 2005) and less time-variant firing pat-
terns (Goto & Grace, 2006), functional gating is lost and 
the system is poised to respond to a number of stimuli in 
an unfiltered manner (Moore et al., 2006).

FUNCTIONAL DISCONNECTION 
WITHIN LIMBIC CIRCUITS

Disconnection theories of schizophrenia emphasize 
that prefrontal cortex interacts with other brain areas 
in a hierarchical manner and it is the disruption of 
these interactions that leads to impaired mental func-
tion. One method of probing interactions across brain 
areas is to stimulate in one region and record in another 
in the anesthetized animal; in this method, causative 
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relationships are clear. Using this method, alterations 
in limbic circuitry of MAM-17 rats have been found. 
For instance, the hippocampal–prefrontal pathway in 
MAM-17 rats can be potentiated by high-frequency 
stimulation (HFS) of the fimbria but not in controls 
(Belujon, Patton, & Grace, 2014; Goto & Grace, 2006). 
Given the reduced prefrontal parvalbumin staining 
in MAM-17 (Lodge & Grace, 2009), it is possible that 
a loss of mPFC inhibitory tone and/or hippocampal 
feedforward inhibition in MAM-17 enhances LTP in 
this paradigm. Another possibility is that hippocam-
pal–prefrontal potentiation varies as a function of pre-
frontal dopamine in an inverted-U relationship, so that 
if hippocampal stimulation evokes different amounts 
of dopamine in MAM-17 and SAL-17 animals, the out-
come could be qualitatively affected; this view is con-
sistent with the effects of stressing (which likely evokes 
prefrontal dopamine) MAM-17 and SAL-17 animals 
before LTP induction (Goto & Grace, 2006). However, 
the plastic changes mediating this effect could theo-
retically occur in any circuit in which mPFC and fim-
bria both participate. Altered plasticity in the MAM-17 
model is also observed in the nucleus accumbens. 
Fimbria HFS potentiates and depresses the hippocam-
pal–striatal pathway in SAL-17 and MAM-17, respec-
tively (Belujon et al., 2014). Intriguingly, inactivation of 
the mPFC before fimbria HFS does not eliminate the 
MAM-17 and SAL-17 differences but instead yields 
an inverted result—that is, fimbria HFS subsequently 
depresses and potentiates the hippocampal–striatal 
pathway in SAL and MAM-17, respectively (Beljuon 
et al., 2014). From this study, three things become evi-
dent: first, mPFC dramatically influences the direction-
ality of hippocampal–striatal plasticity; second, the 
influence of mPFC over hippocampal–striatal plasticity 
is qualitatively different in MAM-17 and SAL-17; and 
third, though a site of pathology, mPFC is not the sole 
source of circuit malfunction, because in its absence, 
new abnormalities are unmasked.

A second method of probing regional interactions 
is passive recording from two or more regions during 
different brain states. Electroencephalogram record-
ings during sleep in MAM-17 animals reveal abnormal  
hippocampal–prefrontal relationships. It is believed that 
during sleep, memories are replayed and consolidated 
(Wilson & McNaughton, 1994). This has been shown by 
the rapid reactivation of memory-associated place cells 
during hippocampal ripples—short-lasting, high-fre-
quency events. These bursts of activity tend to be fol-
lowed by spindles (7–14 Hz events, lasting 1–4 s) in the 
neocortex (Siapas & Wilson, 1998). However, this asso-
ciation between hippocampal ripples and neocortical 
spindles is disturbed in MAM-17 rats (Phillips, Bartsch, 
et al., 2012). These rats also exhibit fragmented non–
rapid eye movement and reduced delta wave activity. 

How much these impairments in sleep may contribute 
to cognitive malfunction remains unexplored.

OSCILLATORY ACTIVITIES IN MAM

Neural oscillations are a fundamental mechanism 
for enabling coordinated activity during normal brain 
function. Impaired gamma oscillations, theta and 
other slow oscillations, and coherence among regions 
have been reported by many studies on schizophrenia 
patients, and are associated with impaired cognitive 
functions (for a review, see Uhlhaas & Singer, 2010). In 
MAM-17 rats, gamma oscillations in the hippocampus 
and mPFC are impaired in response to a conditioned 
tone. In addition, the deficits in oscillations are cor-
related with loss of parvalbumin staining in the hip-
pocampus and mPFC (Lodge et al., 2009). The loss 
of parvalbumin interneurons may be the cause of an 
impaired gamma band response to a conditioned tone 
associated with impaired performance in a latent inhi-
bition paradigm (Lodge et al., 2009). Because parvalbu-
min-containing interneurons are known to participate 
in the gamma-band synchronization (Buzsáki & Wang, 
2012; Sohal, Zhang, Yizhar, & Deisseroth, 2009), it has 
been hypothesized that the GABAergic deficits in par-
valbumin population observed in postmortem stud-
ies could underlie impairments in gamma oscillations 
observed in schizophrenia (Lewis et al., 2005). Thus, the 
MAM-17 model, displaying both gamma and parval-
bumin impairment, can serve as a good platform for 
studying this relationship further. Decreased gamma 
oscillations in visual but not motor cortex of MAM rats 
in response to NMDA receptor antagonists has also 
been reported, which correlates with decreased parval-
bumin density in the visual but not motor cortex (Phil-
lips, Cotel, et al., 2012). Awake MAM rats also deficit in 
the power of theta oscillations in the mediodorsal tha-
lamic nucleus (Ewing & Grace, 2013), and reductions 
in delta and low gamma have been observed in cortex 
under anesthesia (Goto & Grace, 2006).

SOCIAL WITHDRAWAL IN MAM

Social withdrawal is frequency observed in schizo-
phrenia patients as a negative symptom (Mueser & 
McGurk, 2004). Behaviors of social interaction are exam-
ined in MAM rats by placing two unfamiliar rats that 
have received identical prenatal treatment in an open 
chamber. MAM rats spend less time near each other and 
engage in less active social interaction. In addition, this 
deficit in social interaction occurs both in pre- and post-
puberty (Flagstad et al., 2004; Hazane et al., 2009; Le Pen 
et al., 2006).
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ANTIPSYCHOTIC DRUG ACTIONS  
IN MAM

It is unclear how antipsychotics achieve their thera-
peutic effect. Antipsychotic drugs exert rapid therapeu-
tic action during the first days of administration, but the 
maximal antipsychotic action requires weeks to develop 
(Kapur and Seeman, 2001). Although antipsychotics are 
primarily dopamine D2 receptor antagonists, dopamine 
receptor antagonism alone cannot account for the delayed 
maximal efficacy and the lack of tolerance development. 
Studying how antipsychotics alter dopamine activity 
over time in normal rats has been useful in elucidat-
ing the mechanims underlying the delayed therapeutic 
effect. Acute administration to control rats of either first-
or second-generation drugs leads to an initial increase of 
dopamine system activity, driven in part by circuit-level 
compensatory mechanisms, whereas a decrease in dopa-
mine firing emerges after chronic, 3-week antipsychotic 
administration. One mechanism that could explain the 
shift from increased to decreased dopamine activity is 
depolarization block of the dopamine neurons (Grace, 
Bunney, Moore, & Todd, 1997). Depolarization block 
requires a threshold of activation to be reached, which 
takes time to accrue. In control rats, depolarization block 
can only be induced after a 3 week chronic administration.

However, studies on antipsychotic actions using normal 
rats only recapitulate the long-term actions of antipsychot-
ics - the delayed maximal efficacy and lack of tolerance -  
but do not mimic the rapid onset of antipsychotic actions. 
In contrast, the response of MAM-treated rats to antipsy-
chotics, as measured by dopamine system activity, paral-
lels that of patients. In MAM-17 rats, the dopamine system 
is already in a hyperactive state (Lodge & Grace, 2007). 
As a consequence, the added excitatory effects of the 
antipsychotic drug ushers dopamine neurons into depo-
larization block more quickly. Indeed, dopamine firing is 
reduced immediately by an acute administration of a first- 
or second-generation antipsychotic drug and is further 
decreased by repeated administration (Valenti, Ciefelli, et 
al, 2011). Altogether, it appears that antipsychotic drugs 
are effective in reducing dopamine neuron hyperactivity. 
However, it is doing so not by restoring dopamine system 
to a normal condition, but instead, by inducing depolar-
ization block, an offsetting pathological condition.

TESTING NOVEL TREATMENT IN THE 
MAM MODEL

Dopamine plays an essential role in pathophysiology 
of schizophrenia; the neural circuits that we have high-
lighted here suggest that the hippocampus, rather than 
the dopaminergic nuclei themselves, is the source of aber-
rant dopaminergic activity (Lodge & Grace, 2007). As 

described previously, antipsychotic drugs work by induc-
ing depolarization block in dopamine neurons without 
reversing pathological activity in the hippocampus. Thus, 
it is not surprising that although antipsychotic drugs have 
revolutionized the treatment of schizophrenia, they are 
not very effective in treating nonpsychotic symptoms and 
can produce untoward side effects (Lieberman et al., 2005).

Novel treatment targeting the hippocampus has been 
shown effective in reversing schizophrenia phenotypes 
in MAM-17 rats. Treating GABAergic dysfunction selec-
tively is difficult, given that GABA synapses represent 
30% of the synapses in the brain. However, the subtypes 
of GABAA receptors are pharmacologically distinct and 
do not show an equal distribution. In particular, the 
distribution of the α5 subunit of the GABAA receptor is 
relatively confined in the hippocampus (Heldt & Ressler, 
2007). Indeed, both systemic and hippocampal local 
administration of a GABAA α5-positive allosteric modu-
lator to MAM-17 rats normalizes hippocampal function, 
dopamine hyperactivity, and the augmented locomotor 
response to amphetamine (Gill, Lodge, Cook, Aras, & 
Grace, 2011). In addition, hippocampal deep brain stimu-
lation that is thought to decrease hippocampal activity 
restores dopamine system hyperactivity, auditory evoked 
potentials in mPFC, nucleus accumbens, mediodorsal 
thalamic nucleus, and vHPC as well as behavioral hyper-
sensitivity to amphetamine and deficits in attentional 
set-shifting (Ewing & Grace, 2013; Perez, Shah, Asher, 
& Lodge, 2013). Vagus nerve stimulation that effectively 
reverse dopamine neuron hyperactivity and hyperre-
sponsivity to amphetamine is also thought to suppress 
hippocampal activity in MAM-17 rats via an unknown 
mechanism (Perez, Carreno, Frazer, & Lodge, 2014).

However, when evaluating novel treatments in clini-
cal trials, caution should be taken when evaluating their 
effects on schizophrenia patients who had been exposed 
to antipsychotic drugs for years and only briefly with-
drawn. Gill, Cook, Poe, and Grace (2014) demonstrate 
the impact of withdrawal from repeated antipsychotic 
treatment on MAM-17 rats. Following withdrawal from 
3 weeks of haloperidol administration, MAM-17 and 
 normal rats similarly show a decrease in dopamine popu-
lation activity; thus, the plastic changes induced by halo-
peridol (e.g., dopamine supersensitivity) that gives rise to 
depolarization block in dopamine neurons remain even 
in the absence of haloperidol. Dopamine supersensitivity 
is evidenced by a heightened sensitivity to amphetamine 
in haloperidol-withdrawn rats. Unlike haloperidol-
withdrawn SAL-17 rats, dopamine supersensitivity in 
withdrawn MAM-17 rats is not mitigated by systemic 
treatment with α5-positive allosteric modulator, known to 
normalize the electrophysiological and behavioral abnor-
malities of dopamine system in previously untreated 
MAM-17 rats (Gill et al., 2011). Thus, prior antipsychotic 
exposure may interfere with the effects of novel drugs.
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FIGURE 2 In the methylazoxymethanol (MAM)-17 model, peripubertal administration of diazepam for 10 days has surprisingly long-lasting effects, preventing the hyperdopaminergia 
and elevated anxiety-like behavior normally associated with adulthood in this animal model (Du & Grace, 2013). The mechanism for this long-lasting change is unclear. Perhaps, during 
adolescence, glutamatergic signaling in the hippocampus is heightened, which is eventually compensated by increased recruitment of parvalbumin (and other) interneurons. Thus, there 
may be a sensitive period in normal development (A) in which the hippocampus is especially excitable. If interneurons are lacking from the onset, as in schizophrenia and MAM-17, this 
elevated excitability may lead to long-lasting excitotoxic damage, leading in turn to long-lasting hippocampal hyperactivity (B). However, prophylactic treatment with diazepam, which 
enhances GABAergic signaling, during the sensitive period will sufficiently reduce hippocampal activity and avert excitotoxic levels (C).
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MAM-E17 AS A MODEL TO STUDY 
DEVELOPMENTAL TRAJECTORY

We began this chapter discussing schizophrenia as 
having early neurodevelopmental, rather than late neu-
rodegenerative origins. However, if prenatal events (in 
addition to the appropriate genetic background) deter-
mine whether an individual develops schizophrenia, why 
do the positive symptoms not appear until adolescence? 
This remains an open question. A benefit of a neurodevel-
opment disruption model such as the MAM model is its 
use as a system to examine potential neurophysiological 
alterations across development that may have relevance 
to the adolescent onset of psychosis. On the one hand, 
perhaps the schizophrenia pathology is present at birth 
but is either compensated by mechanisms present only in 
childhood (certain GABAergic receptors or ion gradients, 
for example) or is triggered by processes that are negli-
gible until adolescence (e.g., hormonal changes, cortical 
myelination). On the other hand, perinatal events may 
cause a small disruption in the brain that grows with time 
via some feedforward, degenerative event or collection 
of events (e.g., oxidative stressors, excitotoxic damage, 
impaired repair processes). The plausibility of any of these 
hypotheses can be tested in the MAM-17 model by explor-
ing whether it can influence the adolescent onset of MAM-
17 psychostimulant hypersensitivity or deficits in PPI.

Studying the MAM-17 directly is also producing new 
data that challenge our current understanding of the 
model and may uncover important clues to adolescent 
onset. For example, we previously thought that height-
ened VTA activity arose during puberty in the MAM-17 
model, but there is evidence that the dopamine activity 
is already augmented before puberty (Chen et al., 2014). 
Thus, the emergence of hyperdopaminergia may be more 
gradual than initially expected. This is consistent with a 
gradual change in parvalbumin expression (Chen et al., 
2014; Gill & Grace, 2014). Referring back to the clinical 
literature, abnormal cerebral blood volume increases 
and hypermetabolism observed in the hippocampus 
of at-risk human subjects (Schobel et al., 2013; Schobel 
et al., 2009) as well as a correlated increased fluorodopa 
uptake and hippocampal glutamate levels in ultra-high-
risk patients (Stone et al., 2010) is indicative of a hyperac-
tivity of hippocampus in the prodromal period.

We know precious little about the prodromal and 
critical periods, during which schizophrenia symp-
toms appear and worsen before stabilizing, although it 
has recently become a focal point of research (Phillips, 
Yung, Yuen, Pantelis, & McGorry, 2002). Prevention or 
early intervention might be a highly effective approach 
to schizophrenia given that the duration of untreated 
schizophrenia correlates with a worsened prognosis in 
patients (Hill et al., 2012). Interestingly, the emergence of 
phenotypes in MAM-17 rats parallels disease progression 

in schizophrenia patients–namely hypersensitivity to psy-
chostimulants and deficits in PPI occurs only after puberty, 
whereas social withdrawal and cognitive deficits are pres-
ent both before and after puberty. Furthermore, studies 
on MAM rats before adulthood have indicated that peri-
adolescent intervention can have long-lasting protective 
effects in the adult (Figure 2; Du & Grace, 2013), making 
MAM-17 a promising model in which to determine the 
nature of the critical period and to develop strategies for 
early treatment and prevention of schizophrenia.

References
Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R.,  

Kegeles, L. S., et al. (2000). Increased baseline occupancy of D2 
receptors by dopamine in schizophrenia. Proceedings of the National 
Academy of Sciences of the United States of America, 97(14), 8104–8109.

Akbarian, S., Bunney, W. E., Potkin, S. G., Wigal, S. B., Hagman, J. O., 
Sandman, C. A., et al. (1993). Altered distribution of nicotinamide-
adenine dinucleotide phosphate-diaphorase cells in frontal lobe 
of schizophrenics implies disturbances of cortical development. 
Archives of General Psychiatry, 50, 169–177.

Akbarian, S., Viñuela, A., Kim, J. J., Potkin, S. G., Bunney, W. E., & 
Jones, E. G. (1993). Distorted distribution of nicotinamide-adenine 
dinucleotide phosphate-diaphorase neurons in temporal lobe of 
schizophrenics implies anomalous cortical development. Archives 
of General Psychiatry, 50, 178–187.

Ameblas, A. (1992). Preschizophrenics: Adding to the evidence, sharp-
ening the focus. British Journal of Psychiatry, 160, 401–404.

Arnold, S. E. (1999). Neurodevelopmental abnormalities in schizophre-
nia: insights from neuropathology. Development and Psychopathol-
ogy, 11, 439–456.

Bassanini, S., Hallene, K., Battaglia, G., Finardi, A., Santaguida, S., 
Cipolla, M., et al. (2007). Early cerebrovascular and parenchymal 
events following prenatal exposure to the putative neurotoxin 
methylazoxymethanol. Neurobiology of Disease, 26(2), 481–495.

Bast, T., & Feldon, J. (2003). Hippocampal modulation of sensorimotor 
processes. Progress in Neurobiology, 70(4), 319–345.

Belujon, P., Patton, M. H., & Grace, A. A. (2014). Role of the prefron-
tal cortex in altered hippocampal-accumbens synaptic plasticity in 
a developmental animal model of schizophrenia. Cerebral Cortex, 
24(4), 968–977.

Benes, F. M., & Berretta, S. (2001). GABAergic interneurons: implica-
tions for understanding schizophrenia and bipolar disorder. Neuro-
psychopharmacology, 25(1), 1–27.

Benes, F. M., Kwok, E. W., Vincent, S. L., & Todtenkopf, M. S. (1998). 
A reduction of nonpyramidal cells in sector CA2 of schizophrenics 
and manic depressives. Biological Psychiatry, 44, 88–97.

Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., & Vincent, S. L.  
(1991). Deficits in small interneurons in prefrontal and cingulate 
cortices of schizophrenic and schizoaffective patients. Archives of 
General Psychiatry, 48(11), 996–1001.

Benes, F. M., Sorensen, I., & Bird, E. D. (1991). Reduced neuronal size 
in posterior hippocampus of schizophrenic patients. Schizophrenia 
Bulletin, 17(4), 597–608.

Bogerts, B. (1993). Recent advances in the neuropathology of schizo-
phrenia. Schizophrenia Bulletin, 19(2), 431–445.

Bogerts, B. (1997). The temporolimbic system theory of positive schizo-
phrenic symptoms. Schizophrenia Bulletin, 23(3), 423–435.

Boog, G. (2004). Obstetrical complications and subsequent schizophre-
nia in adolescent and young adult offsprings: is there a relation-
ship? European Journal of Obstetrics & Gynecology and Reproductive 
Biology, 114(2), 130–136.



REFERENCES 121

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Braff, D. L. (2010). Prepulse inhibition of the startle reflex: a window 
on the brain in schizophrenia. In N. R. Swerdlow (Ed.), Behavioral 
 neurobiology of schizophrenia and its treatment (pp. 349–371). New 
York: Springer-Verlag Berlin Heidelberg.

Brimer, L. (2011). Chemical food safety. Cambridge: CAB International.
Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. 

Annual Review of Neuroscience, 13(18), 203–225.
Caballero, A., Diah, K. C., & Tseng, K. Y. (2013). Region-specific 

upregulation of parvalbumin-, but not calretinin-positive cells in 
the ventral hippocampus during adolescence. Hippocampus, 23(12), 
1331–1336.

Cannon, M., Jones, P. B., & Murray, R. M. (2002). Obstetric complica-
tions and schizophrenia: historical and meta-analytic review. Amer-
ican Journal of Psychiatry, 159(7), 1080–1092.

Carrel, D., Hernandez, K., Kwon, M., Mau, C., Trivedi, M. P., 
 Brzustowicz, L. M., et al. (2014). Nitric oxide synthase 1 adaptor pro-
tein, a protein implicated in schizophrenia, controls radial migra-
tion of cortical neurons. Biological Psychiatry, 29(25), 8248–8258.

Cattabeni, F., & Di Luca, M. (1997). Developmental models of brain 
dysfunctions induced by targeted cellular ablations with methyl-
azoxymethanol. Physiological Reviews, 77(1), 199–215.

Cattaneo, E., Reinach, B., Caputi, A., Cattabeni, F., & Di Luca, M. (1995). 
Selective in vitro blockade of neuroepithelial cells proliferation by 
methylazoxymethanol, a molecule capable of inducin long last-
ing functional impairments. Journal of Neuroscience Research, 41(5), 
640–647.

Chen, L., Perez, S. M., & Lodge, D. J. (2014). An augmented dopamine 
system function is present prior to puberty in the methylazoxy-
methanol acetate rodent model of schizophrenia. Developmental 
Neurobiology, 74(9), 907–917.

Chin, C. L., Curzon, P., Schwartz, A. J., O’Connor, E. M., Rueter, L. E., 
Fox, G. B., et al. (2011). Structural abnormalities revealed by mag-
netic resonance imaging in rats prenatally exposed to methylazoxy-
methanol acetate parallel cerebral pathology in schizophrenia. 
Synapse, 65, 393–403.

Ciaroni, S., Buffi, O., Ambrogini, P., Cecchini, T., & Del Grande, P. 
(1996). Quantitative changes in neuron and glial cells of neocortex 
following prenatal exposure to methylazoxymethanol. Journal für 
Himforschung, 37(4), 537–546.

Corcoran, C. M., Smith, C., McLaughlin, D., Auther, A., Malaspina, D., &  
Cornblatt, B. (2012). HPA axis function and symptoms in adoles-
cents at clinical high risk for schizophrenia. Schizophrenia Research, 
135, 170–174.

Cox, P. A., & Sacks, O. W. (2002). Cycad neurotoxins, consumption 
of flying foxes, and ALS-PDC disease in Guam. Neurology, 58(6), 
956–959.

Crumlish, N., Whitty, P., Clarke, M., Browne, S., Kamali, M., Gervin, 
M., et al. (2009). Beyond the critical period: longitudinal study of 
8-year outcome in first-episode non-affective psychosis. British 
Journal of Psychiatry, 194(1), 18–24.

Dambska, M., Haddad, R., Kozlowski, P. B., Lee, M. H., & Shek,  
J. (1982). Telencephalic cytoarchitectonics in the brains of rats 
with graded degrees of microencephaly. Acta Neuropathologica, 58, 
203–209.

Devylder, J. E., Ben-David, S., Schobel, S. A., Kimhy, D., Malaspina, D., 
& Corcoran, C. M. (2013). Temporal association of stress sensitiv-
ity and symptoms in individuals at clinical high risk for psychosis. 
Psychological Medicine, 43(2), 259–268.

Du, Y., & Grace, A. A. (2013). Peripubertal diazepam administration 
prevents the emergence of dopamine system hyperresponsivity 
in the MAM developmental disruption model of schizophrenia. 
 Neuropsychopharmacology, 38(10), 1881–1888.

Esmaeili, B., & Grace, A. A. (2013). Afferent drive of medial prefrontal 
cortex by hippocampus and amygdala is altered in MAM-treated 
rats: evidence for interneuron dysfunction. Neuropsychopharmacol-
ogy, 38(10), 1871–1880.

Ewing, S. G., & Grace, A. A. (2013). Deep brain stimulation of the ven-
tral hippocampus restores deficits in processing of auditory evoked 
potentials in a rodent developmental disruption model of schizo-
phrenia. Schizophrenia Research, 143(2–3), 377–383.

Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hip-
pocampus functionally distinct structures? Neuron, 65(1), 7–19.

Featherstone, R. E., Rizos, Z., Nobrega, J. N., Kapur, S., & Fletcher, 
P. J. (2007). Gestational methylazoxymethanol acetate treatment 
impairs select cognitive functions: parallels to schizophrenia. Neu-
ropsychopharmacology, 32(2), 483–492.

Fendt, M., Li, L., & Yeomans, J. S. (2001). Brain stem circuits mediating 
prepulse inhibition of the startle reflex. Psychopharmacology (Berl), 
156(2–3), 216–224.

Flagstad, P., Glenthoj, B. Y., & Didriksen, M. (2005). Cognitive deficits 
caused by late gestational disruption of neurogenesis in rats: a pre-
clinical model of schizophrenia. Neuropsychopharmacology, 30(2), 
250–260.

Flagstad, P., Mork, A., Glenthoj, B. Y., van Beek, J., Michael-Titus, A. T., 
& Didriksen, M. (2004). Disruption of neurogenesis on gestational 
day 17 in the rat causes behavioral changes relevant to positive 
and negative schizophrenia symptoms and alters amphetamine-
induced dopamine release in nucleus accumbens. Neuropsychophar-
macology, 29(11), 2052–2064.

Floresco, S. B., Seamans, J. K., & Phillips, A. G. (1997). Selective roles 
for hippocampal, prefrontal cortical, and ventral striatal circuits in 
radial-arm maze task with or without a delay. Journal of Neurosci-
ence, 17(5), 1880–1890.

Floresco, S. B., Todd, C. L., & Grace, A. A. (2001). Glutamatergic affer-
ents from the hippocampus to the nucleus accumbens regulate 
activity of ventral tegmental area dopamine neurons. Journal of 
Neuroscience, 21(13), 4915–4922.

Floresco, S. B., West, A. R., Ash, B., Moore, H., & Grace, A. A. (2003). 
Afferent modulation of dopamine neuron firing differentially regu-
lates tonic and phasic dopamine transmission. Nature Neuroscience, 
6(9), 968–973.

Freeman, A. S., Meltzer, L. T., & Bunney, B. S. (1985). Firing properties 
of substantia nigra dopaminergic neurons in freely moving rats. Life 
Sciences, 36(20), 1983–1994.

Fu, D., Calvo, J. A., & Samson, L. D. (2012). Balancing repair and toler-
ance of DNA damage caused by alkylating agents. Nature Reviews 
Cancer, 12(2), 104–120.

Fuller, R., Nopoulos, P., Arndt, S., O’Leary, D., Ho, B.-C., & Andreasen, 
N. C. (2002). Longitudinal assessment of premorbid cognitive 
functioning in patients with schizophrenia through examination 
of standardized scholastic test performance. American Journal of 
 Psychiatry, 159(7), 1183–1189.

Gabbott, P. L., Warner, T. A., & Busby, S. J. (2006). Amygdala input 
monosynaptically innervates parvalbumin immunoreactive local 
circuit neurons in rat medial prefrontal cortex. Neuroscience, 139(3), 
1039–1048.

Gastambide, F., Cotel, M. C., Gilmour, G., O’Neill, M. J., Robbins, T. W.,  
& Tricklebank, M. D. (2012). Selective remediation of reversal 
learning deficits in the neurodevelopmental MAM model of 
schizophrenia by a novel mGlu5 positive allosteric modulator. 
 Neuropsychopharmacology, 37(4), 1057–1066.

Gelman, S. L., Zaidi, N. H., Dumenco, L. L., Allay, E., Fan, C. Y., Liu, 
L., et al. (1994). Alkyltransferase trangenic mice: probes of chemical 
carcinogenesis. Mutation Research, 307, 541–555.

Gill, K. M., Cook, J. M., Poe, M. M., & Grace, A. A. (2014). Prior anti-
psychotic drug treatment prevents response to novel antipsychotic 
agent in the methylazoxymethanol acetate model of schizophre-
nia. Schizophrenia Bulletin, 40(2), 341–350.

Gill, K. M., & Grace, A. A. (2014). Corresponding decrease in neuro-
nal markers signals progressive parvalbumin neuron loss in MAM 
schizophrenia model. International Journal of Neuropsychopharmacol-
ogy, 17(10), 1609–1619.



8. DYSREGULATION OF DOPAMINE SYSTEMS IN A DEVELOPMENTAL DISRUPTION MODEL OF SCHIZOPHRENIA122

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Gill, K. M., Lodge, D. J., Cook, J. M., Aras, S., & Grace, A. A. (2011). A 
novel α5GABA(A)R-positive allosteric modulator reverses hyper-
activation of the dopamine system in the MAM model of schizo-
phrenia. Neuropsychopharmacology, 36(9), 1903–1911.

Goto, Y., & Grace, A. A. (2006). Alterations in medial prefrontal cortical 
activity and plasticity in rats with disruption of cortical develop-
ment. Biological Psychiatry, 60(11), 1259–1267.

Gourevitch, R., Rocher, C., Le Pen, G., Krebs, M. O., & Jay, T. M. (2004). 
Working memory deficits in adult rats after prenatal disruption of 
neurogenesis. Behavioural Pharmacology, 15(4), 287–292.

Grace, A., Bunney, B. S., Moore, H., & Todd, C. L. (1997). Dopamine-
cell depolarization block as a model for the therapeutic actions of 
antipsychotic drugs. TINS, 20(1), 31–37.

Grace, A. A., Floresco, S. B., Goto, Y., & Lodge, D. J. (2007). Regula-
tion of firing of dopaminergic neurons and control of goal-directed 
behaviors. Trends in Neuroscience, 30(5), 220–227.

Harrison, P. J. (2004). The hippocampus in schizophrenia: a review of 
the neuropathological evidence and its pathophysiological implica-
tions. Psychopharmacology (Berl), 174, 151–162.

Hazane, F., Krebs, M.-O., Jay, T. M., & Le Pen, G. (2009). Behavioral 
perturbations after prenatal neurogenesis disturbance in female rat. 
Neurotoxicity Research, 15, 311–320.

Heckers, S., & Konradi, C. (2002). Hippocampal neurons in schizophre-
nia. Journal of Neural Transmission, 109, 891–905.

Heldt, S. A., & Ressler, K. J. (2007). Forebrain and midbrain distribution 
of major benzodiazepine-sensitive GABA(A) receptor subunits in 
the adult C57 mouse as assessed with in situ hybridization. Neuro-
science, 150, 370–385.

Herman, J. P., & Mueller, N. K. (2006). Role of the ventral subiculum in 
stress integration. Behavioural Brain Research, 174, 215–224.

Hill, M., Crumlish, N., Clarke, M., Whitty, P., Owens, E., Renwick, L., 
et al. (2012). Prospective relationship of duration of untreated psy-
chosis to psychopathology and functional outcome over 12 years. 
Schizophrenia Research, 141, 215–221.

Hoareau, C., Hazane, F., Le Pen, G., & Krebs, M.-O. (2006). Postna-
tal effect of embryonic neurogenesis disturbance on reelin level in 
organotypic cultures of rat hippocampus. Brain Research, 1097, 43–51.

Hoffman, J. R., Boyne, L. J., Levitt, P., & Fischer, I. (1996). Short expo-
sure to methylazoxymethanol causes a long-term inhibition of axo-
nal outgrowth from cultured embryonic rat hippocampal neurons. 
Journal of Neuroscience Research, 46, 349–359.

Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizo-
phrenia: version III – the final common pathway. Schizophrenia 
B ulletin, 35(3), 549–562.

Johnston, M. V., Grzanna, R., & Coyle, J. T. (1979). Methylazoxymetha-
nol treatment of fetal rats results in abnormally dense noradrener-
gic innervation of neocortex. Science, 203(4378), 369–371.

Jonsson, G., & Hallman, H. (1981). Effects of prenatal methylazoxy-
methanol treatment on the development of central monoamine 
neurons. Brain Research, 254(4), 513–530.

Kaina, B., Christmann, M., Naumann, S., & Roos, W. P. (2007). MGMT: key 
node in the battle against genotoxicity, carcinogenicity and apoptosis 
induced by alkylating agents. DNA Repair (Amst), 6(8), 1079–1099.

Kamiya, A., Kubo, K., Tomoda, T., Takaki, M., Youn, R., Ozeki, Y., et al. 
(2005). A schizophrenia-associated mutation of DISC1 perturbs 
cerebral cortex development. Nature Cell Biology, 7(12), 1167–1178.

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework 
linking biology, phenomenology, and pharmacology in schizophre-
nia. American Journal of Psychiatry, 160(1), 13–23.

Kapur, S., & Seeman, P. (2001). Does fast dissociation from the dopa-
mine D2 receptor explain the action of atypical antipsychotics? a 
new hypothesis. American Journal of Psychiatry, 158(3), 360–369.

Kisby, G. E., Kabel, H., Hugon, J., & Spencer, P. (1999). Damage and 
repair of nerve cell DNA in toxic stress. Drug Metabolism Reviews, 
31(3), 589–618.

Kisby, G. E., Olivas, A., Park, T., Churchwell, M., Doerge, D., Samson, 
L. D., et al. (2009). DNA repair modulates the vulnerability of the 
developing brain to alkylating agents. DNA Repair (Amst), 8(3), 
400–412.

Kleihues, P., & Bucheler, J. (1977). Long-term persistence of 
 O6-methylguanine in rat brain DNA. Nature, 269, 625–626.

Koch, M., Fendt, M., & Kretschmer, B. D. (2000). Role of the substantia 
nigra pars reticulata in sensorimotor gating measured by prepulse 
inhibition of startle in rats. Behavioural Brain Research, 117, 153–162.

Kohl, S., Heekeren, K., Klosterkotter, J., & Kuhn, J. (2013). Prepulse 
inhibition in psychiatric disorders – apart from schizophrenia. Jour-
nal of Psychiatric Research, 47(4), 445–452.

Kumari, V., & Sharma, T. (2002). Effects of typical and atypical antipsy-
chotics on prepulse inhibition in schizophrenia: a critical evaluation 
of current evidence and directions for future research. Psychophar-
macology (Berl), 162(2), 97–101.

Lafarga, M., Andres, M. A., Calle, E., & Berciano, M. T. (1998). Reactive 
gliosis of immature Bergmann glia and microglial cell activation in 
response to cell death of granule cell precursors induced by meth-
ylazoxymethanol treatment in developing rat cerebellum. Anatomy 
and Embryology (Berl), 198(2), 111–122.

Lafarga, M., Lerga, A., Andres, M. A., Polanco, J. I., Calle, E., &  Berciano, 
M. T. (1997). Apoptosis induced by methylazoxymethanol in develop-
ing rat cerebellum: organization of the cell nucleus and its relationship 
to DNA and rDNA degradation. Cell and Tissue Research, 289, 25–38.

Lalonde, R. (2002). The neurobiological basis of spontaneous alterna-
tion. Neuroscience & Biobehavioral Reviews, 26, 91–104.

Lane, A., Kinsella, A., Murphy, P., Byrne, M., Keenan, J., Colgan, K., 
et al. (1997). The anthropometric assessment of dysmorphic fea-
tures in schizophrenia as an index of its developmental origins. 
Psychological Medicine, 27, 1155–1164.

Laruelle, M., & Abi-Dargham, A. (1999). Dopamine as the win of the 
psychotic fire: new evidence from brain imaging studies. Journal of 
Psychopharmacology, 13(4), 358–371.

Laurelle, M., Frankle, W. G., Narendran, R., Kegeles, L. S., & 
 Abi-Dargham, A. (2005). Mechanism of action of antipsychotic 
drugs: from dopamine D2 receptor antagonism to glutamate 
NMDA facilitation. Clinical Therapetuics, 27, S16–S24.

Lavin, A., Moore, H. M., & Grace, A. A. (2005). Prenatal disrup-
tion of neocortical development alters prefrontal cortical neuron 
responses to dopamine in adult rats. Neuropsychopharmacology, 
30(8), 1426–1435.

Le Pen, G., Gourevitch, R., Hazane, F., Hoareau, C., Jay, T. M., & Krebs, 
M.-O. (2006). Peri-pubertal maturation after developmental distur-
bance: a model for psychosis onset in the rat. Neuroscience, 143(2), 
395–405.

Le Pen, G., Jay, T. M., & Krebs, M.-O. (2011). Effect of antipsychotics on 
spontaneous hyperactivity and hypersensitivity to  MK-801-induced 
hyperactivity in rats prenatally exposed to methylazoxymethanol. 
Journal of Psychopharmacology, 25(6), 822–835.

Lena, I., Chessel, A., Le Pen, G., Krebs, M.-O., & Garcia, R. (2007). 
Alterations in prefrontal glutamatergic and noradrenergic sys-
tems following MK-801 administration in rats prenatally exposed 
to methylazoxymethanol at gestational day 17. Psychopharmacology 
(Berl), 192(3), 373–383.

Lewis, B. L., & O’Donnell, P. (2000). Ventral tegmental area afferents to 
prefrontal cortex maintain membrane potential ‘up’ states in pyra-
midal neurons via D1 dopamine receptors. Cerebral Cortex, 10(12), 
1168–1175.

Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibi-
tory neurons and schizophrenia. Nature Reviews Neuroscience, 6(4), 
312–324.

Lieberman, J. A., Kinon, B. J., & Loebel, A. D. (1990). Dopaminergic 
mechanisms in idiopathic and drug-induced psychoses. Schizophre-
nia Bulletin, 16(1), 97–110.



REFERENCES 123

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, 
R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic 
drugs in patients with chronic schizophrenia. New England Journal 
of Medicine, 353(12), 1209–1223.

Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., 
Heckers, S., et al. (2008). Circuit-based framework for understand-
ing neurotransmitter and risk gene interactions in schizophrenia. 
Trends in Neurosciences, 31(5), 234–242.

Lodge, D. J., Behrens, M. M., & Grace, A. A. (2009). A loss of parv-
albumin-containing interneurons is associated with diminished 
oscillatory activity in an animal model of schizophrenia. Journal of 
Neuroscience, 29(8), 2344–2354.

Lodge, D. J., & Grace, A. A. (2006). The hippocampus modulates dopa-
mine neuron responsivity by regulating the intensity of phasic neu-
ron activation. Neuropsychopharmacology, 31, 1356–1361.

Lodge, D. J., & Grace, A. A. (2007). Aberrant hippocampal activ-
ity underlies the dopamine dysregulation in an animal model of 
schizophrenia. Journal of Neuroscience, 27(42), 11424–11430.

Matsumoto, H., & Strong, F. M. (1963). The occurrence of methylazoxy-
methanol in Cycas circinalids L. Archives of Biochemistry and Biophys-
ics, 101, 299–310.

McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress 
and adaptation: links to socioeconomic status, health, and disease. 
Annals of the New York Academy of Sciences, 1186, 190–222.

Medoff, D. R., Holcomb, H. H., Lahti, A. C., & Tamminga, C. A. (2001). 
Probing the human hippocampus using rCBF: contrasts in schizo-
phrenia. Hippocampus, 11, 543–550.

Mei, L., & Xiong, W.-C. (2008). Neuregulin 1 in neural development, 
synaptic plasticity and schizophrenia. Nature Reviews Neuroscience, 
9, 437–453.

Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Ventura, 
J., McFarlane, W., et al. (2003). Prodromal assessment with the 
structured interview for prodromal symptoms and the scale of 
prodromal symptoms: predictive validity, interrater reliability, and 
training to reliability. Schizophrenia Bulletin, 29(4), 703–715.

Molina, V., Reig, S., Pascau, J., Sanz, J., Sarramea, F., Gispert, J. D., 
et al. (2003). Anatomical and functional cerebral variables associ-
ated with basal symptoms but not risperidone response in mini-
mally treated schizophrenia. Psychiatric Research: Neuroimaging, 124, 
164–175.

Moore, H., Jentsch, J. D., Ghajarnia, M., Geyer, M. A., & Grace, A. A. 
(2006). A neurobehavioral systems analysis of adult rats exposed to 
methylazoxymethanol acetate on E17: implications for the neuro-
pathology of schizophrenia. Biological Psychiatry, 60, 253–264.

Mueser, K. T., & McGurk, S. R. (2004). Schizophrenia. Lancet, 363, 
2063–2072.

Noonan, E. M., Shah, D., Yaffe, M. B., Lauffenburger, D. A., &  Samson, L. 
D. (2012). O6-methylguanine DNA lesions induce an  intra-S-phase 
arrest from which cells exit into apoptosis governed by early 
and late multi-pathway signaling network activation.  Integrative 
 Biology, 4, 1237–1255.

O’Callaghan, E., Gibson, T., Colohan, H. A., Buckley, P., Walshe, D. G., 
Larkin, C., et al. (1992). Risk of schizophrenia in adults born after 
obstetric complications and their association with early onset of ill-
ness: a controlled study. BMJ, 305(6864), 1256–1259.

O’Donnell, P., & Grace, A. A. (1995). Synaptic interactions among 
excitatory afferents to nucleus accumbens neurons: hippocampal 
gating of prefrontal cortical input. Journal of Neuroscience, 15(5), 
3622–3639.

Owens, D. G. C., Miller, P., Lawrie, S. M., & Johnstone, E. C. (2005). 
Pathogenesis of schizophrenia: a psychopathological perspective. 
British Journal of Psychiatry, 186, 386–393.

Pan, W.-X., & Hyland, B. I. (2005). Pedunculopontine tegmental nucleus 
controls conditioned responses of midbrain dopamine neurons in 
behaving rats. Journal of Neuroscience, 25(19), 4725–4732.

Penschuck, S., Flagstad, P., Didriksen, M., Leist, M., & Michael-Titus,  
A. T. (2006). Decrease in parvalbumin-expressing neurons in the 
hippocampus and increased phencyclidine-induced locomotor 
activity in the rat methylazoxymethanol (MAM) model of schizo-
phrenia. European Journal of Neuroscience, 23(1), 279–284.

Perez, S. M., Carreno, F. R., Frazer, A., & Lodge, D. J. (2014). Vagal 
nerve stimulation reverses aberrant dopamine system function in 
the methylazoxymethanol acetate rodent model of schizophrenia. 
Journal of Neuroscience, 34(28), 9261–9267.

Perez, S. M., Shah, A., Asher, A., & Lodge, D. J. (2013). Hippocampal 
deep brain stimulation reverses physiological and behavioural 
deficits in a rodent model of schizophrenia. International Journal of 
Neuropsychopharmacology, 16(6), 1331–1339.

Perry, W., & Braff, D. L. (1994). Information-processing deficits and 
thought disorder in schizophrenia. American Journal of Psychiatry, 
151(3), 363–367.

Phillips, K. G., Bartsch, U., McCarthy, A. P., Edgar, D. M., Tricklebank, 
M. D., Wafford, K. A., et al. (2012). Decoupling of sleep-dependent 
cortical and hippocampal interactions in a neurodevelopmental 
model of schizophrenia. Neuron, 76(3), 526–533.

Phillips, K. G., Cotel, M. C., McCarthy, A. P., Edgar, D. M., Tricklebank, 
M., O’Neill, M. J., et al. (2012). Differential effects of NMDA antago-
nists on high frequency and gamma EEG oscillations in a neuro-
developmental model of schizophrenia. Neuropharmacology, 62(3), 
1359–1370.

Phillips, L. J., Yung, A. R., Yuen, H. P., Pantelis, C., & McGorry, P. D. 
(2002). Prediction and prevention of transition to psychosis in 
young people at incipient risk for schizophrenia. American Journal 
of Medical Genetics, 114, 929–937.

Ragozzino, M. E. (2007). The contribution of the medial prefrontal cor-
tex, orbitofrontal cortex, and dorsomedial striatum to behavioral 
flexibility. Annals of the New York Academy of Sciences, 1121, 355–375.

Rao, R. P., Anilkumar, S., McEwen, B. S., & Chattarji, S. (2012). Glu-
cocorticoids protect against the delayed behavioral and cellular 
effects of acute stress on the amygdala. Biological Psychiatry, 72(6), 
466–475.

Rodier, P. M. (1986). Behavioral effects of antimitotic agents adminis-
tered during neurogenesis. In E. P. Riley, & C. V. Vorhees (Eds.), 
Handbook of behavioral teratology (pp. 185–209). New York: Plenum 
Press.

Schobel, S. A., Chaudhury, N. H., Khan, U. A., Paniagua, B., Styner, 
M. A., Asllani, I., et al. (2013). Imaging patients with psychosis 
and a mouse model establishes a spreading pattern of hippocam-
pal dysfunction and implicates glutamate as a driver. Neuron, 
78(1), 81–93.

Schobel, S. A., Lewandowski, N. M., Corcoran, C. M., Moore, H., 
Brown, T., Malaspina, D., et al. (2009). Differential targeting of the 
CA1 subfield of the hippocampal formation by schizophrenia and 
related psychotic disorders. Archives of General Psychiatry, 66(9), 
938–946.

Schoenfeld, T. J., Rada, P., Pieruzzini, P. R., Hsueh, B., & Gould, E. 
(2013). Physical exercise prevents stress-induced activation of gran-
ule neurons and enhances local inhibitory mechanisms in the den-
tate gyrus. Journal of Neuroscience, 33(18), 7770–7777.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Jour-
nal of Neurophysiology, 80, 1–27.

Shiraishi, A., Sakumi, K., & Sekiguchi, M. (2000). Increased susceptibil-
ity to chemotherapeutic alkylating agents of mice deficient in DNA 
repair methyltransferase. Carcinogenesis, 21(10), 1879–1883.

Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., & Gould, E. 
(2001). Neurogenesis in the adult is involved in the formation of 
trace memories. Nature, 410, 372–376.

Siapas, A. G., & Wilson, M. A. (1998). Coordinated interactions between 
hippocampal ripples and cortical spindles during slow-wave sleep. 
Neuron, 21(5), 1123–1128.



8. DYSREGULATION OF DOPAMINE SYSTEMS IN A DEVELOPMENTAL DISRUPTION MODEL OF SCHIZOPHRENIA124

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin 
neurons and gamma rhythms enhance cortical circuit performance. 
Nature, 459(7247), 698–702.

Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A. C., Roy, D. N., & Ross, 
S. M. (1987). Guam amyotrophic lateral sclerosis-parkinsonism-
dementia linked to a plant excitant neurotoxin. Science, 237(4814), 
517–522.

Steen, R. G., Mull, C., McClure, R., Hamer, R. M., & Lieberman, J. A. 
(2006). Brain volume in first-episode schizophrenia. British Journal 
of Psychiatry, 188, 510–518.

Steinecke, A., Gampe, C., Valkova, C., Kaether, C., & Boltz, J. (2012). 
Disrupted-in-schizophrenia 1 (DISC1) is necessary for the correct 
migration of cortical interneurons. Journal of Neuroscience, 32(2), 
738–745.

Steullet, P., Cabungcal, J.-H., Kulak, A., Kraftsik, R., Chen, Y., Dalton, 
T. P., et al. (2010). Redox dysregulation affects the ventral but not 
dorsal hippocampus: impairment of parvalbumin neurons, gamma 
oscillations, and related behaviors. Journal of Neuroscience, 30(7), 
2547–2558.

Stone, J. M., Howes, O. D., Egerton, A., Kambeitz, J., Allen, P., Lythgoe, 
D. J., et al. (2010). Altered relationship between hippocampal gluta-
mate levels and striatal dopamine function in subjects at ultra high 
risk of psychosis. Biological Psychiatry, 68, 599–602.

Straub, R. E., & Weinberger, D. R. (2006). Schizophrenia genes – famine 
to feast. Biological Psychiatry, 60, 81–83.

Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a 
complex trait. Archives of General Psychiatry, 60, 1187–1192.

Swerdlow, N. R., Geyer, M. A., & Braff, D. L. (2001). Neural circuit 
regulation of prepulse inhibition of startle in the rat: current 
knowledge and future challenges. Psychopharmacology (Berl), 156, 
194–215.

Tamminga, C. A., Stan, A. D., & Wagner, A. D. (2010). The hippocampal 
formation in schizophrenia. American Journal of Psychiatry, 167(10), 
1178–1193.

Tan, H.-Y., Callicott, J. H., & Weinberger, D. R. (2007). Dysfunctional 
and compensatory prefrontal cortical systems, genes and the patho-
genesis of schizophrenia. Cerebral Cortex, 17, i171–i181.

Thompson, J. L., Pogue-Geile, M. F., & Grace, A. A. (2004). Develop-
mental pathology, dopamine, and stress: a model for the age of 
onset of schizophrenia symptoms. Schizophrenia Bulletin, 30(4), 
875–900.

Tseng, K. Y., & O’Donnell, P. (2005). Dopaminergic modulation of corti-
cal and striatal UP states. In J. P. Bolam, C. A. Ingham, & P. J. Magil 
(Eds.), The Basal Ganglia VIII (pp. 467–474). Singapore: Springer.

Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and 
synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 
100–113.

Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endo-
crine and autonomic stress responses. Nature Reviews Neuroscience, 
10, 397–409.

Ungless, M. A., & Grace, A. A. (2012). Are you or aren’t you? Chal-
lenges associated with physiologically identifying dopamine 
 neurons. Trends in Neurosciences, 35(7), 422–430.

Valenti, O., Cifelli, P., Gill, K. M., & Grace, A. A. (2011). Antipsychotic 
drugs rapidly induce dopamine neuron depolarization block in a 
developmental rat model of schizophrenia. Journal of Neuroscience, 
31(34), 12330–12338.

Valenti, O., Lodge, D. J., & Grace, A. A. (2011). Aversive stimuli alter 
ventral tegmental area dopamine neuron activity via a common 
action in the ventral hippocampus. Journal of Neuroscience, 31(11), 
4280–4289.

Volk, D. W., & Lewis, D. A. (2010). Prefrontal cortical circuits in schizo-
phrenia. In N. Swerdlow (Ed.), Behavioral neurobiology of schizophre-
nia and its treatment (pp. 485–508). New York: Springer-Verlag Berlin 
Heidelberg.

Walker, E. F., & Diforio, D. (1997). Schizophrenia: a neural diathesis-
stress model. Psychological Review, 104(4), 667–685.

van der Werf, M., Hanssen, M., Kohler, S., Verkaaik, M., Verhey, F. R., & 
Allardyce, J. (2014). Systematic review and collaborative recalcula-
tion of 133,693 incident cases of schizophrenia. Psychological Medi-
cine, 44(1), 9–16.

Weinberger, D. R., & Berman, K. F. (1996). Prefrontal function in schizo-
phrenia: confounds and controversies. Philosophical Transactions of 
the Royal Society of London, 351(1346), 1495–1503.

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocam-
pal ensemble memories during sleep. Science, 265(5172), 676–679.

van Winkel, R., Stefanis, N. C., & Myin-Germeys, I. (2008). Psychoso-
cial stress and psychosis. A review of the neurobiological mecha-
nisms and the evidence for gene-stress interaction. Schizophrenia 
Bulletin, 34(6), 1095–1105.

Winterer, G., & Weinberger, D. R. (2004). Genes, dopamine and cortical 
signal-to-noise ratio in schizophrenia. Trends in Neuroscience, 27(11), 
683–690.

Yung, A. R., Yuen, H. P., McGorry, P. D., Phillips, L. J., Kelly, D., 
Dell’Olio, M., et al. (2005). Mapping the onset of psychosis: the 
comprehensive assessment of at-risk mental states. Australian and 
New Zealand Journal of Psychiatry, 39, 964–971.

Zhang, W., Pouzet, B., Jongen-Rêlo, A. L., Weiner, I., & Feldon, J. (1999). 
Disruption of prepulse inhibition following N-methyl-d-aspartate 
infusion into the ventral hippocampus is antagonized by clozapine 
but not by haloperiodol: a possible model for the screening of atypi-
cal antipsychotics. NeuroReport, 10(12), 2533–2538.

Zhang, Z. J., & Reynolds, G. P. (2002). A selective decrease in the rela-
tive density of parvalbumin-immunoreactive neurons in the hippo-
campus in schizophrenia. Schizophrenia Research, 55, 1–10.

Zimmerman, E. C., Bellaire, M., Ewing, S. G., & Grace, A. A. (2013). 
Abnormal stress responsivity in a rodent developmental disrup-
tion model of schizophrenia. Neuropsychopharmacology, 38(11), 
2131–2139.



Handbook of Behavioral Neuroscience
http://dx.doi.org/10.1016/B978-0-12-800981-9.00009-2 © 2016 Elsevier B.V. All rights reserved.

125

SOCIAL ISOLATION REARING IN RATS

Social isolation rearing (SIR) of rodents is a devel-
opmental manipulation in which postweanling rats 
are raised to adulthood in single-housed cages, absent 
from social contact with other rats. Raising postwean-
ling animals in single-housed conditions deprives them 
of social interactions during a developmental period in 
which play behavior emerges (Einon & Morgan, 1977). 
One consequence of SIR is that animals are deprived of 
stimuli critical to behavioral and neurobiological devel-
opment (reviewed in Hall, 1998). This environmental 
manipulation leads to profound and enduring effects 
on behavior, immune function, and brain development. 
Some of the long-term alterations in brain function and 
behavior that emerge after SIR are reminiscent of abnor-
malities exhibited in developmentally linked brain dis-
orders such as schizophrenia (Geyer, Wilkinson, Humby, &  
Robbins, 1993; Powell & Geyer, 2002).

The consequences of SIR are investigated to under-
stand the impact of aberrant social development on the 
adult brain and behavior, as a model for abnormal brain 
development and its behavioral consequences in differ-
ent clinical conditions. There are at least two potentially 
overlapping pathways by which the effects of SIR might 
be relevant to the etiology of developmental brain disor-
ders, and we do not yet know the degree to which the neuro-
biological and behavioral effects of the experimentally induced 
SIR model has on one, both, or neither of these pathways.

First, as a chronic developmental stressor, SIR allows 
us to study the biological impact of sustained stress 
in early life. Sustained early life stress has been impli-
cated as a predisposing factor in many different forms of 
psychopathology. For example, chronic stress-induced 
immune activation might have direct or indirect neu-
rotoxic effects that degrade specific neural circuits and 
thereby contribute to the conversion to psychosis in 
predisposed individuals; by studying mechanisms and 
neural targets of SIR-induced immune activation, we 
might identify potentially neuroprotective interventions 
that could be applied to biomarker-identified vulnerable 
individuals.

Second, pre- and postpubertal social withdrawal and 
isolation are primary manifestations of certain brain  
disorders, including some forms of schizophrenia. These 
primary symptoms might then have secondary biological 
consequences, through the loss of normal, neurostimula-
tory social interactions. To the degree that experimentally 
and symptomatically imposed social isolation both result 
in the loss of a normal neurostimulatory environmental 
social structure (e.g., cues, learning, circadian entrain-
ment, etc.), SIR might inform us about the potentially 
lifelong neural and behavioral consequences of symp-
tomatic social withdrawal and impaired social cogni-
tion in schizophrenia and related developmental brain 
disorders.

Clearly, these two pathways—stress-induced 
neurotoxicity and isolation-induced loss of 
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neurostimulation—might converge at multiple levels. 
For example, psychosocial adversity during early life 
can clearly both (1) trigger chronic stress cascades and 
(2) be a consequence of the functional impairment result-
ing from premorbid social cognitive deficits in mental 
illness (Figure 1).

Neurobiological Consequences of SIR

SIR rats exhibit profound abnormalities in behav-
ior, drug responses, and neurochemistry compared to 
rats reared in social groups (cf., Fone & Porkess, 2008; 
Hall, 1998; Powell, 2010; Powell & Geyer, 2002). These 
abnormalities include evidence for dopamine hyperre-
activity: (1) increased behavioral sensitivity to dopamine 
agonists (Bowling & Bardo, 1994; Jones, Hernandez, 
Kendall, Marsden, & Robbins, 1992; Jones, Marsden, & 
Robbins, 1990; Sahakian, Robbins, Morgan, & Iversen, 
1975), (2) reduced responsivity to dopamine antagonists 
(Sahakian, Robbins, & Iversen, 1977), (3) elevated basal 
and amphetamine-stimulated dopamine release in the 
nucleus accumbens (NAC) and/or dorsal striatum (Hall 
et al., 1998; Han, Wang, Shao, & Li, 2011; Jones et al., 
1992; Möller, Du Preez, Viljoen, Berk, Emsley, et al., 2013; 
Yorgason, España, Konstantopoulos, Weiner, & Jones, 
2013), (4) elevated dopamine concentrations (Jones et al., 
1992) and altered dopamine turnover (Blanc et al., 1980) 
in the frontal cortex, and (5) increased firing activity of 
dopamine neurons (Fabricius et al., 2010).

In addition to alterations in dopamine function, SIR rats 
display abnormalities in the hippocampus, thalamus, and 
frontal cortex. For example, SIR rats have an increased den-
sity of 5-HT1A receptors in the hippocampus (Del-Bel, Joca, 
Padovan, & Guimaraes, 2002; Preece, Dalley, Theobald,  
Robbins, & Reynolds, 2004). SIR rats have reduced  
synaptophysin immunoreactivity in the dentate gyrus 
(Varty, Marsden, & Higgins, 1999); synaptophysin is a 
synapse-specific protein involved in neurotransmitter 
release, and its expression is reduced within certain hippo-
campal subfields in schizophrenia (Eastwood & Harrison,  
1995). There is also evidence of reduced BDNF in the hippo-
campus (Scaccianoce et al., 2006) and decreased spine den-
sity in SIR rats (Silva-Gomez, Rojas, Juarez, & Flores, 2003). 
Loss of parvalbumin (PV)-positive GABA interneurons 
observed in SIR rats (Harte, Powell, Swerdlow, Geyer, &  
Reynolds, 2007; Schiavone et al., 2009) may reproduce 
some features of cellular abnormalities reported in 
the hippocampus and frontal cortex of schizophrenia 
patients (Reynolds, Abdul-Monim, Neill, & Zhang, 2004; 
Reynolds & Beasley, 2001). Metabolic abnormalities in 
the hippocampus and thalamus after SIR were reported 
by Bonab et al. (2012).

We might expect that postweaning manipulations 
would have greatest effects on later-developing brain 
structures such as the prefrontal cortex (PFC). Abnormal-
ities in the PFC detected in SIR rats include the following: 
(1) abnormal firing of PFC pyramidal cells upon dopamine 
stimulation from VTA neurons (Peters & O’Donnell, 2005); 

FIGURE 1 Hypothesized role of social isolation in the developmental pathophysiology of schizophrenia. The schematic is a hypotheti-
cal framework for the role of social withdrawal and social isolation in the course of illness of schizophrenia. Represented here are the proposed 
pathways in which social isolation exerts its effects on neural circuits and, conversely, how cognitive deficits, functional impairments, and peer/
social rejection contribute to social isolation. This framework suggests that psychosocial adversity during early life can both (1) trigger chronic 
stress cascades and (2) be a consequence of the functional impairment resulting from premorbid social cognitive deficits in mental illness. Red 
arrows indicate effects of adolescent SIR studied in model organisms without premorbid pathology (e.g., rat SIR; reviewed in this chapter). A “?” 
indicates the putative, but as yet unknown, biological mechanisms (e.g., immune, metabolic) through which SIR may mediate its effects on neural 
circuits relevant to disease pathology.



SocIal ISolatIoN ReaRING IN RatS 127

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

(2) decreased PFC volume (Day-Wilson, Jones, Southam, 
Cilia, & Totterdell, 2006; Schubert, Porkess, Dashdorj, 
Fone, & Auer, 2009); (3) decreased PFC dendritic arbo-
rization (Pascual, Zamora-Leon, & Valero-Cabre, 2006; 
Silva-Gomez et al., 2003); and (4) decreased basal dopa-
mine turnover in the infralimbic part of the medial pre-
frontal cortex (Heidbreder et al., 2000) and depressed 
immediate early gene expression (Levine et al., 2007). 
Neurochemical perturbations after SIR in other limbic-
forebrain regions include (1) increased basal dopamine 
turnover in the amygdaloid complex; (2) decreased 
basal turnover of serotonin in the nucleus accumbens 
(Heidbreder et al., 2000); and (3) evidence of increased 
oxidative stress (increased superoxide dismutase 
activity, decreased oxidized:reduced glutathione ratio 
and increased lipid peroxidation) in limbic cortico-stri-
atal circuitry (Möller, Du Preez, Emsley, & Harvey, 2011).

No clear unifying mechanism has been established as the 
cause of the widespread pathology that follows SIR. That 
the neural consequences of SIR are identified across 
widely distributed brain regions (e.g., hippocampus, 
amygdala, PFC, and nucleus accumbens, among oth-
ers) and levels of cellular function indicate that this 
developmental manipulation reproduces the broadly 
distributed pathological findings in developmental 
brain disorders such as schizophrenia (cf., Swerdlow, 
2011) raises the possibility that these consequences 
reflect one or more processes with diffuse cerebral 
impact, such as alterations in immune function (e.g., 
Levine et al., 2008; Wellen & Hotamisligil, 2005) or 
changes in the blood–brain barrier (e.g., Osburg et al., 
2002; Quagliarello, Wispelwey, Long, & Scheld, 1991). 
Indeed, inflammatory cytokines have been reported 
to be activated by SIR (e.g., Lukasz et al., 2013; Möller, 
Du Preez, Viljoen, Berk, Emsley, et al., 2013), and SIR 
impairs such basic somatic mechanisms as wound heal-
ing (Detillion, Craft, Glasper, Prendergast, & DeVries, 
2004; Glasper & Devries, 2005; Levine et al., 2008). 
Recently, a clear role for nicotinamide adenosine dinu-
cleotide phosphate oxidase 2 (Nox2)-dependent oxida-
tive mechanisms in the SIR model was demonstrated 
(Schiavone et al., 2009). Corroborating our earlier  
work (Harte et al., 2007), Schiavone et al. (2009) reported 
decreased PV immunoreactivity in the brains of SIR 
rats, which was associated with elevations in Nox2. 
The decrease in PV-staining and deficits in novel object 
recognition were blocked by treatment with the Nox2 
inhibitor apocynin in SIR rats (Schiavone et al., 2009). 
While there are large knowledge gaps to fill in this 
area, it is not inconceivable that such changes—which 
in some cases re-create reported inflammatory distur-
bances in schizophrenia (cf., Meyer, 2013)—might have 
more far-reaching effects on systemic processes that 
could influence a broad range of neural functions, from 
metabolic alterations (Kern, Ranganathan, Li, Wood, & 

Ranganathan, 2001; Park, Park, & Yu, 2005; Wellen & 
Hotamisligil, 2005) to neurotoxic deviations in tryto-
phan metabolism (cf., Muller, Myint, & Schwarz, 2011; 
Silver et al., 1992) to dysregulation of the gut–brain 
microbiome (Bercik & Collins, 2014).

Behavioral Consequences

Given the widely distributed neural changes after 
SIR, it is not surprising that SIR rats exhibit a broad 
range of behavioral disturbances; in fact, it is beyond 
the scope of this review to catalog these changes in 
a comprehensive way. The behavioral “nonspecific-
ity” of this experimental manipulation is supported 
by the fact that SIR is associated with abnormalities 
ranging from unconditioned, simple motor activity 
to more complex tasks of learning and memory. One 
challenge in understanding such a diffuse behavioral 
profile is that behavioral measures do not reflect uni-
tary processes, and it is highly likely that SIR-induced 
disturbances across multiple behaviors reflect shared 
mechanisms at both neural and behavioral levels. 
Nonetheless, because reports generally describe distur-
bances in a very limited subset of these measures, there 
is no simple way to identify sources of shared variance or 
hierarchical structure among these behavioral disturbances. 
In some cases, SIR-relevant phenotypes can be dissoci-
ated (e.g., see below, PPI and startle magnitude), while 
in others, there is like substantial mechanistic overlap 
(e.g., deficits in different learning-based tasks).

SIR rats show elevated levels and slowed habitua-
tion of locomotor activity in novel environments (Hall, 
1998; Jones et al., 1990; Jones, Robbins, & Marsden, 1989; 
Lapiz, Mateo, Parker, & Marsden, 2000; Paulus, Bakshi, &  
Geyer, 1998; Sahakian et al., 1975; Varty, Paulus, Braff, 
& Geyer, 2000), increased investigatory behavior (e.g.,  
rearings, holepokes; Lapiz et al., 2000; Paulus et al., 1998), 
and an increased preference for a novel environment 
(Hall, Humby, Wilkinson, & Robbins, 1997). Additionally, 
SIR rats show increased anxiety-like behavior in both the 
elevated plus maze and a variety of open-field assays (Da 
Silva, Ferreira, Carobrez Ade, & Morato, 1996; Hori et al., 
2014; McCool & Chappell, 2009; Molina-Hernandez,  
Tellez-Alcantara, & Perez-Garcia, 2001; Wright, Upton, & 
Marsden, 1991), deficits in fear learning (Weiss, Pryce, 
Jongen-Relo, Nanz-Bahr, & Feldon, 2004), impaired rec-
ognition memory (e.g., novel object recognition; Bianchi 
et al., 2006; McLean et al., 2010), increased aggression 
(Wongwitdecha & Marsden, 1996), impulsivity (Zeeb, 
Wong, & Winstanley, 2013) and reactivity to novelty 
(Gentsch, Lichtsteiner, Frischknecht, Feer, & Siegfried, 
1988; Hall et al., 1997), reduced spatial memory (Quan, 
Tian, Xu, Zhang, & Yang, 2010), and cognitive inflex-
ibility as demonstrated by deficits in reversal learning 
(Amitai et al., 2013; Krech, Rosenzweig, & Bennett, 1962; 
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Schrijver, Pallier, Brown, & Wurbel, 2004; Schrijver & 
Wurbel, 2001) and extradimensional set-shifting tasks 
(McLean et al., 2010; Schrijver & Wurbel, 2001).

In some cases, SIR paradigms that do not elicit robust  
behavioral disturbances still produce rats with an 
enhanced sensitivity to the behavioral effects of psy-
choactive drugs. For example, Lim, Taylor, and Malone 
(2012) reported that SIR rats exhibited normal locomotor 
levels and novel object recognition at baseline; in con-
trast, SIR (but not socially housed rats) exhibited hyper-
activity and impaired NOR if they had received a low 
dose of the NMDA antagonist, MK-801, during postnatal 
days 7–10. A number of reports have also documented 
that SIR-induced behavioral (and systemic) disturbances 
can be prevented or reversed by pharmacological (e.g., 
clozapine; Möller, Du Preez, Viljoen, Berk, Emsley, et al., 
2013; oxytocin; Vitalo et al., 2009), behavioral (e.g., tick-
ling; Hori et al., 2014), and environmental manipulations 
(e.g., environmental enrichment; Vitalo et al., 2009).

REDUCED PREPULSE INHIBITION  
AFTER SIR

One behavioral measure that has been extensively 
studied in SIR rats is prepulse inhibition of the acoustic 
startle response (PPI). PPI is a laboratory-based opera-
tional measure of sensorimotor gating in which a weak 
prepulse inhibits the magnitude of a startle response to 
an intense, abrupt “pulse” occurring 30–120 ms later. PPI 
is easily studied in laboratory animals, using stimulus 
parameters and equipment for stimulus delivery and 
response acquisition that are similar or identical to those 
used in humans (cf., Swerdlow, Weber, Qu, Light, & 
Braff, 2008).

Perhaps the main reason that PPI has been so exten-
sively studied across species is that Braff et al. (1978) 
reported that schizophrenia patients exhibited deficient 
PPI: prepulses did not generate full levels of inhibition 
in these patients, compared to matched healthy com-
parison subjects. Indeed, since Braff et al.’s original 
finding, PPI deficits in schizophrenia or “prodromal” 
patients have been detected in over 40 PubMed reports 
(cf., Swerdlow et al., 2014). However, reduced PPI is not 
specific to patients with schizophrenia: it has also been 
detected in patients with Huntington’s disease (Swerd-
low, Paulsen, et al., 1995; Valls-Sole, Munoz, & Valldeo-
riola, 2004), obsessive compulsive disorder (Ahmari, 
Risbrough, Geyer, & Simpson, 2012; Hoenig, Hochrein, 
Quednow, Maier, & Wagner, 2005; Swerdlow, Benbow, 
Zisook, Geyer, & Braff, 1993), nocturnal enuresis (Ornitz, 
Hanna, & de Traversay, 1992), Asperger’s syndrome 
(McAlonan et al., 2002), 22q11 syndrome (Sobin, Kiley-
Brabeck, & Karayiorgou, 2005), Kleinfelter syndrome 
(van Rijn, Swaab, Magnee, van Engeland, & Kemner, 

2011), Fragile-X syndrome (Frankland et al., 2004), 
blepharospasm (Gomez-Wong, Marti, Tolosa, & Valls-
Sole, 1998), and Tourette syndrome (Castellanos et al., 
1996; Swerdlow et al., 2001). Nonetheless, PPI deficits in 
schizophrenia patients are highly heritable (Greenwood 
et al., 2007), associated with specific genes (Greenwood 
et al., 2011; Greenwood, Light, Swerdlow, Radant, & 
Braff, 2012), sensitive to second-generation antipsychot-
ics (e.g., Swerdlow et al., 2006; Swerdlow et al., 2014) 
and related to global function in these patients (Swerd-
low et al., 2006).

Geyer et al. (1993) first reported that SIR rats show 
deficits in PPI; this finding has been reproduced by 
many different groups (Bristow, Landon, Saywell, & 
Tricklebank, 1995; Cilia, Hatcher, Reavill, & Jones, 2005; 
Cilia, Reavill, Hagan, & Jones, 2001; Powell, Swerdlow, 
Pitcher, & Geyer, 2002; Swerdlow et al., 2013; Varty & 
Higgins, 1995; Wilkinson et al., 1994). Equally clear from 
the onset has been that the PPI-reducing effects of SIR 
are “fragile” (e.g., Weiss, Feldon, & Domeney, 1999), 
with different groups reporting paradigmatic differ-
ences that impact the magnitude and consistency of SIR-
induced PPI deficits. The basis for this fragility is not well 
understood, and the longitudinal and labor-intensive nature 
of the SIR paradigm is not fully conducive to the types of con-
trolled, parametric analyses that might clarify the variable 
effects of SIR on PPI. Some factors have been associated 
with differential effects of SIR on PPI, as noted briefly 
below, but the mechanisms by which these factors mod-
erate SIR effects remain obscure. The difficulty in consis-
tently reproducing SIR-induced PPI deficits is similar to 
the difficulty observed with other developmental mod-
els of relevance to schizophrenia such as prenatal stress, 
maternal immune activation, and maternal toxins (e.g., 
methylazoxymethanol acetate, MAM) in terms of repro-
ducibility and consistency of effects across laboratories 
(Powell, 2010).

Methodological and Parametric Considerations

 1.  Timing: Deficits in PPI produced by SIR are 
developmentally specific in that they only appear 
when social isolation occurs early, during the 
postnatal period, and not in rats isolated as adults 
(Wilkinson et al., 1994). In a typical SIR paradigm, 
rats are isolated postweaning (typically pnd 24–28), 
and PPI is tested in early adulthood, e.g., pnd 53–63. 
Earlier weaning (e.g., pnd 21) does not enhance 
and may hinder the development of SIR-induced 
PPI deficits (Cilia, Hatcher, et al., 2005), though in 
some cases, persistent SIR-induced PPI deficits are 
detected after only 2 weeks of postweaning SIR (Liu, 
Kao, & Tung, 2011). In some cases, PPI deficits in 
SIR rats have been detected early in adulthood, but 
they have faded with both age and repeated testing 
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(e.g., Swerdlow et al., 2013). In other cases, PPI 
deficits in SIR rats have been found to be repeatable 
(Powell et al., 2002) and persistent throughout later 
adulthood (Cilia, Hatcher, et al., 2005; Cilia et al., 
2001). Among parametric manipulations tested for 
their impact on the development of SIR-induced 
PPI deficits, these deficits are prevented by rat 
handling (Krebs-Thomson, Giracello, Solis, & Geyer, 
2001; Rosa et al., 2005; Sciolino et al., 2010) and are 
no longer detected after subjecting rats to other 
experimental measures (e.g., activity monitoring; 
Domeney & Feldon, 1998) or electrophysiological 
measures (e.g., Swerdlow et al., 2013) but are not 
enhanced by concomitant stressors such as water 
deprivation (Powell et al., 2002).

 2.  Sex: SIR-induced PPI deficits are alternately reported 
only in male rats (e.g., Swerdlow et al., 2013), only 
in female rats (e.g., Powell, Risbrough, & Geyer, 
2003), or in both male and female rats (e.g., Powell 
et al., 2002), though often with preferential effects 
displayed by one or the other sex. It is worth noting 
that studies differing in the magnitude of SIR-
induced PPI deficits across male and female rats 
also differ in the strain of rat, and no systematic 
comparisons have attempted to disentangle these 
two factors.

 3.  Strain and species: Several studies have detected 
strain differences in the magnitude or even presence 
of SIR-induced PPI deficits in rats. Varty and Geyer 
(1998) reported SIR-induced PPI deficits in Sprague 
Dawley and Fischer rats, but not Lewis rats. Wistar, 
Long Evans, Lister hooded, and Buffalo rats all 
exhibit SIR-induced PPI deficits, though deficits  
in Wistars tend to be easily interrupted (Domeney &  
Feldon, 1998) or even absent in some studies 
(Weiss, Di Iorio, Feldon, & Domeney, 2000), those 
in Long Evans rats tend to favor female over males 
(Powell et al., 2002), and those in Buffalo rats were 
detected exclusively in males (Swerdlow et al., 2013). 
More recent studies have also shown that several 
different mouse strains that exhibit SIR-induced PPI 
deficits (e.g., ddY, 129T2, C57BL/6) (Dai et al., 2004; 
Sakaue, Ago, Baba, & Matsuda, 2003; Varty, Powell, 
Lehmann-Masten, Buell, & Geyer, 2006; although 
see Pietropaolo, Singer, Feldon, & Yee, 2008). 
Strain differences in SIR-induced PPI deficits are 
expected based on the proposed gene × environment 
interactions that modulate complex behavior. Strain-
specific effects of an environmental manipulation 
such as SIR are similar to strain differences observed 
in response to dopamine agonists (Rigdon, 1990; 
Swerdlow et al., 2000; Swerdlow, Shoemaker, 
Auerbach, et al., 2004; Swerdlow, Shoemaker, Crain, 
et al., 2004; Swerdlow, Shoemaker, Platten, et al., 
2004; Swerdlow et al., 2003) as well as epistatic 

interactions in which gene deletion has different 
effects on PPI and other behaviors depending on 
the background mouse strain (e.g., FMR1 KO mice; 
Pietropaolo, Guilleminot, Martin, D’Amato, & 
Crusio, 2011; Spencer et al., 2011).

In laboratory animals and humans, social 
interaction is essential for pair bonding, parental 
care, and cooperation (Trezza, Campolongo, & 
Vanderschuren, 2011). Conceptually, one would 
predict that SIR might have the greatest impact 
on PPI and other measures of brain function in 
species that rely most heavily on social contact after 
being weaned from the mother. To date, however, 
these effects of SIR on PPI have only been tested 
systematically in rats and mice, and there is no 
clear relationship between levels of positive social 
contact (typically rat > mice) versus aggression 
(typically mice > rats) and the magnitude of SIR-
induced PPI deficits. One report describes differential 
development of PPI among human infants born to 
mothers who reported more vs. less social  
isolation during pregnancy (Huggenberger, Suter, 
Blumenthal, & Schachinger, 2013).

 4.  Startle magnitude: Two other startle phenotypes that 
appear to be variably impacted by SIR are startle 
reflex magnitude and habituation. Startle magnitude 
is often (e.g., Heidbreder et al., 2000) but not 
always potentiated in SIR rats (e.g., Cilia, Hatcher, 
et al., 2005; five out of 19 SIR cohorts exhibited 
enhanced startle; but see Roncada et al., 2009), and 
these effects are dissociated from changes in PPI. 
In some cases, startle potentiation is detected after 
SIR while PPI remains unchanged; for example, we 
detected potentiated startle in both male and female 
SIR Buffalo rats, while PPI deficits were evident 
only in males (Swerdlow et al., 2013). Importantly, 
changes in startle magnitude can often confound 
the interpretation of changes in PPI (cf., Swerdlow 
et al., 2000), and in cases where both measures are 
impacted by SIR, it has been possible to demonstrate 
that these effects were independent (Cilia, Hatcher, 
et al., 2005; Swerdlow et al., 2013). SIR-potentiated 
startle is thought to be regulated by interacting 
neuropeptide systems, with a prominent role of 
corticotropin-releasing factor activity in the shell 
of the nucleus accumbens (Nair, Gutman, Davis, 
& Young, 2005). In addition to increased startle 
magnitude, SIR also has been associated with slower 
rates of startle habituation (for reviews, see Geyer, 
Krebs-Thomson, Braff, & Swerdlow, 2001; Geyer 
et al., 1993; Powell & Geyer, 2002; Weiss & Feldon, 
2001).

 5.  The “unknowns”: Chronic developmental 
manipulations present many methodological 
complexities, and for SIR, these are multiplied by 
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the known sensitivity of SIR effects to environmental 
stimulation. Thus, it is likely, though untested, that 
variability in the magnitude of SIR effects on PPI and 
other phenotypes across laboratories might reflect 
evanescent factors such as the following: (1) the 
proximity and (2) olfactory and acoustic insulation 
of individually housed relative to socially housed 
rats, both in the rat colony and when rodents are 
moved for laboratory testing, (3) patterns and styles 
of animal handling during changes in cage bedding, 
water, and food, or health maintenance, and weight 
checks, etc. For example, the degree to which 
testing chambers are cleaned of olfactory signals 
between tests of socially housed and SIR rats might 
conceivably impact the robustness of SIR-induced 
behavioral changes. Weiss et al. (1999) reported that 
Wistar rats housed in grid floor cages did not show 
SIR-induced PPI deficits, whereas those housed in 
sawdust bedding did show SIR-induced PPI deficits. 
While investigators strive to control and document 
many of these methodological variables, in truth, it is 
very difficult to maintain such methods with perfect 
consistency over 8–16 weeks of animal housing, care, 
and testing, particularly when designs generally 
call for contemporaneous housing, care, and testing 
of both socially reared and SIR groups; moreover, 
variations from such protocols are likely to happen 
“invisibly” in the vast majority of hours during 
which SIR rats are being maintained by individuals 
other than the senior investigators and authors of the 
SIR reports.

Neural Substrates of SIR-Induced PPI Deficits

Systemic Pharmacology
Many studies report the “reversal” of SIR-induced 

PPI deficits by systemic drug administration, though in 
truth, many fewer studies have actually demonstrated 
such a “reversal.” A reversal of SIR effects can only be 
demonstrated when the same SIR cohorts are tested 
under two order-balanced conditions (i.e., a within-sub-
ject cross-over design), and the SIR effects are detected in 
one but not the other condition. In fact, many studies of 
acute pharmacological effects on SIR-induced PPI defi-
cits use a between-subject design in which PPI after active 
drug administration in one group of SIR rats is compared 
to PPI after placebo administration in a second group 
of SIR rats. In this design, the absence (or reduction) in 
SIR-induced PPI deficits after active drug treatment is 
most clearly interpreted as a blockade (or diminution) of 
the expression of these deficits, rather than a “reversal” 
per se. One reason for the use of this between-subject 
design is that repeated testing of SIR rats (required for a 
within-subject assessment of two or more drug doses) is 
often associated with a weakening of SIR effects on PPI  

(e.g., Dashti, Aboutaleb, & Shahbazi, 2013). Using this 
within-subject cross-over design, reversals of SIR-
induced PPI deficits have been demonstrated with an 
alpha7 nicotinic receptor agonist (Cilia, Cluderay, et al., 
2005), the histamine H3 receptor antagonist GSK207040 
(Southam et al., 2009), and the 5-HT2A/D4 antagonists 
(Geyer et al., 1999).

To our knowledge, absent from the literature are stud-
ies assessing the ability of a drug to prevent the devel-
opment of SIR-induced PPI deficits. This approach has 
been used to demonstrate the ability of handling, envi-
ronmental enrichment, and even oxytocin to prevent the 
behavioral and immunological effects of SIR in rats (e.g., 
Vitalo et al., 2009) and the ability of the Nox2 inhibitor 
apocynin to prevent the decrease in PV-staining and 
deficits in novel object recognition in SIR rats (Schia-
vone et al., 2009), but to our knowledge has not been 
attempted with pharmacologic interventions and SIR-
induced PPI deficits. From a perspective of modeling 
preventative interventions to protect vulnerable indi-
viduals from pathological consequences of developmen-
tal stressors, such an approach would seem particularly 
powerful (Powell, Risbrough, et al., 2003).

Nonetheless, a substantial literature does demon-
strate that expression of SIR-induced PPI deficits can 
be blocked or diminished by acute pharmacologic chal-
lenge. In fact, a long list of drugs with very diverse 
pharmacologic properties can prevent or reduce the 
expression of SIR-induced PPI deficits in rats, including 
typical antipsychotics (Geyer et al., 1993; Varty & Higgins,  
1995), atypical antipsychotics (Bakshi, Swerdlow, Braff, & 
Geyer, 1998; but see also Barr, Powell, Markou, & Geyer, 
2006; Cilia et al., 2001; Varty & Higgins, 1995), and the 
glycine/NMDA receptor antagonist, L-701,324 (Bristow 
et al., 1995). In mice, the pharmacology of SIR-induced 
PPI deficits is equally diverse, with these deficits being 
blocked by the acetylcholinesterase (AChE) inhibitors 
galantamine (Koda et al., 2008), the 5HT1A receptor ago-
nist, osemozotan (Sakaue et al., 2003), and the metabo-
tropic glutamate 2/3 receptor agonist MGS0028 (Ago 
et al., 2012). Clearly, the heterogeneous pharmacology of 
drugs capable of preventing the expression of SIR effects 
on PPI argues against any single locus of neural dysreg-
ulation as a basis for these deficits.

Additionally, the pharmacological blockade or rever-
sal of SIR-induced PPI deficits shows at least some 
specificity to antipsychotics or putative antipsychotics.  
To assess the specificity of this predictive model, PPI 
has been measured in isolation-reared rats after acute 
treatments with selected nonantipsychotic psychoactive 
drugs. Isolation rearing-induced deficits in PPI are not 
blocked by the anxiolytic diazepam (Nakato, Morita, 
Wanibuchi, & Yamaguchi, 1997; Varty & Higgins, 1995) 
or the antidepressant amitriptyline (Nakato et al., 1997). 
One pitfall with the use of SIR as a screen for novel 
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antipsychotic drugs is that it is costly and time-consuming. 
Although the model has several benefits over pharma-
cologically induced deficits in PPI (Geyer et al., 2001; 
Varty & Higgins, 1995), individual investigators need to 
determine the cost/benefit ratio when assessing its use 
as a screening tool. Additionally, as with most environ-
mental and many pharmacological manipulations, isola-
tion-rearing effects on PPI are dependent on the strain, 
the handling procedures, and the caging conditions 
(see above), which may be problematic in establishing a 
pharmacological screen.

Relevant Associated Neural Changes
In rats, PPI is regulated by interconnected limbic-fore-

brain structures and their projections to lower pontine 
circuitry, likely including the pedunculopontine nucleus 
(cf., Swerdlow et al., 2008). Many of the brain regions 
that exhibit identifiable changes after SIR are among 
those known to regulate PPI, including the hippocam-
pus (Caine, Geyer, & Swerdlow, 1991; Caine, Geyer, & 
Swerdlow, 1992; Swerdlow, Lipska, et al., 1995), amygdala 
(Swerdlow, Caine, & Geyer, 1992; Wan & Swerdlow, 1997), 
PFC (Bubser & Koch, 1994; Swerdlow, Lipska, et al., 1995), 
thalamus (Kodsi & Swerdlow, 1997; Wolf et al., 2010), and 
nucleus accumbens (Swerdlow, Braff, Geyer, & Koob, 
1986; Swerdlow, Braff, Masten, & Geyer, 1990). Clearly, 
SIR-induced changes in these brain regions would likely 
contribute to the observed PPI deficits in SIR rats; in fact, 
it would seem plausible that changes within multiple 
different levels of interconnected limbic cortico-striato-
pallido-pontine (CSPP) circuitry might result from SIR, 
and that the phenotype of reduced PPI in SIR rats might 
reflect the integrated impact of these circuit changes on 
structures that ultimately mediate PPI, that is, determine 
the inhibitory impact of the lead stimulus on the startle 
reflex, somewhere within the pontine tegmentum (Koch, 
Kungel, & Herbert, 1993; Swerdlow et al., 1992; Swerdlow 
& Geyer, 1993). The hypothesis that this CSPP circuitry 
might mediate PPI deficits produced by a number of dis-
parate experimental manipulations—developmental and 
otherwise—has been supported by several reports (e.g., 
Risterucci et al., 2005).

Of course, this parsimonious hypothesis—that SIR-
induced PPI deficits reflect SIR-induced changes in one 
or more levels of limbic CSPP circuitry—has never been 
tested, and it may even be premature to claim that it is sup-
ported by strong inference. As described above, the “frag-
ile” nature of SIR-induced PPI deficits makes it difficult 
to test specific neural mechanisms as the basis for behav-
ioral changes that are somewhat unpredictable in mag-
nitude and durability (e.g., Dashti et al., 2013). In truth, 
while we have accumulated evidence for the variability 
of the SIR-induced PPI phenotype, the consistency and 
robustness of SIR-induced changes in any particular level 
or levels of limbic CSPP circuitry has not been tested in 

a manner that allows a systematic matching of neural 
changes and PPI deficits, though studies focused on cor-
relations of SIR-disrupted PPI and neural changes within 
a single brain region have been reported (e.g., Harte 
et al., 2007). More generally, if we believe that SIR trig-
gers consistent changes in a specific brain substrate, for 
example, the hippocampus, it is unclear how such consis-
tent changes could explain SIR-induced PPI deficits that 
are much less consistent. Presumably, in cohorts where 
SIR-induced PPI deficits are not detected (e.g., female 
Buffalo rats; Swerdlow et al., 2013), we would expect 
that the PPI-relevant SIR-induced neural changes would 
also not be detected, or at least would be less marked, 
compared to cohorts where such PPI deficits are robust. 
Given the multiplicity of SIR-induced circuit changes, it 
would seem equally possible that cohorts not exhibiting 
SIR-induced PPI deficits might have changes in multi-
ple levels of limbic CSPP circuitry, with “downstream”  
changes that compensate for the potentially PPI-disruptive  
effects of “upstream” changes (e.g., Forcelli, West, 
Murnen, & Malkova, 2012; Swerdlow, Braff, & Geyer, 
1990). And, given the number of reports of strain differ-
ence in SIR-induced PPI phenotypes (above), as well as 
strain differences in PPI and its regulation by specific 
forebrain substrates (e.g., Shilling, Saint Marie, Shoe-
maker, & Swerdlow, 2008; Swerdlow, Breier, & Saint 
Marie, 2011), it seems plausible that PPI deficits in differ-
ent rat strains might reflect distinct SIR-induced changes 
within PPI-regulatory circuitry. Thus, the search for a 
“final common substrate” explaining SIR-induced PPI 
deficits in different experimental cohorts—strain, sexes, 
species, etc.—might not ultimately be productive.

Perhaps more importantly, the notion that SIR-
induced PPI deficits reflect dysregulation within an inte-
grated circuit suggests the possibility that these deficits 
might be reversed by interventions that may not directly 
impact the “primary” insult. Thus, SIR-induced PPI defi-
cits can be blocked by dopamine antagonists (e.g., Bak-
shi et al., 1998) and by mesolimbic dopamine depletion 
(Powell, Geyer, et al., 2003), and yet elevated mesolimbic 
dopamine activity is equivocal in SIR rats (no change: 
Howes, Dalley, Morrison, Robbins, & Everitt, 2000; Leng, 
Feldon, & Ferger, 2004; elevations: Fabricius et al., 2010; 
Han et al., 2011; Möller, Du Preez, Viljoen, Berk, & Har-
vey, 2013; Yorgason et al., 2013); similarly, SIR-induced 
PPI deficits can be blocked by systemic administration 
of an alpha-7 nicotinic receptor agonist (Cilia, Cluderay, 
et al., 2005), but there is no evidence that SIR disrupts 
normal functions of alpha-7 nicotinic receptors. In some 
cases, indirect association implicates specific circuit-level 
changes with SIR-induced PPI deficits: for example, SIR 
causes changes in endocannabinoid signaling across a 
number of levels of CSPP circuitry (Sciolino et al., 2010), 
only some of which (e.g., PFC) are prevented by frequent 
handling that also prevents SIR-induced PPI deficits. 



9. SOCIAL ISOLATION REARING AND SENSORIMOTOR GATING IN RAT MODELS132

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Similarly, SIR triggers increased measures of oxida-
tive stress in limbic cortico-striatal circuitry and aber-
rant tryptophan metabolism, and both of these changes 
as well as SIR-induced PPI deficits are reversed by the 
atypical antipsychotic clozapine (Möller et al., 2011; 
Möller, Du Preez, Viljoen, Berk, Emsley, et al., 2013). 
These examples suggest very specific mechanisms for 
normalized PPI in SIR rats (handling-induced changes in 
PFC endocannabinoid systems, and clozapine-induced 
normalization of a cortico-striatal redox disequilibrium  
reflecting aberrant tryptophan metabolism shifted 
toward quinolinic acid production). But the more plausi-
ble explanation for behavioral changes after a pervasive 
developmental stressor is that (1) they reflect the dysreg-
ulation of widely distributed and interconnected neural 
circuits; (2) because it involves multiple different nodes 
or “hubs” of neural activity, this circuit dysregulation 
manifests itself in complex and multifaceted behavioral 
phenotypes; and (3) some of these phenotypes (includ-
ing reduced PPI) can be moderated via interventions 
targeting different levels of, and substrates within, this 
circuitry.

Gene Expression
Consistent with the heterogeneous behavioral and 

neural effects of SIR in rats, and the many different phar-
macological targets capable of moderating SIR-induced 
changes in PPI, the list of alterations in gene expression 
after SIR, and particularly those associated with PPI 
deficits, is long and diverse. Reductions in nonspecific, 
immediate, early gene expression in the PFC have been 
reported (Levine et al., 2008; Wall, Fischer, & Bland, 2012), 
as have reductions in more specific forms of gene expres-
sion, including mRNA relevant to glutamate (Turnock-
Jones et al., 2009; Zhao et al., 2009), endocannabinoid 
(Robinson, Loiacono, Christopoulos, Sexton, & Malone, 
2010), and serotonin function (Martin et al., 2010).

Our recent findings (Swerdlow et al., 2013) suggest 
that even when SIR does not change the absolute levels 
of gene expression in the PFC and ventral striatum, the 
functional consequences of that expression (reflecting 
the integrated output of a larger circuitry) can change. 
Thus, after SIR that disrupted PPI in male Buffalo rats, 
absolute expression levels of seven PPI- and schizophre-
nia-associated genes in the PFC and nucleus accumbens 
did not differ in SIR versus socially reared rats. How-
ever, in SIR rats (and not in socially reared rats), these 
expression levels in the PFC correlated significantly and 
positively with PPI, and expression levels in the nucleus 
accumbens correlated significantly and negatively with 
PPI. Based on evidence suggesting that region-specific 
expression levels in these genes tracked levels of regional 
cellular activation (Swerdlow et al., 2012), we interpreted 
these findings to indicate that higher PFC activity was 
associated with sparing of PPI after SIR, while within the 

nucleus accumbens, relative quiescence was associated 
with sparing of PPI. Presumably, these relationships of 
regional activity to post-SIR PPI would be mediated via 
downstream effects within CSPP circuitry.

RELEVANCE TO DEFICIENT 
SENSORIMOTOR GATING IN 

SCHIZOPHRENIA?

As noted above, PPI deficits are detected in a number 
of different brain disorders, and different models with 
construct validity for these disorders have been shown 
to produce rodents that also exhibit impaired PPI. For 
example, mice transgenic for the Huntington gene 
(Carter et al., 1999) and knock-outs for histidine decar-
boxylase (Castellan Baldan et al., 2014) both exhibit 
impaired PPI, recapitulating the PPI deficits detected 
in patients with Huntington’s disease and Tourette syn-
drome, respectively, which are each associated with 
these genetic “lesions.” In each case, these models offer 
a relatively specific mechanism for the observed PPI 
phenotype, with potential homology to the human 
condition.

By contrast, it is very likely that SIR-induced PPI defi-
cits relate to those detected in schizophrenia in a man-
ner that is much less direct, and via mechanisms with 
more diffuse and dispersed effects on CSPP and other 
circuitry. Perhaps the facts that both schizophrenia and 
SIR are associated with (1) a developmental insult; (2) an 
overlapping, widely distributed neuropathology; and (3) 
a specific behavioral deficit—reduced PPI—supports the 
hypothesis that SIR-induced PPI deficits in rats is a model 
with construct validity for PPI deficits detected in schizo-
phrenia patients. Certainly, the chronic stress and depri-
vation of social stimulation imparted by SIR may have 
naturalistic similarities to the sustained developmental 
stress and symptomatic social isolation that character-
ize schizophrenia. But the intermediate steps between 
these two psychological processes and reduced PPI in 
schizophrenia remain obscure. Indeed, compared to SIR, 
other developmental models yielding PPI deficits in  
rodents, for example, in utero immune activation (Meyer,  
Feldon, Schedlowski, & Yee, 2005), hypoxia (Vaillancourt &  
Boksa, 2000), or neonatal lesions (Lipska et al., 1995) are 
closer to specific biological mechanisms with potential 
etiological ties to schizophrenia. Nonetheless, some of 
these models—particularly those related to immune 
activation—may ultimately be informative about poten-
tial biological mechanisms for SIR-induced PPI deficits. 
In fact, elevations in oxidative stress pathways appear 
across several neurodevelopmental models including 
maternal immune activation (cf., Boksa, 2010), neona-
tal ventral hippocampal lesions (Cabungcal et al., 2014), 
and SIR (Möller et al., 2011; Möller, Du Preez, Viljoen, 
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Berk, Emsley, et al., 2013; Schiavone et al., 2009) and, 
hence, may provide a common underlying mechanisms 
for several models of dysfunctional brain development 
(Powell, Sejnowski, & Behrens, 2012).

As noted above, even if SIR-induced PPI deficits do 
model PPI deficits in schizophrenia, it remains unclear 
whether the basis for this model reflects the primary cause of 
the disorder, e.g., neurotoxic effects of stress/immune activa-
tion or secondary effects of symptomatic social isolation. We 
know that schizophrenia patients experience social isola-
tion: in both retrospective and prospective studies, social 
isolation is a nonspecific symptom that appears early in 
the course of schizophrenia (Hafner et al., 2003; Møller & 
Husby, 2000) and in those at a genetic risk for schizophre-
nia (Dworkin et al., 1991; Dworkin, Lewis, Cornblatt, & 
Erlenmeyer-Kimling, 1994). Social withdrawal and isola-
tion are thought to increase disease risk and conversion 
to psychosis in prodromal patients (Addington, Penn, 
Woods, Addington, & Perkins, 2008). Indeed, social 
functioning, among other factors, predicts conversion 
to psychosis in patients at a high risk of developing psy-
chosis (Cannon et al., 2008). And conversely, therapies 
that strengthen social skills enhance function in schizo-
phrenia patients (Granholm, Holden, Link, & McQuaid, 
2014). No studies to date have reported the relationship 
of premorbid social function to postconversion PPI levels 
in schizophrenia patients.

One finding highlighting the complex causal relation-
ship between social isolation and the expression of PPI 
deficits comes from studies of healthy, socially reared 
adult Wistar rats, in which high levels of PPI predicted 
high levels of social interaction, and low levels of PPI 
predicted low levels of social interactions (Goktalay, 
Kayir, Ulusoy, & Uzbay, 2014); neither levels of PPI 
nor social interaction was associated with anxiety-like 
traits, assessed by elevated plus maze. Thus, low trait 
levels of social interaction—presumably associated with 
reduced socially generated neurostimulation, but pre-
sumably not associated with stress-induced inflamma-
tory brain injury or other pathological events—were 
accompanied by low levels of PPI. Clearly, this connec-
tion of trait social interactions and PPI might reflect a 
third phenotype, for example, two ends of the normal 
distribution of basal forebrain oxytocin expression or 
amygdala activity levels, but this finding, to the degree 
that it has cross-species validity, suggests that we do not 
need to implicate pathological changes in brain circuitry 
as a mechanism linking the expression of low PPI and 
low social activity. In a related observation, oxytocin, 
which increases social interactions in rats, increases PPI 
in rat strains with low “trait” PPI levels (Feifel, Shilling, 
& Belcher, 2012). Again, social interactions and low PPI 
can be linked mechanistically without the need to invoke 
pathological processes caused by the stress associated 
with developmental social isolation.

CONCLUSIONS

SIR-induced PPI deficits in rodents remains an attrac-
tive heuristic model for how a “naturalistic,” nonpharma-
cological, and nonlesion developmental intervention can 
generate a very specific behavioral phenotype expressed 
by patients with schizophrenia. Reduced PPI is one of 
many behavioral deficits in SIR rats, and there is no sim-
ple way to identify sources of shared variance or hierar-
chical structure among these behavioral disturbances. 
SIR-induced PPI deficits are expressed to varying degrees 
across studies and are often diminished or eliminated by 
interventions like handling or repeated testing; the basis 
for this “fragility” is not well understood. SIR has widely 
dispersed neural consequences for which no clear unify-
ing mechanism has yet been established. Moreover, with 
SIR-induced changes identified at many levels of PPI-reg-
ulatory circuitry, no single SIR-induced “lesion” is known 
to be causative to reduced PPI after SIR. At a very basic 
level, it remains unclear whether the basis for reduced 
PPI after SIR reflects a process that might be linked to 
the primary pathology underlying a brain disorder, for 
example, neurotoxic effects of stress/immune activation, 
or that it, instead, is a secondary effect of symptoms, such 
as impaired social function and consequent social isola-
tion. Some findings from animal studies suggest that 
low PPI and low social interactions may be traits linked 
even within normal cohorts, independent of any brain 
pathology, but suggestive that they may be co-varying 
traits representing normal variations in underlying neu-
ral circuitry. Whether, and how, this normal association 
of reflexive and social traits is relevant to the behavioral 
effects of SIR in rats, or to the behavioral consequences of 
symptomatic social withdrawal in schizophrenia, is wor-
thy of future consideration.
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Recent pharmacological approaches to modeling 
schizophrenia have focused on behavioral and neu-
ral effects of glutamatergic drugs. Pharmacological 
approaches had previously focused on two categories of 
drugs that produce psychosis-like symptoms: drugs that 
increase dopamine transmission (agonists or transporter 
blockers) and hallucinogens (e.g., Lysergic acid diethyl-
amide (LSD)). Dopamine-modulating drugs have been 
reviewed extensively in this regard as these effects have 
played a key role in the formulation of the pivotal dopa-
mine hypothesis of schizophrenia in the 1970s and its sub-
sequent revisions (Howes, McCutcheon, & Stone, 2015; 
Lieberman, Kane, & Alvir, 1987; Moran, O’Tuathaigh, 
Papaleo, & Waddington, 2014). Hallucinogenic drugs, 
which interact with serotonin 5-HT2A receptors, have 
recently been re-evaluated in this context following some 
neglect since the 1970s (e.g., Halberstadt, 2015; Hanks 
& Gonzalez-Maeso, 2013; Martin, Marona-Lewicka, 
Nichols, & Nichols, 2014). However, there is increasing 
evidence that glutamate abnormality is central to the 
pathophysiology of schizophrenia and may represent an 
alternative therapeutic target to dopamine and serotonin.

Drugs that block the N-methyl-d-aspartate recep-
tor (NMDA-R) have been known to induce “schizo-
phrenia-like” symptoms in healthy individuals since 
the 1960s, when it was reported that subanesthetic 

doses of phencyclidine (PCP) consistently produced 
symptoms such as affective flattening, depersonali-
zation, derealization, avolition, thought disorganiza-
tion, and perseveration (Davies & Beech, 1960; Luby, 
Cohen, Rosenbaum, Gottlieb, & Kelley, 1959). Similar 
controlled observations have since been made with 
other NMDA-R antagonists such as ketamine (Krystal, 
Karper, Seibyl, et al., 1994), CGS-19,755 (Grotta et al., 
1995), and traxoprodil (Preskorn et al., 2008).

This review will first give an overview of which 
human behaviors are affected by acute NMDA-R 
antagonism and how this might relate to symptom 
dimensions in schizophrenia. It will then integrate 
physiological findings to propose a model of how 
NMDA-R antagonists induce these behavioral changes 
and discuss how accurately the acute NMDA-R antago-
nism model in rodents translates to human conditions. 
Finally, we evaluate whether emphasis on the phar-
macokinetics and pharmacodynamics of NMDA-R  
antagonists in published studies may help to dif-
ferentiate between the diversity of effects they have 
been reported to produce, to potentially explain dis-
crepancies between animal and human findings, and 
help to guide future studies. Specifically, for the stud-
ies reviewed here, we have made every effort to cal-
culate an estimated global receptor occupancy (ROest) 
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of NMDA-Rs given the dose and administration time 
point each study uses, based on the receptor occupancy 
normalization approach of Shaffer et al.1 ( Shaffer, 
Osgood, Smith, Liu, & Trapa, 2014).

BEHAVIORAL EFFECTS IN HUMANS

NMDA-R antagonists were initially developed as 
general anesthetics and to have anesthetic effects when 
administered at doses sufficient to cause blockade of at 
least 70% of the brain’s NMDA-Rs (Domino et al., 1982). 
However, it was observed that once consciousness was 
regained, patients frequently displayed psychotic symp-
toms (Knox, Bovill, Clarke, & Dundee, 1970). As a con-
sequence, investigators have used ketamine to model 
schizophrenia, since it possesses a safer clinical profile 
than PCP. There does appear to be good concordance 
between some of the positive symptoms of schizophre-
nia and the behavioral effects of ketamine. The Brief Psy-
chiatric Rating Scale (BPRS) is widely used to measure 
dimensions of positive symptoms such as behavioral 
activation, conceptual disorganization, hallucinatory 
behavior, hostility–suspiciousness, and unusual thought 
content. It has been shown that within 10 min of an intra-
venous ketamine infusion (equivalent to ∼10% brain 
NMDA-R blockade) there is a significant increase in all 
of these symptoms (Krystal et al., 1994), and this find-
ing has been widely replicated at numerous doses (Abel, 
Allin, Hemsley, & Geyer, 2003; Deakin et al., 2008; Lahti, 
Weiler, Tamara, Parwani, & Tamminga, 2001; Malhotra 
et al., 1996; Newcomer et al., 1999) (see Table 1). In addi-
tion, ketamine augments BPRS measured symptoms in 
schizophrenia patients at doses with occupancy as low 
as 8% ROest (Lahti et al., 2001).

A core positive symptom of schizophrenia is delusion-
ality (Kapur, 2003), which among other explanations is 
proposed to arise from a “jumping to conclusions” bias 
in schizophrenia (Moritz & Woodward, 2005). On proba-
bilistic sampling tasks, schizophrenia patients consis-
tently make fewer samples than healthy controls before 
making a confident decision (Moritz &  Woodward, 
2005). However, ketamine infused with a ROest of 25% or 
35% has no effect on this task (Evans et al., 2012).

Disturbances in sense of agency are common in 
schizophrenia, with patients frequently reporting the 
insertion of thoughts and external control of their actions 

(Voss et al., 2010). In healthy volunteers, ketamine at 35% 
ROest is able to enhance the rubber hand illusion (Morgan 
et al., 2011). Self-reports of a perception of limb disown-
ership have also occurred at 32% ROest ( Pomarol-Clotet 
et al., 2006).

Cognitive and perceptual fragmentation has been 
proposed as a basic, bottom-up disturbance that pre-
cedes delusion formation in schizophrenia (Uhlhaas & 
Mishara, 2007), with patients seemingly unable to con-
textualize whole scenes and instead focusing on these 
“fragments” in an incorrect order. Similar subjective 
effects have been reported with ketamine at a wide range 
of doses, with significantly higher scores of “visionary 
restructuralization” on a Five-dimension Altered States 
of Consciousness (5D-ASC) scale (Studerus, Gamma, & 
Vollenweider, 2010).

RELATING TO NEGATIVE SYMPTOMS OF 
SCHIZOPHRENIA

Ketamine at 10% ROest significantly increases three 
key negative BPRS symptoms: blunted affect, emo-
tional withdrawal, and motor retardation (Krystal et al., 
1994). Ketamine also increases dissociative symptoms 
on the Clinician-Administered Dissociative States Scale 
(CADSS) at this dose, and it increases “disembodiment” 
on the OAV scale at a range of doses (Studerus et al., 
2010). These findings are widely replicated (see Table 1). 
For example, ketamine increased social withdrawal and 
blunted effect on the Positive and Negative Symptoms 
Scale (PANSS), at 23% ROest (Driesen et al., 2013). It also 
significantly increased affective flattening, avolition, and 
anhedonia—but not alogia or attention—at 16% ROest, 
but not at 4% ROest (Newcomer et al., 1999). Despite 
these effects, ketamine is abused as a recreational drug 
(Morris & Wallach, 2014), and one study found that par-
ticipants reported liking and desire of the drug at doses 
of 21–35% ROest (Morgan, Mofeez, Brandner, Bromley, 
& Curran, 2004), although there was also a higher rat-
ing of discontentedness. On the 5D-ASC scale, ketamine 
has been reported to induce both blissful and dreadful 
states (Studerus et al., 2010). Likewise, ketamine has 
been shown to have antianhedonic effects in depressed 
patients at doses similar to those producing anhedo-
nia in healthy participants, although this effect persists 
long after elimination of the drug and, therefore, may 

1 To estimate the percentage of receptor occupancy (RO%) by ketamine, first the unbound plasma concentration (Cp,u) was calculated 
using Eqn (1), with Molecular Weight (MW) equalling 237.725 g/mol and plasma unbound fraction equalling 0.71 for humans (0.64 
for rats). The receptor occupancy (RO%) was then calculated using Eqn (2), with an assumed Imax of 100% and IC50 of 1420 nM (Shaffer 
et al., 2014).

 Cp,u (nM) = (plasma concentration in nM/MW)×1000 × plasma unbound fraction. (1)

 RO%=
(
Cp,u × Imax

)
/
(
Cp,u + IC50

)
. (2)
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TABLE 1 Behavioral Effects Resembling Symptoms of Schizophrenia Upon Ketamine Administration

Symptom Effect Dose; (Plasma) Time Point (mins) %ROest Task/Measure n Effect in Schizophrenia

POSITIVE SYMPTOMS

Psychosis ↑(Krystal et al., 1994) 0.5 mg/kg T + 10–80 10–35 BPRS 18 ↑(Lahti et al., 2001)

↑(Abel, Allin, Hemsley, et al., 2003) 0.5 mg/kg T + 35 30 20

↑(Lahti et al., 2001) 0.3 mg/kg bolus; (80 ng/mL) T + 20 14 18

↑(Malhotra et al., 1996) 0.77 mg/kg T + 55 15

↑(Newcomer et al., 1999) (90 ng/mL) T + 30 16 15

Delusionality ↔(Evans et al., 2012) (150 ng/mL) 24 Beads task 16 ↑(Evans et al., 2012)

(250 ng/mL) 34 16

Referential ideation ↑(Corlett et al., 2006) (210 ng/mL) 31 PSE 15 ↑(Owens, Miller, Lawrie, 
& Johnstone, 2005)

Self-monitoring 
abnormalities

↑(Morgan et al., 2011) (258 ng/mL) 35 Rubber hand 
illusion

15 ↑(Thakkar, Nichols, 
McIntosh, & Park, 2011)

Visionary 
restructuralization

↑(Studerus et al., 2010) 0.24–0.72 mg/kga T + 25–120 5D-ASC 109 ↑(Uhlhaas & Mishara, 
2007)

NEGATIVE SYMPTOMS

Dissociation ↑(Krystal et al., 1994) 0.5 mg/kg T + 10–80 10–35 CADSS 19 ↑(Peralta & Cuesta, 1994)

↑(Studerus et al., 2010) 0.24–0.72 mg/kga T + 25–120 5D-ASC 109

Social withdrawal, 
blunted affect

↑(Driesen et al., 2013) 0.58 mg/kg; (140 ng/mL) 23 PANSS 22

Anhedonia, avolition, 
blunted affect

↑(Newcomer et al., 1999) (90 ng/mL) T + 30 16 SANS 15

↔(Newcomer et al., 1999) (20 ng/mL) 4 15

↑(Radant et al., 1998) (100–200 ng/mL) T + 0–120 17–30 10

COGNITIVE SYMPTOMS

Sustained attention ↓(Krystal et al., 1994) 0.5 mg/kg T + 20–80 17–35 Visual CPT 14 ↓(Nuechterlein et al., 2004)

↓(Malhotra et al., 1996) 0.77 mg/kg T + 55 Verbal CPT 15

↔(Newcomer et al., 1999) (90 ng/mL) 16 Stroop task 15

Visual CPT

↔(Oranje et al., 2000) (130 ng/mL) 21 Auditory CPT 18

Continued
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Symptom Effect Dose; (Plasma) Time Point (mins) %ROest Task/Measure n Effect in Schizophrenia

Verbal fluency ↔(Abel, Allin, Hemsley, et al., 2003) 0.5 mg/kg T + 35 30 FAS fluency 20 ↓(Nuechterlein et al., 2004)

↔(Rowland, Astur, et al., 2005) 0.27 mg/kg T + 45 9

↓(Krystal et al., 1994) 0.5 mg/kg T + 20–80 17–35 15

↔(Newcomer et al., 1999) (90 ng/mL) 16 15

Verbal working memory 
(WM)

↓(Krystal et al., 1994) 0.5 mg/kg T + 10 10 10 min delay 16 ↓(Forbes et al., 2009)

↓(Malhotra et al., 1996) 0.77 mg/kg T + 55 >35 2+ min delay 15

↓(Abel, Allin, Hemsley, et al., 2003) 0.5 mg/kg T + 35 30 Digit span 20

↔(Rowland, Astur, et al., 2005) 0.27 mg/kg T + 45 9

↓(Newcomer et al., 1999) 0.05 mg/kg 3 30 min delay 15

Visual WM ↓(Honey et al., 2008) (100 ng/mL) 17 n-back 14

Spatial WM ↓(Rowland, Astur, et al., 2005) 0.27 mg/kg T + 45 Virtual maze 8

↔(Newcomer et al., 1999) (90 ng/mL) 16 120 s delay 15

↔(Honey et al., 2004) (50 ng/mL) T + 5 10–17 7 s delay, 
manipulation

12

(100 ng/mL)

Verbal episodic memory ↓(Honey, Honey, Sharar, et al., 2005) (50 ng/mL) T + 210 5–7 Encoding 12 ↓(Fletcher & Honey, 2006)

↔(Honey, Honey, O’Loughlin, et al., 
2005)

(100 ng/mL) 6–8 12

↔(Honey, Honey, Sharar, et al., 2005) (50 ng/mL) T + 60 10–17 Retrieval 12

↔(Honey, Honey, O’Loughlin, et al., 
2005)

(100 ng/mL) 10–17 12

Impulsivity ↔(Morgan et al., 2004) 0.4 mg/kg T + 50 21 Hayling task 
part B errors

18 ↑(Chan et al., 2012)

(130 ng/mL)

↑(Morgan et al., 2004) 0.8 mg/kg 35 18

(260 ng/mL)

Attentional set shifting ↓(Krystal et al., 1994) 0.5 mg/kg T + 20–80 17–35 WCST 19 ↓(Leeson et al., 2009)

↓(Krystal et al., 2000) 0.87 mg/kg T + 40 >30 15

SANS: Scale for the assessment of negative symptoms; 5D-ASC: Five-dimension altered states of consciousness scale; PSE: Present state examination; FAS: Spontaneous production of words beginning with F, A, 
and S; WM: Working memory.
aThis study used S-Ketamine; therefore, the dose was multiplied by 1.5 to obtain the racemate equivalent (based on Vollenweider, Leenders, Øye, et al. (1997)).

TABLE 1 Behavioral Effects Resembling Symptoms of Schizophrenia Upon Ketamine Administration—cont’d
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be the result of a separate mechanism (Lally et al., 2014; 
 Luckenbaugh et al., 2014; Murrough et al., 2013).

RELATING TO COGNITIVE SYMPTOMS 
OF SCHIZOPHRENIA

Impairments in working memory (WM) and epi-
sodic memory are some of the most consistent findings 
in schizophrenia (Al-Uzri et al., 2006; Aleman, Hijman, 
de Haan, & Kahn, 1999; Forbes, Carrick, McIntosh, 
&  Lawrie, 2009; Silver, Feldman, Bilker, & Gur, 2003). 
Patients also display attentional deficits on the Continu-
ous Performance Task (CPT) (Cornblatt & Keilp, 1994), 
impulsivity (Ouzir, 2013), impairments in verbal fluency 
tasks (Bokat & Goldberg, 2003), reversal learning tasks 
(Leeson et al., 2009), and cognitive inflexibility on the 
Wisconsin Card Sort Test (WCST) (Li, 2004).

In a verbal WM task, there was no effect of ketamine 
10 or 90 min after administration (ROest of 10% and 15%, 
respectively) on immediate or postdistraction word 
recall, but a significant impairment of 10 min delayed 
recall only at the 10 min time point. These doses also 
impaired performance on a visual CPT, a verbal fluency 
task, and the WCST (Krystal et al., 1994). Similarly, a 
marginally higher dose of ketamine was able to impair 
verbal attention, recall, and recognition (Malhotra et al., 
1996). Interestingly, 30 min after cessation of infusion, 
a deficit in verbal recall persisted despite no residual 
impairment in attention and recognition, and a subsid-
ence of psychotic and dissociative symptoms. These 
specific postacute effects may be a result of plastic-
ity in response to the acute pharmacological effects, or 
they may be a result of the less potent but longer act-
ing metabolite norketamine (acting at very low receptor 
occupancies).

Ketamine significantly decreased paragraph recall 
after a 30 min delay at doses as low as 0.05 mg/kg (3% 
ROest), however a visual WM task with a distracting 
3.5 min delay was unimpaired at this dose, but impaired 
at 16% ROest (Newcomer et al., 1999). A multiple trial 
visuospatial WM task with a 2 min delay was unim-
paired at 17% ROest (Honey et al., 2008), and a multi-trial 
verbal/spatial WM task that involved manipulation of 
letters into alphabetical order was also unimpaired by 
ketamine at 10% and 17% ROest (Honey et al., 2004).

In an episodic memory task, ketamine at doses of 
10–17% ROest had no effect on retrieval of a 90 word list 
encoded prior to infusion (60 min earlier) (Honey, Honey, 
O’Loughlin, et al., 2005; Honey, Honey, Sharar, et al., 
2005). However, when a second list was encoded before 
cessation of the infusion, retrieval was impaired 90 min 
later (5–7% ROest) (Honey, Honey, Sharar, et al., 2005), 
although these authors failed to replicate this finding in 
a later study (Honey, Honey, O’Loughlin, et al., 2005).

People with schizophrenia also display impulsivity 
on the Hayling sentence completion task (Chan et al., 
2012), which requires withholding an obvious verbal 
response. Ketamine increased impulsivity at 35% but 
not 21% ROest (Morgan et al., 2004). Meanwhile, ket-
amine also impairs attentional set shifting on the WCST 
at doses of 0.5 and 0.87 mg/kg (Krystal et al., 2004, 1994).

Overall, it appears that low doses of ketamine selec-
tively impair performance during tasks with a high cog-
nitive load (especially containing a verbal component), 
which may be dependent on circuitry that requires fine-
tuned signal-to-noise ratios to function optimally, such 
as in the dorsolateral prefrontal cortex (Arnsten, Wang, 
& Paspalas, 2012) (discussed later).

OTHER EFFECTS

It should be noted that participant withdrawal due 
to nausea and vomiting is common in ketamine studies. 
This may be important as cognitive deficits could be due 
to a nonspecific malaise effect, and co-treatments that 
apparently ameliorate these “deficits” may be working 
via a nonspecific antiemetic effect. In addition, ketamine 
has been reported to induce oculomotor saccade disrup-
tions and nystagmus at higher doses, which may be rele-
vant to ataxia in animal models. Ketamine also has wide 
use as an analgesic (Persson, 2013), and this effect occurs 
at ≥5% ROest (Sprenger et al., 2006).

NEUROBIOLOGY OF NMDA-R 
ANTAGONISM

Glutamate is the main excitatory neurotransmitter in 
the brain, and it can bind to either metabotropic recep-
tors (mGluRs) or three classes of ionotropic receptor:  
the AMPA, NMDA, and kainate receptors. Of these,  
NMDA-Rs, AMPA-Rs (mostly postsynaptic), and 
mGluR2/3-Rs (presynaptic) appear to be the most impor-
tant in the pathophysiology of psychosis. Although no 
conclusive theory exists as to how NMDA-R antago-
nists induce their behavioral effects, it is known that 
they decrease the firing rate of inhibitory interneu-
rons and increase the firing rate of excitatory pyrami-
dal cells ( Homayoun &  Moghaddam, 2007). This then  
leads to glutamate release and postsynaptic AMPA-R 
stimulation, both of which are required for the psychoto-
mimetic effects of NMDA-R antagonists (Deakin et al., 
2008; Baker et al., 2008;  Hiyoshi, Marumo, et al., 2014; 
Krystal et al., 2005; Moghaddam, Adams, Verma, & Daly, 
1997; Moghaddam & Adams, 1998) and serotonergic 
hallucinogens ( Benneyworth et al., 2007; Lee, Chiang, 
Chiu, Chan, & Chen, 2014; Zhang & Marek, 2008). The 
shift in NMDA:AMPA balance is proposed to decrease 
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the signal-to-noise ratio of cortical neuronal ensembles 
(Jackson, Homayoun, & Moghaddam, 2004), which 
leads to an increase in resting state (Gonzalez-Burgos & 
Lewis, 2012) but a decrease in evoked (Tatard-Leitman 
et al., 2015) gamma oscillatory power, and it decreases 
“top-down” predictive coding of sensory information 
Moran, Jones, Blockeel, Adams, Stephan, & Friston, 2014. 
Subcortically, these changes lead to an aberrant increase 
in phasic mesolimbic and mesocortical dopamine signal-
ling (Bartsch et al., 2015; Lodge & Grace, 2011). Figure 1 
describes these findings.

This neurobiology is similar to that proposed by 
theories of schizophrenia based upon disruptions of 
excitatory/inhibitory balance (Anticevic et al., 2012; 
Nakazawa et al., 2012; Pavão, Tort, & Amaral, 2015; 
Weickert et al., 2013). However, abnormalities of gamma 
oscillations (Kocsis, Brown, McCarley, & Hajos, 2013; 
Uhlhaas, 2013; Uhlhaas & Singer, 2010) and brain connec-
tivity (Whitfield-Gabrieli & Ford, 2012) in schizophrenia 
are more equivocal in direction—resting-state activity 
may be increased in the early stages of the disease but 
decreased in the chronic disease (see Anticevic et al., 2015 
and Adell, Jiménez-Sánchez, López-Gil, & Romón, 2012), 
whilst evoked activity may depend on task demands. 
In addition, although aberrant increases in mesolimbic 
dopamine signalling are extremely well replicated in 
schizophrenia, mesocortical dopamine signaling appears 
to be decreased (Howes & Kapur, 2009), and both these 
phenomena may be a result of hypoactivity in the pre-
frontal cortex (Meyer-Lindenberg et al., 2002; Sesack & 
Carr, 2002). This may be due to developmental altera-
tions prior to adulthood in the aforementioned circuitry 
(Lewis, Hashimoto, & Volk, 2005; Uhlhaas, 2013).

LINKING NMDA-R HYPOFUNCTION AND 
SCHIZOPHRENIA

These pathophysiological changes have been sug-
gested to be responsible for a number of neurobiologi-
cal and behavioral phenomena relevant to schizophrenia 
such as the following:
  

 •  Impaired “corollary discharge” or “efference copy” 
between cortical areas (Fletcher & Frith, 2009), 
causing attribution of self-generated thoughts/
actions to external sources, for example, auditory 
hallucinations, thought insertion, and experiences of 
passivity

 •  Misattribution of salience to irrelevant stimuli (Kapur, 
2003), causing persistence of bizarre thoughts, 
paranoia, delusions of ideation, and distractibility of 
irrelevant information in working memory

 •  Disruption of the top-down versus bottom-up signal 
processing balance (Jardri & Denève, 2013), causing 
weak sensory evidence to be reverberated and thus 
overweighed as strong prior evidence. This leads 
to the “jumping to conclusions” phenomenon and 
strengthens the belief of delusions.

 •  Aberrant “delay cell” firing in the dorsolateral PFC 
(Wang et al., 2013), causing working memory deficits

 •  Abnormal dorsolateral PFC activity and connectivity 
(Goghari et al., 2010) and abnormal activity in 
Broca’s area (Lahti et al., 2005), causing disorganized 
behavior and speech

 •  Impaired hippocampal recruitment, leading to 
spatial working memory deficits (Folley, Astur, 
Jagannathan, Calhoun, & Pearlson, 2010)

FIGURE 1 In the cortex (left), individual parvalbumin-expressing basket interneurons (green) can simultaneously hyperpolarize over a thou-
sand (Cobb, Buhl, Halasy, Paulsen, & Somogyi, 1995) excitatory pyramidal cells (orange). These interneurons are critical for synchronized activity 
of pyramidal neurons in the gamma frequency range (>40 Hz). At psychotomimetic doses, it is proposed that NMDA-R antagonists preferentially 
target the inhibitory reticular thalamic nucleus (Dawson et al., 2013; Stone et al., 2008; Troyano-Rodriguez et al., 2014), leading to disinhibition 
of thalamocortical neurons and cortical glutamate release. This glutamate then binds to AMPA-Rs on basket cells, driving gamma oscillations  
(Gonzalez-Burgos & Lewis, 2012). The global NMDA-to-AMPA shift causes failures in top-down monitoring, leading to aberrant VTA activity 
and subsequent potentiation of cortical (Aalto et al., 2005; Deutch, Tam, Freeman, Bowers, & Roth, 1987) and striatal dopamine release (Adams, 
Bradberry, & Moghaddam, 2002; Kegeles et al., 2000). In concordance with this theory, drugs that block AMPA-Rs or presynaptic glutamate 
release attenuate the effects of NMDA-R antagonists and other psychotomimetics such as 5-HT2A receptor agonists (see text for references). D1/2-
Rs:dopamine D1 and D2 receptors; Glu: glutamate; VTA: ventral tegmental area.
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 •  Inability to mentally represent the value of rewards 
in frontostriatal circuits (Gold, Waltz, Prentice, 
Morris, & Heerey, 2008), causing motivational 
deficits and anhedonia

 •  Disrupted deactivation of resting-state brain 
networks and activation of task-positive networks 
(Anticevic et al., 2012; Whitfield-Gabrieli et al., 2009), 
leading to task inefficiency and aberrant salience

Relating to Positive Symptoms

Many studies have made physiological measurements 
simultaneously with behavioral measurements when 
administering ketamine (see Table 2). One of the most 
consistent findings is a global increase in cortical activa-
tion, as measured by glucose utilization (Långsjö et al., 
2003; Vollenweider, Leenders, Scharfetter, et al., 1997), 
blood oxygen level-dependent (BOLD) activity (De 
Simoni et al., 2013; Deakin et al., 2008), high- frequency 
oscillatory power (Hong et al., 2010), and global brain 
connectivity (reviewed in Anticevic et al. (2013))—all 
occurring at doses in the range of 10% to 40% ROest 
and sufficient to produce psychosis and dissociation. 
However, in chronic schizophrenia, there appears to be 
a decrease in most of these markers (see Table 2). One 
hypothesis for this is that the hyperactivated prefrontal 
cortical state is only present during early psychosis, as a 
result of the brain remodeling cognitive frameworks to 
account for aberrant perceptions (Andreou et al., 2015).

Ketamine has been shown to increase glutamate lev-
els in the PFC and anterior cingulate cortex (ACC) at 24%  
ROest, which correlated with psychosis scores (Stone et al.,  
2012), although another study found no effect of a 40 min 
0.5 mg/kg infusion (17–35% ROest) (Taylor, Tiangga, 
Mhuircheartaigh, & Cowen, 2012). Another study 
found an increase in ACC glutamine with 0.27 mg/kg  
ketamine, but there was no correlation with positive or 
negative symptoms (Rowland, Bustillo, et al., 2005). In 
concordance with these findings, ketamine increases 
resting-state blood flow to the ACC at 22% ROest 
( Långsjö et al., 2003), and in another study at 0.3 mg/kg  
( Holcomb, Lahti, Medoff, Weiler, & Tamminga, 2001), 
which also found a correlation with psychosis. Ket-
amine at 0.25 mg/kg also increases BOLD activity in the 
posterior cingulate cortex (PCC), which correlates with 
positive symptoms (Deakin et al., 2008). In general, these 
findings agree with findings in unmedicated schizophre-
nia patients, who display increased glutamate levels in 
the ACC (Poels et al., 2014) and increased resting-state 
blood flow to the ACC, which correlates with their posi-
tive symptoms (Lahti et al., 2005).

The effect of ketamine on dopamine release is unclear. 
Numerous studies have looked at D2/D3 receptor bind-
ing in the striatum using positron emission tomogra-
phy (PET), inferring that a decrease in binding equates 

to increased dopamine release (Rabiner, 2007). Early 
studies found decreased binding at doses as low as 
16% ROest (Breier et al., 1998), and a study using a high 
dose of S-ketamine (>50% ROest) found a correlation 
between ventral striatal dopamine release and positively 
reinforcing effects (Vollenweider, Vontobel, Øye, Hell, 
&  Leenders, 2000). However, other studies with more 
robust measurement methodology found no effect of 
ketamine at doses producing 23%, 29%, and 38% ROest 
(Aalto et al., 2002; Kegeles et al., 2000, 2002). One study 
found that ketamine at 41% ROest was only able to sig-
nificantly increase dopamine release in the PCC, but it 
found significant correlations between individual posi-
tive symptom severity and dopamine release in the ACC 
and dorsolateral PFC (Aalto et al., 2005). Overall, this 
may corroborate previous evidence that disturbances in 
ACC and PCC activity correlate with psychosis.

Sensorimotor gating deficits are considered a reliable, 
quantitative endophenotype in schizophrenia (Swerdlow,  
Weber, Qu, Light, & Braff, 2008). However, ketamine 
has been shown to either have no effect (van Berckel 
et al., 1998) or actually enhance sensorimotor gating at 
a wide range of doses (Abel, Allin, Hemsley, et al., 2003; 
Heekeren et al., 2007). Mismatch negativity (MMN) is an 
evoked electrophysiological response that occurs when a 
stimulus deviates from its predictable nature. MMN dis-
ruptions are well replicated in schizophrenia (Umbricht 
& Krljes, 2005). Ketamine has been shown to disrupt 
MMN at various doses (although see Oranje et al., 2000), 
and this disruption correlates with alterations in con-
sciousness (Heekeren et al., 200; Schmidt et al., 2012; 
Umbricht, Koller, Vollenweider, & Schmid, 2002).

Auditory hallucinations in schizophrenia typically 
display as monotone voices, using short dialogue that 
can be a running commentary on what the person is 
doing, or it is often critical of the person. It has been pro-
posed that these hallucinations arise from disconnectiv-
ity in the right hemisphere homologue of Broca’s area 
(Sommer et al., 2008). Although ketamine reliably alters 
auditory perception, it does not consistently induce audi-
tory hallucinations in participants, although it has been 
proposed that if the auditory illusions induced by acute 
ketamine were sustained for a long enough period, hal-
lucinations would precipitate (Corlett, Honey,  Krystal, & 
Fletcher, 2011).

The neural correlates of delusionality have been mea-
sured using associative learning tasks that purposely 
induce prediction errors on specific trials (Corlett et al., 
2004; Moran, Owen, Crookes, Al-Uzri, & Reveley, 2008; 
Moran, Rouse, Cross, Corcoran, & Schürmann, 2012). 
In healthy individuals, a violation in expected feedback 
leads to increased BOLD activity in the right lateral pre-
frontal cortex (rPFC), whereas nonviolation leads to no 
change in rPFC activity. In schizophrenia, the violation-
evoked rPFC activity is attenuated, and there is also an 
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TABLE 2 Neurophysiological Effects of Ketamine and their Relationship to Schizophrenia

Biomarker Effect Dose (Plasma) Time Point (mins) %ROest Task/Measure n Effect in Schizophrenia

RESTING STATE

PFC glucose utilization ↑(Vollenweider, Leenders, 
Scharfetter, et al., 1997)

(557 ng/mL) Mean 54 PET 10 ↓(Siegel et al., 1993)

↑(Vollenweider, Leenders, 
Øye, et al., 1997)

(570 ng/mL)a Mean 55 PET 10

PFC blood flow ↔(Långsjö et al., 2003) (37 ng/mL) Mean 7 PET 9 ↓(Liddle et al., 1992)

↑(Långsjö et al., 2003) (132 ng/mL) 22

↑(De Simoni et al., 2013) (75 ng/mL) 14 BOLD 10 ↓(Hill et al., 2004)

PFC connectivity ↑(Anticevic et al., 2015) 0.58 mg/kg; (121 ng/mL) 20 BOLD ↑High-risk, Early

↓Chronic

DMN connectivity next day ↓(Scheidegger et al., 2012) 0.375 mg/kga T + 24 h 0 BOLD 17 ↑(Whitfield-Gabrieli et al., 
2009)

ACC blood flow ↑(Långsjö et al., 2003) (132 ng/mL) Mean 22 PET 9 ↑(Lahti et al., 2005)

↑(Holcomb et al., 2001) 0.3 mg/kg bolus T + 6–26 PET 13

ACC glutamine ↑(Rowland et al., 2005b) 0.27 mg/kg T + 10 MRS 9 ↑Unmedicated (Poels 
et al., 2014)
↓Chronic (Marsman et al., 
2013)

ACC/PFC glutamate ↔(Taylor et al., 2012) 0.5 mg/kg T + 5, 20, 40 17–35 MRS 8

↑(Stone et al., 2012) (150 ng/mL) T + 25 24 MRS 13

OFC activity ↓(Deakin et al., 2008) 0.25 mg/kg T + 0–8 BOLD 12

PCC activity ↑(Deakin et al., 2008)

PCC dopamine ↑(Aalto et al., 2005) (325 ng/mL) T + 20–80 41 PET 8

Striatal dopamine ↔(Rabiner, 2007) Wide range PET 50 ↑(Howes & Kapur, 2009)

EVOKED

PFC gamma power ↑(Hong et al., 2010) 0.3 mg/kg bolus T + 0–20 ERP 10 ↓(Spencer, Salisbury, 
Shenton, & McCarley, 
2008)

MMN disruption ↑(Umbricht et al., 2002) 0.9 mg/kg ERP 20 ↑(Umbricht & Krljes, 
2005)

↑(Schmidt et al., 2012) 10 mg bolus + titrated 
infusion

19

↑(Heekeren et al., 2008) 0.5 mg/kga T + 20–50 9

↑(Heekeren et al., 2008) 1 mg/kga 9

↔(Oranje et al., 2000) (130 ng/mL) 21 18
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Biomarker Effect Dose (Plasma) Time Point (mins) %ROest Task/Measure n Effect in Schizophrenia

Sensorimotor gating ↑(Abel, Allin, Hemsley, 
et al., 2003)

0.5 mg/kg T + 40 30 Prepulse 
inhibition

20 ↓(Swerdlow et al., 2008)

↑(Heekeren et al., 2007) 0.5 mg/kga T + 35 >30 10

↑(Heekeren et al., 2007) 1 mg/kga >30 10

↔(van Berckel et al., 1998) 0.3 mg/kg T + 40 21 18

(130 ng/mL)

TASK-RELATED

PFC disruption during PE 
processing

↑(Corlett et al., 2006) (88 ng/mL) 16 BOLD 15 ↑(Corlett et al., 2007)

Striatal disruption ↔(Corlett et al., 2006)

PFC activity during WM ↑(Honey et al., 2004) (50 ng/mL) T + 5 11–17 BOLD 12 ↑High-risk (Yaakub et al., 
2013), ↓Early (Tan, Choo, 
Fones, & Chee, 2005), 
Chronic (Cannon et al., 
2005)

(100 ng/mL)

DMN-TPN orthogonality 
during WM

↓(Anticevic et al., 2012) (183 ng/mL) 28 BOLD 19 ↓(Whitfield-Gabrieli et al., 
2009)

PFC activity during  
episodic memory retrieval

↓(Honey, Honey, 
O’Loughlin, et al., 2005)

(100 ng/mL) T + 60 17 BOLD 12 ↓(Ragland et al., 2009)

Amygdala response to 
emotional faces

↓(Abel, Allin, Kucharska-
Pietura, et al., 2003)

0.5 mg/kg T + 20–60 BOLD 8 ↓(Gur et al., 2002)

↑(Kosaka et al., 2002)

Oculomotor disruption ↑(Schmechtig et al., 2013) (100 ng/mL) T + 10 17 Eye-tracking 17 ↑(Ettinger et al., 2006)

↑(Radant et al., 1998) (100–200 ng/mL) T + 0–120 17–30 10

PET: positron emission tomography; ERP: event-related potential; MRS: magnetic resonance spectroscopy; PE: prediction error; WM: working memory.
aThis study used S-Ketamine; therefore, the dose was multiplied by 1.5 to obtain the racemate equivalent (based on Vollenweider, Leenders, Øye, et al. (1997)).

TABLE 2 Neurophysiological Effects of Ketamine and their Relationship to Schizophrenia—cont’d



10.  PHARMACOLOGICAL SUBSTANCE ABUSE MODELS148

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

increase in rPFC to unsurprising feedback (Corlett et al., 
2007). Ketamine at 16% ROest replicates this phenotype 
veraciously (Corlett, Honey, Aitken, et al., 2006).

Relating to Negative Symptoms

The neurophysiological substrates of negative symp-
toms are much less clear than with positive symptoms, 
since there are no known pharmacological targets for 
negative symptoms. Some studies have shown an 
inverse relationship between apathy/anhedonia symp-
toms and ventral striatal activation during reward antic-
ipation (reviewed in Barch and Dowd (2010)). There 
have also been reports of orbitofrontal cortex (OFC) 
volume inversely correlating with negative symptoms 
(Baaré et al., 1999; Gur et al., 2000), and this brain region 
is known to be important for assigning value to stimuli 
(Wallis, 2006).

One study found that—with 0.25 mg/kg ketamine—
the decrease in BOLD activity in the OFC correlated with 
dissociative symptoms on the CADSS (Deakin et al., 
2008). Another study using a dose of 23% ROest could not 
find any region-specific changes in global connectivity 
that correlated with negative symptoms, but it did find 
that increases in anterior striatum connectivity appeared 
to prevent negative symptom formation (Driesen et al., 
2013) (and a separate group made a similar finding; Dan-
dash et al., 2015). Another study found that a high dose 
of ketamine (55% ROest) caused significant increases in 
dissociation, which correlated with increased prefrontal 
glucose metabolism (Vollenweider, Leenders, Øye, Hell, 
& Angst, 1997); however, this change also correlates with 
many other symptoms and is unlikely to be specific to 
dissociation. An increase in apathy was correlated with 
increased glucose metabolism in the left insula and bilat-
eral parietal cortices. Meanwhile, a study using a low 
dose of S-ketamine (0.1 mg/kg) found a decrease in the 
occipitoparietal BOLD response and EEG amplitude to 
the P300 response during a visual oddball task (Musso 
et al., 2011), which correlated with negative symp-
toms. Another study found that the BOLD response in 
the amygdala to emotional faces was attenuated with 
0.5 mg/kg ketamine (Abel, Allin, Kucharska-Pietura, 
et al., 2003), which may reflect affective flattening.

Relating to Cognitive Symptoms

There are many studies that have investigated cognitive 
task-evoked brain activity in schizophrenia. Most consis-
tently, abnormalities in the prefrontal cortex are detected 
(Arnsten et al., 2012; Minzenberg, Laird, Thelen, Carter, & 
Glahn, 2009; Potkin et al., 2009;  Ragland et al., 2009).

In a multiple trial working memory task, ketamine was 
shown to decrease the efficiency of dorsolateral PFC circuit 

activity at 10% and 17% ROest (Honey et al., 2004). Specifi-
cally, ketamine significantly increased dorsolateral PFC 
circuit activity during manipulation trials at a low WM 
load compared to placebo. In another study, it was found 
that ketamine at 28% ROest impaired working memory, 
which correlated with a failure to deactivate the default 
mode network (DMN) and activate the task-positive 
network (TPN, including dorsolateral PFC) during the 
encoding and delay periods (Anticevic et al., 2012). Com-
putational modeling suggested this effect was induced by 
NMDA-R hypofunction on inhibitory interneurons.

In an episodic memory task, ketamine was shown to 
attenuate the left PFC BOLD response during retrieval of 
deeply encoded episodic memories at 17% ROest (Honey, 
Honey, O’Loughlin, et al., 2005), meanwhile there was 
an increase in right hippocampal and bilateral PFC 
response. During placebo infusion, activation of these 
regions was seen during presentation of unfamiliar 
items. These findings may be related to aberrant right 
PFC signaling seen during error processing ( Corlett 
et al., 2007).

Summary
In summary, although acute NMDA-R antagonism is 

a useful model of psychosis that also mimics the nega-
tive and cognitive symptoms of schizophrenia, there 
are clearly some discrepancies with the chronic disor-
der. Numerous theories of schizophrenia have been 
proposed that may account for this, mostly revolv-
ing around neurodevelopmental alterations in up- or 
downstream circuitry (Do, Cabungcal, Frank, Steullet, &  
Cuenod, 2009; Insel, 2010). It has been reported that chil-
dren are much less susceptible to the psychotomimetic 
effects of ketamine (Bergman, 1999), which may have 
relevance to the observation that schizophrenia only 
emerges after adolescence (Uhlhaas, 2013).

There are many caveats to consider when comparing 
the “healthy human ketamine model” to schizophrenia. 
First, most ketamine studies are conducted on adults 
with above average intelligence and no history of psy-
chiatric disease. It is possible that NMDA-R antagonists 
produce different effects in pathological brains, although 
in the few studies where ketamine was administered to 
people with schizophrenia, similar effects were noted. 
Second, schizophrenia is a very heterogeneous disor-
der, and within the literature, methodologies are also 
heterogeneous. For example, the samples recruited 
vary in age, duration of illness, medication status, and 
smoking status—factors that have been shown to affect 
many measures. Third, treatment effects are measured 
in a range of ways across the literature. Ketamine stud-
ies are usually cross-over trials with repeated measures, 
where each participant is compared to themselves on or 
off treatment. Schizophrenia studies are almost always 
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compared between cohorts. Fourth, caution should be 
taken when interpreting subtle findings from ketamine 
studies, since although the majority are double-blinded, 
most researchers and participants are able to determine 
which treatment has been administered, given the pro-
found effects of ketamine and lack of effects of placebo. 
Therefore, some of the effects induced by NMDA-R 
antagonists may be the result of prior expectations (e.g., 
many participants in one study thought they received 
the hallucinogen psilocybin rather than dextrometho-
rphan, citing knowledge of the lab’s previous studies on 
psilocybin (Reissig et al., 2012)). Thus, it is important for 
studies to include active placebos, such as psilocybin or 
midazolam (Haile et al., 2014), although use of the latter 
has been criticized for its absence of psychedelic effects 
(Neuroskeptic, 2014). It may be that behavioral and 
neurophysiological reactions to ketamine are partly the 
result of surprise at—or a stress response to—the sheer 
novelty of the experience of a profoundly altered state 
of consciousness (although this could be part of the psy-
chotic process nonetheless), although some authors have 
found reliable effects across two sessions (De Simoni 
et al., 2013), which tempers this suggestion.

RODENT MODELING OF HUMAN 
NMDA-R ANTAGONISM

Acute NMDA-R antagonism in rodents has been pro-
posed to be a representative model of human NMDA-R 
antagonism (see Figure 2). As rodent models generally 
encompass a more diverse range of drugs than human 
models, the pharmacology of different NMDA-R antag-
onists and the neurophysiological and behavioral effects 
of these compounds at relevant doses will be overviewed.

DIVERSITY OF NMDA-R ANTAGONISTS

NMDA-Rs are composed of four subunits made 
up of a mixture of NR1, NR2, and NR3 subunits (see 
 Figure 3). Activation (cation influx) requires the follow-
ing: voltage-dependent removal of the Mg2+ blockade, 
agonist binding to the glutamate binding site (NR2 sub-
unit), and co-agonist binding to the glycine binding site 

(NR1 subunit). NMDA-R antagonists may bind to any 
of these sites and allosteric sites further still (Monaghan 
& Jane, 2009). As a result, there are numerous subclasses 
of NMDA-R antagonist, and the degree to which they 
mimic psychosis mostly depends on their binding site 
and dissociation kinetics (see Table 3).

The most psychotomimetic NMDA-R antagonists 
are those that bind to the PCP binding site and pos-
sess a slow dissociation rate. However, most NMDA-
R antagonists can produce psychotomimetic effects at 
high enough doses (Tricklebank, Singh, Oles, Preston, 
& Iversen, 1989) (with the possible exception of glycine 
antagonists (Koek & Colpaert, 1990)), which implies that 
nonspecific NMDA-R blockade is sufficient to produce 
this effect rather than some unique temporal effect of ion 
channel blockers.

It should be noted that there is subunit heterogene-
ity across the brain. The NR2C subunit is mostly found 
in the cerebellum, midbrain, and brain stem (Monyer,  
Burnashev, Laurie, Sakmann, & Seeburg, 1994). NMDA-Rs  
containing the NR2C subunit also possess a less potent 
Mg2+ block. MK-801 has equal affinity for the NR2A, 
NR2B, and NR2C subunits, and yet it is more likely to 
induce ataxia than memantine (Parsons et al., 1995), which 
has a subunit selectivity profile of NR2C > NR2B >> NR2A 
(Dravid et al., 2007). This may be explained by the slower 
on–off kinetics of MK-801 at NR2C-containing channels 
(Monaghan & Larsen, 1997), which presumably causes a 
greater disturbance of cerebellar signaling.

Some studies have reported that blockade of 
NR2A-containing receptors is sufficient to produce 

FIGURE 2 How NMDA-R antagonists are used to model schizophrenia. Black boxes represent the agent being administered the drug. Black 
arrows represent the addition of the drug and what it attempts to model, with arrow width representing the putative validity of the model.

FIGURE 3 A simplified schematic of the NMDA receptor. After 
voltage-dependent release of Mg2+ and glutamate/glycine co-binding, 
the NMDA receptor opens, and drugs binding to the PCP site can enter 
the channel and prevent cation influx. Antagonists can bind to the glu-
tamate site, glycine site, or an allosteric site (not shown).
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psychotomimetic effects (Kocsis, 2012), whereas others 
have reported that NR2A blockade is not psychotomi-
metic (Chaperon, Müller, Auberson, Tricklebank, & Neijt, 
2003), and that NR2B blockade is sufficient (Chaperon  
et al., 2003; Gilmour et al., 2009; Nicholson, Mansbach, 
Menniti, & Balster, 2007). Meanwhile, others have sug-
gested that NR2B blockade is not psychotomimetic 
(Higgins, Ballard, Huwyler, Kemp, & Gill, 2003), or 
that neither is sufficient, and both must be antagonized 
(Jiménez-Sánchez et al., 2014). Most of these studies fail 
to titrate for global NMDA-R blockade given the doses 
used, and therefore, it remains to be determined whether 

these are specific effects or just the result of an overall 
lower level of NMDA-R blockade with subunit selective 
antagonists.

Another hypothesis, proposed by Dawson, Morris, 
and Pratt (2013), is that selective blockade of NR2C- 
containing NMDA-Rs leads to increased prefrontal glu-
tamate, serotonin, and noradrenaline release (see Figure 
4), and this contributes to the psychotomimetic effects. It 
is uncertain how NR2C antagonism leads to monoamine 
release, as one study found that systemic ketamine-
induced 5-HT release was dependent on AMPA-R stimu-
lation in the dorsal raphé, but that intra-raphé infusion of 

TABLE 3 Classes of NMDA-R Antagonist

Drug Binding Site
Dissociation Rate (Mealing, Lanthorn, 
Murray, Small, & Morley, 1999)

Psychotomimetic Potential 
(Kornhuber & Weller, 1997)

CGS-19755 Glutamate site (NR2 nonspecific) N/A Low

NVP-AAM077 Allosteric site (NR2A specific) N/A Equivocal (Chaperon et al., 2003; 
Kocsis, 2012)

Ifenprodil, traxoprodil Allosteric site (NR2B specific) N/A Low

7-chloro kynurenic acid Glycine site N/A Very low (Koek & Colpaert, 1990)

PCP Ion channel (also known as the  
“PCP binding site”

Slow Very high

Ketamine Slow

MK-801 Slow

Dextrorphan Slow

Memantine Fast Low

Lanicemine Very fast Very low

Reviewed in Paoletti and Neyton (2007).

FIGURE 4 Increased release of glutamate (orange), serotonin (yellow), and noradrenaline (purple) in cortical areas is a widely replicated find-
ing with NMDA-R antagonist administration (see Table 2). Dawson and others found that a high subanaesthetic dose* of ketamine decreased 
glucose metabolism in the thalamus, dorsal raphé nucleus (DR), and locus coeruleus (LC), whilst increasing metabolism in the PFC (another 
widely replicated finding). They propose that ketamine blocks tonically active NR2C-containing NMDA-Rs on interneurons (green) in the reticu-
lar thalamic nucleus (RtN), DR, and LC, leading to disinhibition of projection neurons from these nuclei. * >83% ROest based on mouse data from 
Lord et al. (2013).
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ketamine had no effect (albeit at a very low dose) (Nishi-
tani et al., 2014). Similarly, noradrenaline release by ket-
amine was dependent on AMPA-R stimulation (Lorrain, 
 Schaffhauser, et al., 2003).

Adding to the complexity, (S)-ketamine and (R)-
ketamine are equally effective in stimulating 5-HT and 
noradrenaline release, but (R)-ketamine is much less 
effective in stimulating dopamine release (Tso, Blatchford,  
Callado, McLaughlin, & Stamford, 2004). It is well 
established that (S)-ketamine is more psychotomimetic 
(Vollenweider, Leenders, Øye, et al., 1997), and relative 
to (R)-ketamine, it has a higher affinity for the NR2C 
subunit and much lower affinity for the NR2A subunit 
(Dravid et al., 2007).

The importance of the monoamine releasing effects of 
NMDA-R antagonists is questionable, given the mixed 
findings in humans (see Table 2). Dopamine D2 recep-
tor antagonists fail to attenuate the psychotomimetic 
effects (Krystal et al., 1999), whilst atypical antipsychot-
ics (which possess high 5-HT2A receptor affinity) attenu-
ate some of the subjective effects (Malhotra et al., 1997) 
and neurophysiological changes (Doyle et al., 2013), 
although it is unclear whether this is a nonspecific effect 
due to the intrinsic sedative nature of 5-HT2A antago-
nists (Distler, 1990).

Some NMDA receptor antagonists also possess  affinity 
for other targets, such as sigma receptors, opioid recep-
tors, and monoamine transporters. However, ketamine 
and PCP require doses tenfold higher than those 
required to induce anaesthesia to bind to these receptors 
(Roth et al., 2013), and therefore, they are not relevant 
to models of psychosis. We cannot exclude the possi-
bility that metabolites display much higher, relevant 
affinities for these targets (Morris & Wallach, 2014), but 
these would be expected to have a delayed onset with 
intravenous administration, and therefore do not fit 
with the rapid onset of psychotomimetic effects. It has 
also been reported that PCP, ketamine, and MK-801 dis-
play nanomolar in vitro affinity for the D2 receptor in its 
high affinity state (D2

High), and that this correlates with 
psychotomimetic potency (Seeman, Ko, & Tallerico, 
2005); however, others have failed to replicate many of 
the findings from this lab (Fell et al., 2009; Jordan et al., 
2006; Odagaki &  Toyoshima, 2006; Roth et al., 2013), and 
since D2 antagonists fail to attenuate most of the psy-
chotomimetic effects of NMDA-R antagonists (Krystal 
et al., 1999) and because the psychotomimetic potential 
of NMDA-R antagonists correlates with their NMDA-
R affinity (Ginski & Witkin, 1994) (although see Stone 
et al., 2008), it is proposed that in vitro D2

High affinity is 
irrelevant to models of psychosis.

Based on clinical and preclinical literature (see Table 4), 
it is proposed that NMDA-R antagonists optimally pro-
duce schizophrenia-like symptoms within a certain dose 
window. To decrease complications when additionally 

analyzing the time course effects, this review will only 
focus on this dosage window and disregard higher doses 
that induce anesthesia.

NMDA-R ANTAGONIST BEHAVIORAL 
EFFECTS IN RODENTS

In this evaluation of the literature, an effort has been 
made to only include studies using relevant doses. For 
ketamine, this includes any dose up to 30 mg/kg i.p. or 
20 mg/kg s.c. (Shaffer et al., 2014). For PCP, this includes 
any dose up to 10 mg/kg i.p. or 5 mg/kg s.c. ( Kalinichev 
et al., 2008), and for MK-801 up to 0.2 mg/kg i.p. or s.c. 
These maximal doses attain >70% ROest (Shaffer et al., 
2014), which is far in excess of any human schizophrenia 
modeling study. In addition, Hiyoshi, Kambe, Karasawa, 
and Chaki (2014) found an inverse-U dose–response 
effect of ketamine, PCP, and MK-801 on gamma oscil-
lations, with peak effect occurring at (all s.c.) 20, 5, and 
0.2 mg/kg, respectively. This implies that above these 
doses, anesthetic effects begin to predominate.

REPRESENTING POSITIVE SYMPTOMS

The most commonly measured rodent behavioral 
phenotype for positive symptoms is locomotor activity. 
Any drug that increases striatal dopamine release will 
increase locomotor activity (LMA) (Ikemoto, 2002), and 
aberrant increases in striatal dopamine signalling are con-
sidered to be the cause of aberrant salience, which leads 
to psychosis (Kapur, 2003). All of the psychotomimetic 
NMDA-R antagonists cause a dose-dependent increase 
in LMA at subanesthetic doses (see Table 5); however, 
there have been some nuanced findings at higher doses. 

TABLE 4 NMDA-R Antagonist Dose–Response Relationships

Dose of Racemic Ketamine (mg/kg)

Human (i.v.) 0.1–0.6 0.3–0.8 >0.8 1–4

NMDA-RO ∼10–30% ∼30–80% >80%

Rat (i.p.) 3–10 10–30 30–50 >80

Behavior Mild Moderate Severe General 
anesthesia

Analgesia, cognitive impairment, 
dissociation, psychosis, ataxia

Target Higher 
cortical 
areas

+Midbrain areas, limbic 
system, cerebellum

+Arousal 
nuclei, 
thalamus 
PCs

References Sinner and Graf (2008), Subramaniam, Subramaniam, 
and Steinbrook (2004), Bergman (1999), Green, Knight, 
Precious, and Simpkin (1981), Radant et al. (1998)
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TABLE 5 Behavioral Effects Resembling Positive Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents

Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References

Psychosis ↔ MK-801 0.03 s.c. T + 0–120 Locomotor boxes 
(LABORAS™)

Castagné et al. (2012)

↑ 0.1

↑ 0.3

↔ Ketamine 3 s.c. T + 0–120

↑ 10 s.c. T + 0–40

↑ 30 s.c. T + 20–80

↑ PCP 5 i.p. T + 4–80 Locomotor boxes Suzuki et al. (2002)

↔ S-Ketamine 10 s.c. T + 0–300 Locomotor boxes Phillips et al. (2012)

↑ MK-801 0.1 s.c. T + 10–180

↑ PCP 2.5 s.c. T + 10–200

↔ Ketamine 5 i.p. T + 15–30 Locomotor boxes (no 
habituation period prior to 
dosing)

Kotermanski et al. 
(2013)

↓ 10 or

↓ 20 T + 45–60

↓ 40

↑ MK-801 0.1 i.p. T + 40 – 220 Locomotor boxes (no 
habituation)

Daya et al. (2014)

↑ 0.5

↑ Ketamine 3 s.c. T + 0–15 Locomotor boxes Ma and Leung (2014)

↑ Ketamine 25 i.p. T + 0–40 Locomotor boxes Razoux et al. (2006)

↔ MK-801 0.01–0.03 s.c. T + 10 Locomotor boxes Higgins et al. (2003)

↑ 0.1–0.3

↔ Ketamine 30 i.p. T + 30–60 Open field (no 
habituation)

Danysz et al. (1994)

↔ PCP 1

↔ 3

↑ 10

↔ MK-801 0.1

↑ 0.2 T + 30–45

↑ 0.3 T + 30–60
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Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References

Stereotypy and ataxia ↑ Ketamine 2.5 s.c. T + 20–80 Observation scoring Pinault (2008)

↑ MK-801 0.16 s.c. T + 20–90+

↑ PCP 10 i.p. T + 35–50 Danysz et al. (1994)

↑ MK-801 0.2 i.p.

↔ Ketamine 12.5 i.p. T + 5–15 Kos et al. (2006)

↑ 25

↑ 33

↑ Ketamine 25 i.p. T + 0–40 Razoux et al. (2006)

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2003)

↑ 0.1–0.3

Sensorimotor gating ↓ Ketamine 10 s.c. T + 0 Prepulse inhibition of the 
acoustic startle response

Kos et al. (2006)

↓ 20

↓ 40

↓ Ketamine 3 s.c. T + 0 Ma and Leung (2014)

↓ Ketamine 10 s.c. T + 5 Nikiforuk et al. 
(2013)

↓ MK-801 0.1 i.p. T + 15 Daya et al. (2014)

↓ 0.5

↔ PCP 1 i.p. T + 15 Ma et al. (2004)

↓ 3

↓ 5

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2003)

↓ 0.1–0.3

Aberrant salience—latent 
inhibition

↔/↓/↑ PCP 0.5–8.6 i.p. or s.c. Range Various—Conditioned 
emotional response, 
taste aversion, avoidance 
response

Moser et al. (2000)

Ketamine 25–50 Weiner and Arad 
(2009)MK-801 0.05–1

TABLE 5 Behavioral Effects Resembling Positive Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents—cont’d
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This is most likely due to the fact that stereotypy and 
ataxia are prominent, so gross measures such as ambula-
tion decrease, but mobility is still increased (Castagné, 
Wolinsky, Quinn, & Virley, 2012). Stereotypy is another 
behavioral phenotype induced by increases in striatal 
dopamine signaling (Delfs & Kelley, 1990). NMDA-R 
antagonists have been shown to increase stereotypy at 
moderate to high doses (Danysz, Essmann, Bresink, & 
Wilk, 1994; Higgins et al., 2003; Kos et al., 2006; Pinault, 
2008).

As mentioned previously, sensorimotor gating defi-
cits are a common phenotype in schizophrenia, though 
in human models, NMDA-R antagonist administration 
leads to enhanced sensorimotor gating. In rodents, how-
ever, NMDA-R antagonists consistently impair senso-
rimotor gating, as measured by prepulse inhibition of 
the auditory startle response (Daya et al., 2014; Kos et al., 
2006; Ma, Shen, Rajakumar, & Leung, 2004).

A number of behavioral models taken from associa-
tive learning have also been investigated in animals. 
Latent inhibition refers to a phenomenon whereby an 
agent finds it harder to associate outcomes with a stim-
ulus that has been preexposed without an outcome, 
compared to a stimulus that has had no preexposure. 
In acute, unmedicated schizophrenia, latent inhibi-
tion appears to be disrupted, explaining why attention 
is paid to irrelevant stimuli (Weiner, 2003). However, 
in chronic schizophrenia (and especially in those with 
strong negative symptoms), latent inhibition appears 
to be enhanced, which may explain the phenotypes of 
perseveration and motivational anhedonia (Weiner, 
2003). A recent study in schizotypy has suggested that 
whether enhancement or reduction is seen may depend 
on whether the tasks used contain learned irrelevance 
or conditioned inhibition confounds (Granger, Moran, 
Buckley, & Haselgrove, submitted for publication); this 
hypothesis remains to be tested in patients, however. In 
rodents, NMDA-R antagonists have been reported either 
to enhance, to impair, or to have no effect on latent inhi-
bition (reviewed in Moser, Hitchcock, Lister, and Moran 
(2000) and Weiner and Arad (2009)). Which effect is seen 
is dependent on the behavioral manipulations used that 
differ in their sensitivities to glutamatergic manipula-
tion but are generally reversible by antipsychotic drugs. 
Thus, high levels of latent inhibition are not disrupted by 
NMDA-R antagonists; this procedure is, however, dis-
rupted by dopaminergic drugs such as d-amphetamine 
(Bay-Richter et al., 2013), which together with genetic 
data suggest a more dopaminergic-based behavioral 
process (Bay-Richter et al., 2009). In experimental condi-
tions where latent inhibition is rendered low in controls 
by reducing stimulus exposures, NMDA-R antagonists 
can reverse this low latent inhibition (termed abnor-
mally persistent latent inhibition). This abnormally per-
sistent latent inhibition is sensitive to antipsychotic drug 

treatment (Weiner & Arad, 2009). Thus, differing effects 
of NMDA-R antagonists in latent inhibition reflect their 
interaction with different categories of behavioral abnor-
mality that differ vis-à-vis their relative dopamine ver-
sus glutamate sensitivity.

REPRESENTING NEGATIVE SYMPTOMS

One of the most widely used behavioral assays in 
animal models of depression is the forced swim test or 
tail suspension test. These tests restrain an animal in 
inescapable conditions and measure its “helplessness” 
(immobility time). This may be relevant to the symp-
tom of amotivation in schizophrenia. NMDA-R antago-
nists consistently decrease immobility on these tests, 
which some authors claim indicates an antidepressant 
effect. However, it is most likely a confound from the 
increase in LMA these drugs cause; although selective 
antagonists for GluN2A or GluN2B decrease immo-
bility without increasing open field locomotor activ-
ity, unlike nonselective antagonists that increase both 
(Jiménez-Sánchez et al., 2014). It should be noted that 
NMDA-R antagonists have been shown to decrease 
immobility long after excretion and at quite low doses 
(Autry et al., 2011; Li et al., 2010; Maeng et al., 2008) 
(see Table 6), which may be a true antidepressant effect 
resulting from AMPA-R mediated synaptic changes 
(Koike, Iijima, & Chaki, 2011; Li et al., 2010). In addi-
tion, they improve learned helplessness in escapable 
shock assays (Autry et al., 2011), although another 
study found this effect occurred only after three daily 
doses (Belujon & Grace, 2014).

NMDA-R antagonists are also able to improve mea-
sures of anhedonia, such as novelty-suppressed feeding 
(Autry et al., 2011; Li et al., 2010), which is sensitive to 
chronic dosing of traditional antidepressants (Cryan, 
Markou, & Lucki, 2002). Although this test is also sensi-
tive to anxiolytic compounds, and given that ketamine 
had no effect on appetitive behavior toward sucrose 
(Autry et al., 2011), this is a more likely explanation for 
this behavior. However, in other studies investigating 
gustatory anhedonia, NMDA-R antagonists generally 
have been found to have no effect at a range of doses 
and time points (Garcia et al., 2009; Shin et al., 2014). One 
study found increased sucrose consumption with low 
doses of PCP and MK-801 (Lydall, Gilmour, & Dwyer, 
2010), but as the dose was increased, there was no effect, 
until at higher doses a decrease occurred that was due to 
nonspecific motor impairment.

Anhedonia can also be measured using intracranial 
self-stimulation (ICSS), which is considered a direct 
measure of the pleasure response and is insatiable 
(Wise, 2002). Facilitation of ICSS indicates an increased 
motivational state and is reliably produced by acute 
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TABLE 6 Behavioral Effects Resembling Negative Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents

Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References

Amotivation/apathy ↓ Ketamine 3 i.p. T + 30 min Immobility time 
on the forced swim 
test/tail suspension 
test

Autry et al. (2011)

T + 3 h

T + 1 day

T + 7 days

↓ Ketamine 10 i.p. T + 30 Li et al. (2010)

↓ Ketamine 5 i.p. T + 10 Da Silva et al. (2010)

↓ 10

↓ 20

↔ Ketamine 12.5 i.p. T + 30 Kos et al. (2006)

↔ 25

↔ 33

↔ Ketamine 30 i.p. T + 24 h Chindo, Adzu, 
Yahaya, and 
Gamaniel (2012)

↓ MK-801 0.05 i.p.? T + 30 Maeng et al. (2008)

↓ 0.1

↓ 0.2

Learned helplessness ↓ Ketamine 3 i.p. T + 30 Latency to escape 
shocks

Autry et al. (2011)

↔ Ketamine 5 i.p. T + 20 or T + 120 Belujon and Grace 
(2014)

Anhedonia/anxiety ↓ Ketamine 3 i.p. T + 30 Novelty-suppressed 
feeding

Autry et al. (2011)

↔ T + 3 days

↓ Ketamine 10 i.p. T + 30 Li et al. (2010)

Continued



10.  PH
A

R
M

A
C

O
LO

G
IC

A
L SU

B
STA

N
C

E A
B

U
SE M

O
D

ELS
156

II. N
E

U
R

O
B

IO
L

O
G

Y
 O

F PSY
C

H
O

T
IC

 D
ISO

R
D

E
R

S

Anhedonia ↔ Ketamine 3 i.p. T + 30 Sucrose/saccharin 
consumption tests

Autry et al. (2011)

↔ Ketamine 10 i.p. T + 30 Shin et al. (2014)

↔ Ketamine 15 i.p. T + 60 Garcia et al. (2009)

↓ PCP 0.25 s.c. T + 30 Lydall et al. (2010)

↔ 0.5

↔ 1

↑ 2.5

↔ MK-801 0.0125 s.c. T + 30

↓ 0.025

↓ 0.05

↑ 0.1

↔ Ketamine 1 i.p. T + 10 Change in ICSS 
responding at a 
range of stimulation 
frequencies

Hillhouse et al. 
(2014)

↔ 3.2

↑ 5.6

↑ 10

↔ MK-801 0.032 i.p. T + 15

↓ 0.1

↑↓ 0.18

↑ 0.32

↑ Ketamine 5.6 i.p T + 10–100

↑ 10 T + 10–100

↓ MK-801 0.18 i.p T + 10–100

↑ 0.32 T + 10–30

↑↓ T + 100

↑ T + 300

↓ PCP 2.5 i.p. T + 0–60 Carlezon and Wise 
(1993)

↓ 5 T + 0–90

↑ PCP 2 s.c. T + 30 Amitai et al. (2009)

TABLE 6 Behavioral Effects Resembling Negative Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents—cont’d

Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References
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Social anhedonia ↑ MK-801 0.1 i.p. T + 0–15 Social interaction test Daya et al. (2014)

↑ 0.5

↑ Ketamine 20 i.p. T + 30 Nikiforuk et al. 
(2013)

↑ PCP 3 s.c. T + 60 Baker et al. (2008)

↑ S-Ketamine 8 i.p. T + 30 Georgiadou et al. 
(2014)

↑ PCP 1–2 s.c. T + 45 Sallinen et al. (2013)

↑ PCP 0.5–4 s.c. T + 45 Koros et al. (2006)

↔ MK-801 0.03 s.c. T + 45

↑ MK-801 0.06–0.25

↔ Ketamine 2 s.c. T + 30

↑ 4–16

↓ MK-801 0.01 i.p. T + 30 Morales et al. (2013)

↔ 0.03
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administration of reinforcing drugs (Bauer, Banks, 
Blough, & Negus, 2013). Meanwhile, suppression of  
ICSS indicates motivational anhedonia and is produced 
by withdrawal from these drugs (Epping-Jordan, Watkins,  
Koob, & Markou, 1998; Markou & Koob, 1991). One 
study found mixed effects of NMDA-R antagonists, 
with ketamine-decreasing ICSS responding at higher 
doses but MK-801 showing facilitation of ICSS at mod-
erate doses and suppression of ICSS at higher doses 
(Hillhouse, Porter, & Negus, 2014). This may have been 
due to task disengagement as the effect disappeared 
with chronic dosing, and it was not present during the 
later stages. The authors noted that this also occurs 
with morphine, but unlike ketamine, once sedation sub-
sides, ICSS thresholds decrease (Altarifi & Negus, 2011). 
Another study found that PCP at moderate doses (2.5–
5 mg/kg i.p.) facilitated ICSS at lower stimulation fre-
quencies (Carlezon & Wise, 1993). Meanwhile, slightly 
higher doses (2 mg/kg s.c., equivalent to ∼6 mg/kg  
i.p.) suppressed ICSS responding (Amitai, Semenova, 
& Markou, 2009). These authors noted the variability of 
PCP on ICSS, stating that they found facilitation with 
doses of 0.3–0.9 mg/kc s.c., no change with 1.3 mg/kg, 
and suppression with 2–2.5 mg/kg.

In contrast to some of the antidepressant effects pre-
viously mentioned, NMDA-R antagonists decrease 
social interaction in rodents, which may represent 
social anhedonia (Baker et al., 2008; Daya et al., 2014;  
Nikiforuk et al., 2013). The doses used in these studies were  
quite high and have been shown to cause motor impair-
ment and task disengagement in operant tasks, which  
together suggest an increase in dissociative symptoms. 
Other studies have avoided this effect by administer-
ing NMDA-R antagonists on the days prior to testing, 
which is known to induce tolerance to the motor effects 
but retain some of the more subtle behavioral effects 
(although stereotypy still remains (Koros, Rosenbrock, 
Birk, Weiss, & Sams-Dodd, 2006)). These studies still 
report a decrease in social interaction, and cover a wide 
range of dosages, implying that NMDA-R antagonists 
consistently produce a socially isolating phenotype 
(Georgiadou, Grivas, Tarantilis, & Pitsikas, 2014; Koros 
et al., 2006). One exception to this was in a study using 
a low dose of MK-801 (0.01 mg/kg) in adolescent rats, 
where an increase in social interaction was observed 
(Morales, Varlinskaya, & Spear, 2013).

Overall, NMDA-R antagonists seem to mimic the 
negative symptoms of schizophrenia when adminis-
tered in the moderate-to-high dose range. It should be 
noted that all of the effects described are in “normal” 
animals, and that in stressed animals, NMDA-R antago-
nists consistently produce antianhedonic effects in the 
low-to- moderate dose range (Autry et al., 2011; Belu-
jon & Grace, 2014; Koike et al., 2011; Shin et al., 2014). 

However, these effects are persistent upon elimination of 
the drug (Donahue, Muschamp, Russo, Nestler, & Car-
lezon, 2014; Li et al., 2011; Maeng et al., 2008), and may 
therefore represent a mechanism distinct from psychosis.

Representing Cognitive Symptoms

There are many rodent assays that measure cognitive 
deficits relevant to schizophrenia. Here, we will focus 
on attention, episodic memory, working memory, and 
cognitive flexibility (see Table 7), all of which have been 
shown to be affected in human NMDA-R antagonist 
models.

The most commonly used assay for measuring atten-
tion in rodents is the 5-choice serial reaction time task 
(5-CSRTT). PCP has been shown to impair accuracy on 
this task in a dose-dependent manner (Amitai, Semenova, 
& Markou, 2007). This study found an increased latency 
to respond and no change in latency to collect reward, 
dismissing impulsivity, and motor impairment as poten-
tial confounds. Meanwhile, other studies found similar 
effects with MK-801 (Higgins, Ballard, Enderlin, Haman, 
& Kemp, 2005) and ketamine (Nikiforuk & Popik, 2014; 
Smith et al., 2011).

Episodic memory can be assessed in rodents using 
maze tasks, novel object recognition (NOR) tasks, and 
novel location recognition (NLR) tasks. One study 
found that low doses of ketamine were able to impair 
novel object and NLR, regardless of whether adminis-
tered prior to or after acquisition (Pitsikas, Boultadakis,  
& Sakellaridis, 2008). Another study found that a low 
dose of MK-801 impaired NOR when given 20 min 
prior to acquisition, irrespective of whether the delay 
between the acquisition phase and the recognition phase 
was 1.5 or 24 h (De Lima, Laranja, Bromberg, Roesler, & 
Schröder, 2005). Meanwhile, MK-801 has been shown 
to impair water maze learning when administered at a 
range of time points and dosages (Åhlander et al., 1999).

NMDA-R antagonists consistently produce impair-
ments in working memory tasks. MK-801 at high doses 
caused rats to make more retroactive arm entries in 
an eight-arm radial maze (Daya et al., 2014). On a 
four-arm alternation task, ketamine was only able to 
impair performance at a very high subanesthetic dose  
(Kotermanski, Johnson, & Thiels, 2013), and MK-801 
actually improved performance at a low dose, but 
impaired it at moderate-to-high doses (Jackson et al., 
2004). Meanwhile, on a delayed nonmatching to sam-
ple lever task, a moderately high dose (0.1 mg/kg) of 
MK-801 perturbed performance at delays of 4–32 s, but 
not 0 s, implying a specific deficit in working memory 
(Bonaventure et al., 2011). Other studies have also found 
dose-dependent effects of MK-801, PCP, and ketamine 
(Higgins et al., 2005; Kos et al., 2006; Smith et al., 2011; 
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TABLE 7 Behavioral Effects Resembling Cognitive Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents

Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References

Sustained attention ↔ PCP 1.5 s.c. T + 30 5-CSRTT percentage correct Amitai et al. (2007)

↓ 2.25

↓ 3

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2005)

↓ 0.06

↓ 0.1

↔ Ketamine 3 i.p. T + 45 Nikiforuk and Popik (2014)

↓ 10

↓ PCP 1–3 s.c. T + 30 Smith et al. (2011)

↔ MK-801 0.025–0.05 s.c. T + 30

↓ MK-801 0.1

↓ S-Ketamine 2.5–10 s.c. T + 5

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2003)

↓ 0.06

↔ Ketamine 2–4 i.p. T + 10 Lever pressing task Nelson et al. (2002)

Episodic memory ↔ Ketamine 0.3 i.p. Acq: T + 20; T + 42 NOR/NLR—drugged during acquisition Pitsikas et al. (2008)

↓ 1–3

↔ 0.3 Acq: T − 2; T + 22 NOR/NLR—drugged during retrieval

↓ 1–3

↔ MK-801 0.001 i.p. Acq: T + 20; 
T + 110/T + 24 h

NOR—drugged during acquisition De Lima et al. (2005)

↓ 0.01–0.1

↓ 0.1 Acq: T − 5; 
T + 110/T + 24 h

NOR—drugged after acquisition

↔ MK-801 0.01 i.p. or s.c. range Water maze latency to platform Åhlander et al. (1999)

↓ 0.05–0.1

Continued
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Working memory ↓ MK-801 0.1 i.p. T + 5 Eight-arm radial maze Daya et al. (2014)

0.5

↔ Ketamine 5–20 i.p. T + 15 or T + 45 Four-arm maze spontaneous  
alternation

Kotermanski et al. (2013)

↓ 40

↑ MK-801 0.01 i.p. T + 40 Jackson et al. (2004)

↓ 0.05

↓ 0.1

↓ MK-801 0.1 i.p. T + 10 Delayed matching/nonmatching to 
sample

Bonaventure et al. (2011)

↔ MK-801 0.01–0.1 i.p. T + 15 Willmore et al. (2001)

↓ 0.2

↔ PCP 0.5–2 i.p. T + 15

↓ 4–8

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2005)

↓ 0.06

↓ 0.1

↔ Ketamine 3–18 i.p. T + 10 Kos et al. (2006)

↓ 30

↔ PCP 0.5–1 s.c. T + 30 Smith et al. (2011)

↓ 2–2.5

↔ MK-801 0.025 s.c. T+30

↓ 0.05

↔ S-Ketamine 2.5 s.c. T + 5

↓ 5–10

↔ MK-801 0.03 s.c. T + 10 Higgins et al. (2003)

↓ 0.06–0.1

Symptom Effect Drug Dose (mg/kg) Route Time Point (mins) Task/Measure References

TABLE 7 Behavioral Effects Resembling Cognitive Symptoms of Schizophrenia upon Administration of NMDA-R Antagonists to Rodents—cont’d
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Reversal learning ↓ PCP 2.5 s.c. T + 210 Bowl digging task—reversal phases Gastambide et al. (2013)

↔ S-Ketamine 10 s.c. T + 150

↔ Ketamine 10–20 i.p. T + 50 Kos et al. (2011)

T + 180

T + 24 h

↔ Ketamine 3–10 s.c. T + 60 Nikiforuk et al. (2010)

↔ Ketamine 10 s.c. T + 75 Nikiforuk et al. (2013)

↔ MK-801 0.025–0.075 s.c. T + 30 Instrumental conditioning task De Bruin et al. (2013)

↔ PCP 0.5 s.c. T + 30

↓ 1–2

↔ PCP 0.5 s.c. T + 30 Fellini et al.

↓ 1

Attentional set 
shifting

↓ PCP 2.58 i.p. T + 24 h Bowl digging task—extradimensional 
shift phases

Egerton et al. (2005)

↓ PCP 2.5 s.c. T + 300 Gastambide et al. (2013)

↓ S-Ketamine 10 s.c. T + 240

↓ Ketamine 10–20 i.p. T + 50 Kos et al. (2011)

↔ 10 T + 180

T + 24 h

↔ Ketamine 3 s.c. T + 60 Nikiforuk et al. (2010)

↓ 10

↓ Ketamine 10 s.c. T + 75 Nikiforuk et al. (2013)

↓ MK-801 0.03 i.p. T + 35 Plus maze set shifting task Jones et al. (2014)

↓ 0.1

Contextual 
discrimination

↓ PCP 1.5 i.p. T + 30 Instrumental conditioning task Large et al. (2011)

↔ PCP 1 i.p. T + 30 Idris et al. (2005)

↓ 1.5–2
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Willmore, LaVecchia, & Wiley, 2001); however, many of 
these studies find impairments at delays below 1 s, which 
may imply motor impairment or biased responding.

NMDA-R antagonists have been tested in assays for 
cognitive flexibility, such as the bowl digging task, which 
requires hungry animals to discriminate between smells 
and textures to determine where a food reward is; or 
instrumental tasks, where animals are required to make 
a specific action to receive a reward. In one study, a high 
dose of PCP impaired reversal learning, whilst a mod-
erate dose of ketamine did not (Gastambide, Mitchell,  
Robbins, Tricklebank, & Gilmour, 2013); however, the 
pharmacokinetic data show that PCP levels were still 
notable during the task, whereas ketamine levels were 
very low at this time point. Other bowl digging studies 
have also failed to produce reversal learning deficits with 
ketamine at low to high doses (Kos, Nikiforuk, Rafa, & 
Popik, 2011; Nikiforuk, Gołembiowska, & Popik, 2010). 
In an operant task, administration of low-to- moderate 
doses of MK-801 before each of the five testing sessions 
had no effect on the acquisition of a reversed rule, whilst 
moderate doses of PCP did slow the acquisition of the 
reversal (De Bruin et al., 2013). Intriguingly though, 
MK-801 did increase perseveration during extinction to 
a similar degree as PCP at these doses. In a touch screen 
visual discrimination task, low doses of PCP impaired 
the acquisition of a reversal without affecting perfor-
mance of a pre-learned discrimination (Fellini, Kumar, 
Gibbs, Steckler, & Talpos, 2014).

Although the findings with reversal learning are 
equivocal, NMDA-R antagonists have been shown to 
consistently impair attentional set shifting at a range of 
doses and with pretreatment times sufficient to avoid 
motor confounds (Egerton, Reid, McKerchar, Morris, 
& Pratt, 2005; Gastambide et al., 2013; Kos et al., 2011; 
Nikiforuk et al., 2010, 2013). MK-801 was also shown to 
impair set shifting on a plus maze discrimination task 
(Jones et al., 2014). In contextual discrimination tasks, in 
which an animal has to implement different pre-learned 
rules depending on the context of the task, NMDA-R 
antagonists often impair performance (Idris, Repeto, 
Neill, & Large, 2005; Large et al., 2011).

It could be argued that many of the deficits previ-
ously mentioned are all the result of task impulsivity, 
as NMDA-R antagonists are known to cause behavioral 
“speeding.” However, across dosages, there was little 
evidence for a specific effect on cognitive impulsivity 
(i.e., decreased response latencies to task-relevant cues 
in the absence of decreased latencies in task initiation or 
reward collection) (Amitai et al., 2007; Kos et al., 2006). 
Another argument is that the deficits are induced by 
task disengagement and, therefore, are not specific. This 
is clearly a problem at the higher dosages and shorter 
pretreatment times where omissions are often increased 

(Gastambide et al., 2013; Kos et al., 2006; Nelson, Burk, 
Bruno, & Sarter, 2002), probably reflecting a dissociative 
state.

Overall, it appears that NMDA-R antagonists are 
effective at impairing attention and memory in rodents 
at doses that produce little motor impairment. Reversal 
learning is usually unaffected on the bowl digging task, 
which is reliant on goal-directed circuitry and often has 
“discovery” trials where the rodent can make errors that 
are not counted toward performance. Performance on 
instrumental reversal tasks is often impaired; and these 
tasks rely more on implicit/habitual circuitry and do not 
have “discovery” trials; therefore, they are more sensi-
tive at detecting impaired performance. Extradimen-
sional set shifting is consistently impaired, even when 
the NMDA-R antagonist is administered 24 h prior at a 
moderately low dose.

NMDA-R Antagonist Physiological Effects  
in Rodents

As in humans, NMDA-R antagonists have been con-
sistently shown to increase cortical activation in rodents 
(see Table 8), as measured by resting oxygen (Finnerty, 
Bolger, Pålsson, & Lowry, 2013; Li et al., 2014), glucose 
(Finnerty et al., 2013), glutamate (Bonaventure et al., 
2011; Uslaner et al., 2012), and dopamine levels (Adams 
& Moghaddam, 1998; Bonaventure et al., 2011; Lorrain, 
Baccei, Bristow, Anderson, & Varney, 2003b), along with 
single unit firing (Jackson et al., 2004; Suzuki, Jodo, 
Takeuchi, Niwa, & Kayama, 2002) and gamma oscil-
latory power (reviewed in Hunt and Kasicki (2013)). 
Studies have also shown an increase in hippocampal 
gamma power (Ma & Leung, 2014) that correlates with 
disruption of sensorimotor gating (Ma et al., 2004). Fur-
thermore, ketamine-induced ECoG gamma power cor-
related with stereotypy/ataxia ratings, but dopamine 
agonists induced stereotypy without affecting gamma 
power, implying that this is an upstream biomarker 
(Pinault, 2008). In addition, MK-801 provoked PFC pyra-
midal neuron firing at low-to-high doses, which corre-
lated with stereotypy scores but had no relationship to 
working memory performance (Jackson et al., 2004).

Resting-state spike activity has been shown to be 
increased in the ACC and OFC (Wood, Kim, & Moghaddam,  
2012), but gamma power was only increased in the ACC 
and not the OFC, which may be relevant to the finding 
in humans that ketamine increases BOLD response in the 
ACC but decreases it in the OFC (Deakin et al., 2008).

Regarding the meso-accumbens pathway, NMDA-
R antagonists have generally been shown to increase 
activity. Nucleus accumbens (NAc) oxygen levels were 
increased with moderate-to-high doses of ketamine (Li 
et al., 2014); meanwhile, gamma power (Hunt, Raynaud, 
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TABLE 8 Neurophysiological Effects induced by Acute NMDA-R Antagonist Administration in Rodents

Biomarker Effect Drug Dose (mg/kg) Route Time point (mins) Measure References

PFC oxygen levels ↑ S-Ketamine 5–10 s.c. T + 10–40 Oxygen amperometry Li et al. (2014)

↑ 25 T + 10–80

↑ PCP 10 i.p. T + 10–180 Finnerty et al. (2013)

PFC glucose levels ↑ PCP 10 i.p. T + 40–240 Glucose amperometry Finnerty et al. (2013)

PFC glucose utilization ↑ Ketamine 30 i.p. T + 1 Glucose radiography Dawson et al. (2013)

PFC glutamate levels ↑ MK-801 0.1 i.p. T + 5–60+ Glutamate amperometry Bonaventure et al. (2011)

↑ MK-801 0.23 s.c. T + 30–180 Uslaner et al. (2012)

↔ S-Ketamine 15 i.p. Stan et al. (2014)

↔ Ketamine 10 i.p. T + 120–180 Microdialysis—HLPC Nikiforuk et al. (2010)

↑ Ketamine 18 s.c. T + 60–180+ Lorrain et al. (2003b)

↔ PCP 1 s.c. T + 0–140 Baker et al. (2008)

↑ 3 T + 20–140

PFC activity ↑ PCP 5 i.p. T + 10–80 Single unit firing Suzuki et al. (2002)

↔ MK-801 0.01 i.p. T + 0–120 Jackson et al. (2004)

↔ 0.05

↑ 0.1 T + 30–120+

↑ Ketamine 2.5 s.c. T + 2–30 ECoG gamma power Pinault (2008)

↑ 5 T + 2–50

↑ 10 T + 2–70+

↑ MK-801 0.08 s.c. T + 15–70+

↑ 0.16 T + 15–70+

↑ Ketamine 2.5 s.c. T + 15 Kulikova et al. (2012)

PFC dopamine ↑ MK-801 0.1 i.p. T + 30–105+ Microdialysis—HLPC Bonaventure et al. (2011)

↔ Ketamine 10 i.p. T + 120–180 Nikiforuk et al. (2010)

↑ Ketamine 18 s.c. T + 20–60 Lorrain et al. (2003b)

↑ Ketamine 30 i.p. T + 20–100 Verma and Moghaddam (1996)

↑ PCP 2.5 i.p. T + 20–100 Jentsch, Sanchez, Elsworth, and Roth 
(2008)

↑ PCP 5 i.p. T + 20–140 Adams and Moghaddam (1998)

Continued
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Biomarker Effect Drug Dose (mg/kg) Route Time point (mins) Measure References

Hippocampal activity ↑ Ketamine 3 s.c. T + 5–10 EEG gamma power Ma and Leung (2014)

↔ PCP 1 i.p. T + 15 EEG gamma power 
during PPI task

Ma et al. (2004)

↑ 3–5 i.p.

ACC activity ↑ MK-801 0.1 i.p. T + 10–100+ Single unit firing Wood et al. (2012)

↑ T + 20–100+ LFP gamma power

OFC activity ↑ MK-801 0.1 i.p. T + 20–100+ Single unit firing

↔ T + 0–100 LFP gamma power

Visual cortex activity ↑ S-Ketamine 10 s.c. T + 10–60 LFP gamma power Phillips et al. (2012)

↑ MK-801 0.1 s.c. T + 10–150

↑ PCP 2.5 s.c. T + 20–220

NAc activity ↔ Ketamine 10 i.p. T + 0–60 LFP gamma power Hunt et al. (2006)

↑ 25 T + 2–40

NAc oxygen levels ↑ S-Ketamine 5–10 s.c. T + 10–40 Oxygen amperometry Li et al. (2014)

↑ 25 T + 10–100

NAc glutamate ↑ Ketamine 25 i.p. T + 10–140 Microdialysis Razoux et al. (2006)

NAc dopamine ↔ Ketamine 10–25 s.c. T + 0–120 Microdialysis— 
HPLC

Littlewood et al. (2006)

↔ Ketamine 30 i.p. T + 0–120 Verma and Moghaddam (1996)

↑ PCP 2.5 s.c. T + 20–60 Carboni, Imperato, Perezzani, and Di 
Chiara (1989)

↑ 5 T + 20–100

↑ MK-801 0.1 s.c. T + 20–180+ Mathé, Nomikos, Hygge Blakeman, and 
Svensson (1999)

↔ MK-801 0.1 i.p. T + 0–180 Hatip-Al-Khatib, Mishima, Iwasaki, and 
Fujiwara (2001)

VTA activity ↔ Ketamine 5 i.p. T + 20 Population activity Belujon and Grace (2014)

↑ T + 120

↑ Ketamine 5 i.p. T + 20 Burst firing/firing rate

↔ T + 120

Evoked activity (thalamocortical) ↓ Ketamine 2.5 s.c. T + 15 ECoG gamma power Kulikova et al. (2012)

Evoked glutamate 
(hippocampus)

↔ S-Ketamine 15 i.p. T + 30 Glutamate amperometry Stan et al. (2014)

↓ T + 120

Parvalbumin expression (RtN) ↓ PCP 2.58 i.p. T + 24 h mRNA expression Egerton et al. (2005)

TABLE 8 Neurophysiological Effects induced by Acute NMDA-R Antagonist Administration in Rodents—cont’d
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& Garcia, 2006) and glutamate (Razoux, Garcia, & Léna, 
2006) were only increased at high doses. Population activ-
ity of dopamine neurons in the VTA was unchanged dur-
ing the acute phase of the drug, but then they increased 
at the 2 h time point, which may be related to effects on 
synaptic plasticity (Belujon & Grace, 2014). Meanwhile, 
the firing rate of those neurons was increased during the 
acute phase, and it had subsided by the 2 h mark.

The effect on accumbal dopamine levels is unclear. 
Studies using PCP appear to more consistently report 
increases, whereas ketamine and MK-801 do not (espe-
cially at lower doses). Meanwhile, prefrontal cortex 
dopamine levels are more consistently increased by 
ketamine at similar dosages, and in the same animals 
(Verma & Moghaddam, 1996). It should be stated that 
dopamine is more tightly regulated in the striatum, 
with far higher reuptake rates via the dopamine trans-
porter compared to the prefrontal cortex (Schmitz,  
Benoit-Marand, Gonon, & Sulzer, 2003; Sesack, Hawry-
lak, Matus, Guido, & Levey, 1998), which may mean that 
microdialysis (which has a low temporal resolution) is 
less effective at detecting increases in striatal dopamine 
compared to prefrontal dopamine.

There is also evidence of decreased signal-to-noise 
ratios with NMDA-R antagonists, as basal thalamocor-
tical gamma power was increased, but evoked power 
was decreased (Kulikova et al., 2012). In another paper, 
evoked glutamate release in the subiculum (hippo-
campus) was decreased at the 2 h mark, but not dur-
ing the acute phase (Stan, Alvarsson, Branzell, Sousa, &  
Svenningsson, 2014).

Overall, NMDA-R antagonists appear to produce 
similar physiological effects in rodents as they do in 
humans.

CONCLUSION AND SYNTHESIS

In this chapter, we have summarized how the acute 
effects of NMDA-R antagonists in humans and rodents 
might relate to the symptom dimensions of schizophre-
nia. Careful consideration of the dose and measurement 
time points is essential if rodents are to be used as a rep-
resentative model of humans.

Depending on the desired symptom dimension that 
is to be most accurately modeled, different doses and 
time points are appropriate. High doses and early time 
points may be most relevant for measurements relevant 
to gross positive symptoms, such as locomotor activity 
and stereotypy induced by striatal dopamine release. 
These symptoms should be susceptible to amelioration 
by typical antipsychotics (D2 antagonists). Measurement 
of any other phenotypes is discouraged, since NMDA-
R antagonists severely disturb serotonergic, noradren-
ergic, and cholinergic signaling at these doses (Dawson 

et al., 2013), which may help to explain why a plethora of 
drugs acting on these pathways have been shown to pro-
duce antipsychotic and/or procognitive effects in these 
models but have failed to translate to humans (Bubser 
et al., 2014; Harkin, Morris, Kelly, O’Donnell, & Leonard,  
2001; Lieberman et al., 2008; Meltzer, Horiguchi, & 
Massey, 2011; Sallinen et al., 2013; Stuchlík, Petrásek, & 
Vales, 2009; Wallace & Porter, 2011).

Low-to-moderate doses might be most relevant for 
modeling aberrant associative learning and cognitive 
deficits, providing the task does not have a substantial 
motor requirement. Given that these doses do not reli-
ably induce striatal dopamine release, typical antipsy-
chotics may not ameliorate these effects (although they 
may interfere with prefrontal dopamine signalling).

Low doses and late time points should be used 
for measurements that may be confounded by motor 
impairment, such as social interaction, maze navigation, 
or digging tasks. These measures represent negative and 
cognitive symptoms that are not remedied by typical 
or atypical antipsychotics in schizophrenia or human 
NMDA-R antagonist models, and therefore, these drugs 
should have no ameliorative effect in rodent models.

Modeling other negative symptoms such as amotiva-
tion and anhedonia in rodents may prove difficult given 
the antianhedonic and motivating effects of NMDA-R  
antagonists. It is possible that laboratory rodents are 
more sensitive to these effects since they live in a 
deprived environment compared to healthy humans, 
and that rodents living in enriched environments may 
be more representative of healthy humans, and therefore 
more susceptible to the anhedonic effects of ketamine. 
The use of sucrose consumption assays is also question-
able, given that consummatory anhedonia is not altered 
in schizophrenia or depression (Der-Avakian & Markou, 
2012). Measuring motivational anhedonia is more desir-
able, such as via progressive ratio schedules.

An ideal study design would use multiple doses of 
a psychotomimetic NMDA-R antagonist, in conjunc-
tion with a vehicle control and a non-psychotomimetic 
NMDA-R antagonist (such as lanicemine). For testing 
new compounds with ameliorative potential, poten-
tiators of mGluR2/3 signaling or lamotrigine should be 
used as a positive control, since these compounds are 
most effective at attenuating the behavioral and physio-
logical effects of NMDA-R antagonists in humans (Doyle 
et al., 2013; Krystal et al., 2005) and rodents (Gozzi et al., 
2007; Jones et al., 2011; Large et al., 2011; Moghaddam & 
Adams, 1998; Quarta & Large, 2011). Interpretative con-
trol measurements should be made to eliminate motor 
impairment or task disengagement as confounds (e.g., 
latencies and omissions, respectively).

A key consideration is that acute NMDA-R antago-
nism does not equate to chronic schizophrenia, but that 
it may induce a state of psychosis similar to that seen 
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early in the disorder. For example, mGluR2/3 agonists 
are effective at attenuating the effects of a single admin-
istration of NMDA-R antagonist, but they showed no 
efficacy in a large-scale trial in schizophrenia patients 
(Hopkins, 2013). Although a positive allosteric modu-
lator of mGluR2 proved more effective (possibly by 
avoiding agonism-induced mGluR2 downregulation), it 
would be over simplistic to assume that any compound 
that attenuates the effects of acute NMDA-R antago-
nism will show efficacy in schizophrenia. Rather, the 
acute NMDA-R antagonist model should be further 
understood to probe the mechanisms of psychopathol-
ogy that may hold new potential treatment targets, 
irrespective of whether they are pharmacologically, 
behaviorally, or neurotechnologically based. Rather 
than replacing earlier approaches focusing on dopa-
mine and serotonin, use of glutamatergic models is 
likely to further understanding of how abnormalities 
in these neural systems interact, both with each other 
and with genetic and environmental factors to produce 
the behavioral symptoms associated with a diagnosis of 
schizophrenia.
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INTRODUCTION

Schizophrenia is a serious  neurodevelopmental 
disorder afflicting approximately 1% of adults in 
the United States, with similar prevalence reported 
in other countries around the world. The disorder 
is characterized by negative, positive, and cognitive 
symptoms, including impaired social functioning, hal-
lucinations, and disorganized thought. In addition to 
these core diagnostic areas, there are a variety of medi-
cal  comorbidities associated with the disorder, includ-
ing infectious, autoimmune, and metabolic diseases 
(Crump, Winkleby, Sundquist, & Sundquist, 2013; Eaton 
et al., 2006). The causes of schizophrenia are largely 
unknown, but believed to be contributed by a combi-
nation of both genetic and environmental risk  factors. 
A meta-analyses of 12 twin studies reports that the con-
cordance of schizophrenia among monozygotic ver-
sus dizygotic twins is 81% (Sullivan,  Kendler, & Neale, 
2003), indicating high heritability of the disorder and a 
role for both genes and environment in the etiology of 
schizophrenia. Consistent with this, a study finds that 
monozygotic twins sharing the same placenta (mono-
chorionic) exhibit a 60% concordance rate compared 
with 10.7% concordance for monozygotic twins that 
do not share the same placenta (dichorionic) (Davis, 
Phelps, & Bracha, 1995). This suggests a significant role 
for the shared uterine environment in the etiopathogenesis 
of schizophrenia.

MATERNAL INFECTION RISK FACTORS 
FOR SCHIZOPHRENIA

Several environmental factors have been identified 
to increase schizophrenia risk, many of which impact 
immunological status. Early life challenges, such as peri-
natal infection, nutrient deficiency, maternal stress, fetal 
hypoxia, obstetric complications, and advanced paternal 
age, are each associated with schizophrenia (Brown, 2011). 
Postnatal exposures to infection, trauma, and cannabis 
(Brown, 2011) are also implicated. Among these various 
factors, maternal infection, in particular, is strongly sup-
ported by large epidemiological, case, and animal stud-
ies as a significant environmental risk for schizophrenia 
(Brown, 2006; Brown & Patterson, 2011; Patterson, 2009). 
Prenatal exposures to influenza virus, rubella, toxoplas-
mosis, herpes simplex virus type 2, and other infections 
increase the risk of schizophrenia in the offspring (Brown, 
2012b; Khandaker, Zimbron, Lewis, & Jones, 2013). In 
addition, maternal infection and increased inflammatory 
cytokines during pregnancy are linked with structural 
and functional brain changes in the offspring that are rel-
evant to schizophrenia, such as increased ventricular vol-
ume, reduced cortical volume, and a presence of a cavum 
septum pellucidum, a marker for fetal neural maldevel-
opment (Ellman et al., 2010;  Ellman, Yolken, Buka,  Torrey, 
& Cannon, 2009; Fineberg & Ellman, 2013; Galarza, 
Merlo, Ingratta, Albanese, & Albanese, 2004). Moreover, 
the offspring of the mothers infected with influenza virus 
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display decreased executive and cognitive functions in 
childhood and adulthood (Ellman et al., 2009).

Early evidence that maternal infection during preg-
nancy is associated with schizophrenia derives from 
population studies of the 1957 type A2 influenza epi-
demic. These early investigations are retrospective, based 
on documented data from the time of the particular epi-
demic, and perhaps not surprisingly, have yielded contra-
dictory results (Mednick, Machon, Huttunen, & Bonett, 
1988; Selten, Frissen, Lensvelt-Mulders, &  Morgan, 2010). 
However, more recent studies based on birth cohort or 
nested case–control designs use serological assays, clini-
cal examination of the mother, and longitudinal evalua-
tion of the offspring to more effectively diagnose maternal 
infection (Brown, Begg, et al., 2004; Buka,  Tsuang, Torrey, 
Klebanoff, Wagner, et al., 2001; Khandaker et al., 2013; 
Mortensen et al., 2010). Maternal exposure to influenza 
virus during first two trimesters of pregnancy, as mea-
sured by the presence of anti-influenza antibodies in 
maternal serum, increases the risk for schizophrenia in 
the offspring by three- to sevenfolds (Brown, Begg, et al., 
2004). In addition, elevated levels of maternal immuno-
globulin G antibodies to herpes simplex virus type 2 and 
Toxoplasma gondii are positively associated with increased 
schizophrenia susceptibility (Brown et al., 2005; Buka, 
Tsuang, Torrey, Klebanoff, Bernstein, et al., 2001). More-
over, various types of respiratory tract and reproductive 
infections are linked to an increased risk for schizophrenia 
in the offspring (Babulas, Factor-Litvak, Goetz, Schaefer, 
& Brown, 2006; Nielsen, Laursen, & Mortensen, 2013; 
Sorensen, Mortensen, Reinisch, & Mednick, 2009).

The diversity in the types of maternal infection that 
increase the risk for schizophrenia supports the notion 
that general activation of the maternal immune sys-
tem, rather than a site- or pathogen-specific infection, 
is responsible. Consistent with this, pro-inflammatory 
factors are believed to mediate the effects of maternal 
immune activation (MIA) on abnormal neurodevelop-
ment. Positive correlations between elevated maternal 
cytokine level and increased risk of schizophrenia are 
reported for tumor necrosis factor (TNF)-α and inter-
leukin (IL)-8 (Brown, Hooton, et al., 2004; Buka, Tsuang, 
Torrey, Klebanoff, Wagner, et al., 2001). Many cytokines 
and cytokine receptors are expressed in the develop-
ing brain (Mousa, Seiger, Kjaeldgaard, & Bakhiet, 1999), 
where they play a key role in synaptic plasticity, neuro-
genesis, and gliogenesis (Deverman & Patterson, 2009).

MODELING MIA USING PRENATAL 
POLYINOSINE-POLYCYTIDYLIC 

INJECTIONS

Although the preponderance of human case and 
epidemiological studies link maternal infection and 
maternal inflammatory factors to the etiopathogenesis 

of schizophrenia, fundamental questions remain. For 
example, how does the timing or severity of immune 
activation during pregnancy influence neurodevelop-
ment and postnatal brain function and behavior? In 
addition, how is maternal immune challenge relayed 
to the developing embryo and what are the molecular 
mechanisms underlying its effects?

Modeling the MIA risk factor in animal models is 
important for testing the hypotheses generated from 
epidemiological findings and enabling the investigation 
of the cellular and molecular underpinnings of schizo-
phrenia-related endophenotypes. Several MIA models 
have been developed involving the infection of pregnant 
rodents or monkeys with influenza virus or the use of 
microbial antigens to induce an inflammatory response 
in the absence of a persistent infection. Most widely 
used are the synthetic double-stranded RNA, polyino-
sine-polycytidylic—poly (I:C)—that evokes an antiviral 
inflammatory response and the bacterial cell wall con-
stituent, lipopolysaccharide, which evokes an antibacte-
rial inflammatory response. Although these approaches 
differ in their specific molecular cascades of immune 
activation, the influenza infection, poly (I:C), and lipo-
polysaccharide models all similarly demonstrate that 
MIA in pregnant rodents or monkeys sufficiently yields 
offspring displaying behavioral and neuropathological 
abnormalities relevant to schizophrenia.

To be considered relevant to human pathology, ani-
mal models of schizophrenia should display three cri-
teria of validity: construct, face, and predictive (Jones, 
Watson, & Fone, 2011; Macedo et al., 2012). Construc-
tive validity means that the animal model should have 
an etiological basis that is relevant to the biological ori-
gins or risk factors for the human disorder. Face validity 
entails that the animal model should display symptoms 
that are homologous to those seen in the human disease, 
thereby enabling studies into the neurobiological bases 
of these schizophrenia-related symptoms. Predictive 
validity denotes the ability to reproduce in animal mod-
els pharmacological responses known to be effective for 
the human disorder.

Rodent models of MIA display face, construct and 
predictive validity for several behavioral, neuropatho-
logical, and biochemical abnormalities associated with 
schizophrenia (Table 1). For the poly (I:C) approach, 
pregnant rats or mice are injected with poly (I:C) dur-
ing mid-gestation to yield offspring that display behav-
ioral abnormalities that resemble common negative 
symptoms of schizophrenia, such as deficits in senso-
rimotor gating and information processing ( Bitanihirwe, 
Peleg-Raibstein, Mouttet, Feldon, & Meyer, 2010; Smith, 
Li, Garbett, Mirnics, & Patterson, 2007). Sensorimotor 
gating refers to the ability to habituate to repetitious 
unimportant stimuli, and is known to be impaired in 
schizophrenic patients who cannot distinguish between 
specific stimuli and background noise (Light & Braff, 1999). 
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TABLE 1 comparative overview of Poly (I:c) Rodent Models and their Validation for Animal Models of Psychiatric disorders

Poly (I:C) Treatment Behavioral Phenotype Neurochemical and Structural Defects Antipsychotic Treatment

Mouse, 20 mg/kg GD 9 (Shi, Fatemi, 
Sidwell, & Patterson, 2003)

PPI deficit

Rat, 4 mg/kg GD 15 (Piontkewitz, Arad, 
& Weiner, 2011; Piontkewitz, Assaf, & 
Weiner, 2009; Piontkewitz et al., 2012; 
Zuckerman, Rehavi, Nachman, & Weiner, 
2003; Zuckerman & Weiner, 2005)

LI deficit, APMH- and MK-801–induced 
hyperlocomotion

Enlargement of lateral ventricles; reduction of 
hippocampal volume; impaired neurogenesis, 
reduced capillarization and cell density 
in hippocampus; decreased number of 
hippocampal parvalbumin-containing 
GABAergic interneurons; increased KCl-
induced dopamine release from striatum

CLZ (7.5 mg/mL/kg; PND 34–47) and RIS 
(0.045 or 1.2 mg/kg; PND 34–47) prevent 
enlargement of lateral ventricles and 
reduction of hippocampal volume; CLZ 
(7.5 mg/mL/kg; ND 34–47) (5 mg/kg; 
PND 35 or P90), HAL (0.1 mg/kg; PND 35 
or 90) and RIS (0.045 or 1.2 mg/kg; PND 
34–47) correct LI deficit and AMPH-induced 
hyperlocomotion; RIS (0.045 or 1.2 mg/kg; 
PND 34–47) prevents impaired neurogenesis, 
reduced capillarization and granular cell 
density in hippocampus and decreased 
number of hippocampal parvalbumin-
containing GABAergic interneurons

Mouse, 5 or 10 mg/kg GD 9 (Meyer, 
Feldon, Schedlowski, & Yee, 2005; Meyer, 
Schwendener, Feldon, & Yee, 2006)

Deficits in PPI, LI, and spatial working 
memory; increased anxiety; amphetamine-
induced hyperlocomotion

Elevation of fetal IL-1β

Mouse, 5 mg/kg GD 12–17 (Ozawa et al., 
2006)

Attenuated thigmotaxis; MAP-induced 
hyperlocomotion; PPI deficit; cognitive 
impairment in novel object recognition test

Increased dopamine turnover; decreased level 
of D2-like receptor in striatum

CLZ (5.0 mg/kg; P35D or P90D for 2 weeks) 
improves cognitive impairment

Mouse, 5 mg/kg GD 9 (Li et al., 2010; 
Meyer, Engler, Weber, Schedlowski, 
& Feldon, 2008; Meyer, Feldon, 
Schedlowski, & Yee, 2006; Meyer, 
Nyffeler, Yee, Knuesel, & Feldon, 2008; 
Shi et al., 2009; Winter et al., 2009)

PPI and LI deficit Fetus: Reduction of prefrontal D1R; increase in  
the number of mesencephalic dopamine neurons;
Adults: Increased level of dopamine in globus 
pallidus and prefrontal cortex; decreased level 
of serotonin in the hippocampus, nucleus 
accumbens and globus pallidus; reduction of 
taurine in the hippocampus; enlargement of 
lateral ventricles; decreased myelination

Mouse, 5 mg/kg GD 17 (Bitanihirwe 
et al., 2010; Meyer, Feldon, et al., 2006; 
Meyer, Knuesel, Nyffeler, & Feldon, 2010; 
Meyer, Nyffeler, Yee, et al., 2008; Shi et al., 
2009; Vuillermot, Weber, Feldon, & Meyer, 
2010)

Impaired working memory; deficit in 
social interaction, anhedonic behavior, 
and alterations in the locomotor and 
stereotyped behavioral responses to APO

Reduction of hippocampal NMDAR; reduction 
of prefrontal reelin and parvalbumin-
expressing neurons; increased number 
of midbrain dopamine cells; reduced 
hippocampal neurogenesis; expansion of 
4th ventricle volume; reduced dopamine, 
glutamate, GABA, and glycine levels in 
prefrontal cortex and hippocampus

CLZ (5 mg/kg; PND 85–106) improves 
working memory deficits

Continued
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Poly (I:C) Treatment Behavioral Phenotype Neurochemical and Structural Defects Antipsychotic Treatment

Mouse, 20 mg/kg GD 12.5 (Ito, Smith, 
Hsiao, & Patterson, 2010; Smith et al., 
2007)

Deficit in PPI, LI, increased anxiety, and 
decreased sociability. The behavioral effects 
are normalized by coadministration of 
anti–IL-6 antibodies
Perseverant behavior in the Morris water 
maze task and abnormal preference in the 
novel object recognition task

Abnormal hippocampal network; increased 
sensitivity to dopamine at distal CA1 synapses

Mouse, 2 mg/kg GD 9 (Meyer, Spoerri, 
Yee, Schwarz, & Feldon, 2010)

PPI and LI deficit, hypersensitivity to 
AMPH

CLZ (15 mg/kg/day; PND 35–65) and FLX 
(20 mg/kg/day; PND 35–65) treatment 
normalizes PPI; CLZ (15 mg/kg/day; PND 
35–65) and HAL (3 mg/kg/day; PND 35–65) 
treatment prevent LI deficit; HAL (3 mg/
kg/day; PND 35-65) and FLX (20 mg/kg/
day; PND 35–65) treatment attenuate high 
response to AMPH

Rat, 4 mg/kg GD 15 (Dickerson, 
Restieaux, & Bilkey, 2012; Dickerson, 
Wolff, & Bilkey, 2010)

PPI deficit Disruption in long-range neuronal synchrony CLZ (1 mg/kg or 5 mg/kg; <PND 150) 
ameliorates the deficit in theta frequency 
coherence between the prefrontal cortex and 
the hippocampus

Rat, 8 mg/kg GD 14 (Richtand et al., 2011; 
Richtand et al., 2012; Roenker et al., 2011)

Decreased response to the low dose of 
AMPH

NMDA hypofunction in prefrontal cortex Paliperidone (0.01 mg/kg/day; PND 34–35) 
and RIS (0.01 mg/kg/day; PND 34–35) 
normalize basal extracellular glutamate; 
paliperidone (0.05 mg/kg/day; PND 
35–70), RIS (0.45 mg/kg/day; PND 35–70), 
FLX (10 mg/kg/day; PND 35–70); and 
aripiprazole (0.66 mg/kg/day; PND 35–70) 
stabilize response to APMH

Mouse, 5 mg/kg GD 9 (Holloway et al., 
2013)

High sensitivity to DOI; cognitive 
impairment on the T-maze task

Increased 5HT-2AR level but decreased 
mGlu2/3R level in frontal cortex

Mouse, 5 mg/kg GD 10, 12, and 14 
(Malkova, Gallagher, Yu, Jacobs, & 
Patterson, 2014)

PPI deficit, high sensitivity to DOI Increased level of 5HT-2AR, RGS-4, and  
PLC-β 1 in the frontal cortex; greater  
DOI-induced brain activity

5-HTR antagonist ketanserin (2 mg/kg; 1 week; 
PND 56) diminishes DOI-induced stereotypic 
behavior

APMH, amphetamine; APO, apomorphine; CLZ, clozapine; DOI, 2,5-dimethoxy-4-iodoamphetamine; DR, dopamine receptor; FLX, fluoxetine; GABA, γ-aminobutyric acid; GD, gestational day; HAL, haloperidol; 
5-HTR, serotonin receptor; IL, interleukin; LI, latent inhibition; MAP, methamphetamine; mGluR, metabotropic glutamate receptor; NMDA, N-methyl-d-aspartate receptor; PLC, phospholipase C; PND, postnatal 
day; PPI, prepulse inhibition of acoustic stimulus; RGS, regulator of G protein signaling; RIS, risperidone.

TABLE 1 comparative overview of Poly (I:c) Rodent Models and their Validation for Animal Models of Psychiatric disorders—cont’d
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To measure sensorimotor gating in animals, the pre-
pulse inhibition (PPI) task is used. A series of acous-
tic tones are presented, some of which are preceded 
by a lower intensity prepulse, and the startle response 
is recorded. PPI refers to the ability of the animal to 
inhibit its startle response to the primary pulse when it 
is preceded by a lower intensity prepulse. This assay in 
mice parallels the P50 auditory-evoked potential sup-
pression task used to measure sensorimotor gating in 
humans.

Another method of evaluating sensorimotor gating is 
the latent inhibition (LI) assay (Swerdlow, Braff, Hartston, 
Perry, & Geyer, 1996). LI is a cross-species selective atten-
tion phenomenon and refers to the observation that 
organisms display reduced learning if they receive non-
reinforced preexposure to the to-be-conditioned stimu-
lus compared with a group without such preexposure. 
LI assesses an organism’s ability to learn to ignore irrel-
evant stimuli and is known to be abnormal in patients 
with schizophrenia (Weiner & Arad, 2009). Inducing MIA 
in rodents also yields offspring with disrupted LI (Meyer 
et al., 2005; Meyer, Feldon, et al., 2006; Meyer, Spoerri, 
et al., 2010; Smith et al., 2007;  Zuckerman et al., 2003).

In addition to abnormalities in sensorimotor gating, 
several long-term cognitive impairments are observed 
in MIA offspring. These include deficiencies in spatial 
working memory (Meyer et al., 2005; Meyer, Nyffeler, 
Yee, et al., 2008; Samuelsson, Jennische, Hansson, & 
 Holmang, 2006), novel object recognition (Ito et al., 2010; 
Ozawa et al., 2006), discrimination reversal learning 
(Meyer, Nyffeler, Yee, et al., 2008; Zuckerman & Weiner, 
2005), and performance in the T-maze task and water 
maze (Holloway et al., 2013; Ito et al., 2010).

Although the positive symptoms of schizophre-
nia, such as hallucinations, are arguably unique to 
humans, recent studies model hallucination-like activ-
ity in mice using the agonist for serotonin receptor 2A, 
2,5- dimethoxy-4-iodoamphetamine (DOI) ( Holloway 
et al., 2013; Malkova et al., 2014). Consistent with the 
elevated response to hallucinogenic drugs seen in 
schizophrenia, MIA offspring display increased brain 
activity and stereotypic behavior in response to DOI 
treatment. Manganese (Mn2)-enhanced magnetic reso-
nance imaging reveals that MIA offspring exhibit sig-
nificantly higher DOI-induced brain activity in frontal, 
primary motor, and somatosensory cortices as well as 
caudate putamen, midbrain, and thalamus (Figure 1). 
Moreover, MIA offspring display DOI-induced Mn2+ 
accumulation in the parafascicular thalamic nucleus, 
one of the intralaminar nuclei of the dorsal thalamus 
that is known to play the role in the pathogenesis of 
the visual and auditory hallucinations (Delgado & 
Bogousslavsky, 2013). The high sensitivity to DOI seen 
in MIA offspring may be explained by the increased lev-
els of serotonin receptor 2A and downstream signaling 

molecules seen in the unstimulated MIA prefrontal cor-
tex (Holloway et al., 2013; Malkova et al., 2014). MIA 
offspring also exhibit higher levels of frontal pyramidal 
neurons, which are known to express serotonin receptor 
2A (Fatemi et al., 2002).

Hyperlocomotion in response to amphetamine 
(APMH) and MK-801, an N-methyl-d-aspartate (NMDA) 
receptor antagonist, is also observed in MIA offspring 
and can be interpreted as a positive symptom for 
schizophrenia (Meyer, Schwendener, et al., 2006; Meyer, 
Spoerri, et al., 2010; Smith et al., 2007;  Zuckerman et al., 
2003). APMH is known to exacerbate psychotic symp-
toms in schizophrenia patients  mimicking the well-
documented subcortical dopamine hyperfunction in 
this disorder (Harrison, 2000a;  Laruelle, 2014;  Laruelle 
et al., 1996; Laruelle, Abi-Dargham, Gil,  Kegeles, & 
Innis, 1999).

In addition to modeling schizophrenia-related behav-
ioral abnormalities, maternal poly (I:C) injection in 
rodents results in several neuropathologies in the off-
spring that are relevant to schizophrenia. Importantly, 
MIA offspring exhibit a hallmark neuropathology of 
schizophrenia—an enlargement of lateral ventricles 
that is the result of the gray matter volume diminution 
(Piontkewitz et al., 2009, 2011; Shi et al., 2009).

Maternal poly (I:C) injection also leads to aberra-
tions in the central dopamine system that are analogous 
to symptoms seen in schizophrenia (Laruelle, 2014). 
MIA offspring exhibit increased levels of dopaminergic 
neurons as well as dopamine receptors 1 and 2 in the 
midbrain (Vuillermot et al., 2010), higher sensitivity to 
dopamine at distal hippocampal CA1 synapses (Ito et al., 
2010), and increased dopamine turnover in the striatum 
(Ozawa et al., 2006). MIA mice also display a reduction 
of hippocampal volume (Piontkewitz et al., 2009, 2011). 
Structural and functional abnormalities of the hippocam-
pal are also seen in MIA offspring and in schizophrenic 
individuals (Harrison, 2000b, 2004). Maternal poly (I:C) 
injection yields offspring with abnormal hippocampal 
network organization (Dickerson et al., 2010, 2012; Ito 
et al., 2010), reduced hippocampal neurogenesis (Meyer, 
Knuesel, et al., 2010; Piontkewitz et al., 2012), decreased 
hippocampal volume, and reduced hippocampal capil-
larization and cell density (Piontkewitz et al., 2009, 2011, 
2012). Furthermore, hippocampal levels of several neu-
rotransmitters, including dopamine, γ-aminobutyric 
acid (GABA), glutamate and glycine, are decreased in 
MIA offspring (Bitanihirwe et al., 2010).

Overall, the MIA model exhibits strong face and con-
structive validity for behavioral, biochemical, and mor-
phological symptoms of schizophrenia, rendering it 
a valuable tool for testing the efficacy of antipsychotic 
drugs and novel therapeutics for schizophrenia. Several 
known antipsychotic drugs have been applied to the 
MIA model and yielded positive effects on ameliorating 
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schizophrenia-related symptoms. Acute treatment of 
MIA offspring with clozapine (CLZ), an atypical anti-
psychotic drug with high binding affinity for multiple 
neurotransmitter receptors (Pratt, Winchester, Dawson, 
& Morris, 2012), corrects abnormalities in LI (Piont-
kewitz et al., 2009; Zuckerman et al., 2003; Zuckerman 
& Weiner, 2005), PPI (Meyer, Spoerri, et al., 2010), and 
APMH-induced hyperlocomotion (Piontkewitz et al., 
2009) in various MIA models. MIA offspring also exhibit 
improved cognitive behavior after subchronic CLZ treat-
ment, as measured in the novel-object recognition test 
(Ozawa et al., 2006), wet T-maze (Zuckerman & Weiner, 
2005), and alternative Morris water maze (Meyer, 
Knuesel, et al., 2010). In addition to conferring benefi-
cial effects on behavior, chronic CLZ treatment during 

periadolescence corrects several key neuropathologies 
in MIA offspring, including enlarged ventricles and 
reduced hippocampal volume (Piontkewitz et al., 2009). 
Interestingly, acute CLZ treatment also improves the 
abnormal synchronization of neural networks seen 
in MIA offspring, as measured by dose-dependent 
increases in theta frequency coherence between the pre-
frontal cortex and hippocampus (Dickerson et al., 2012).

Another drug that effectively treats symptoms in 
MIA offspring is risperidone (RIS), an atypical antipsy-
chotic that activates dopamine and serotonin receptors 
(Pratt et al., 2012). Chronic postnatal RIS treatment cor-
rects abnormalities in LI, rapid reversal learning, and 
APMH-induced hyperlocomotion in rat MIA offspring 
(Richtand et al., 2011). Magnetic resonance imaging 

(A)

Increase due to DOI

(B) (C)

FIGURE 1 Magnetic resonance images demonstrate global brain activation by hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice. 
(A) DOI stimulates the frontal, primary motor, and somatosensory cortices as well as caudate putamen and thalamic nuclei that are indicated  
in green. (B) Three-dimensional parametric map of the mouse brain demonstrating a DOI-induced signal increase in maternal immune activation 
(MIA) offspring (shown in red). (C) Specific coronal slices represent a DOI-induced signal increase in MIA offspring. LH, left hemisphere; RH, 
right hemisphere. Credit: Natalia Malkova.
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analysis demonstrates that RIS treatment also prevents 
the enlargement of lateral ventricles and reduction of 
hippocampal volume in MIA offspring (Piontkewitz 
et al., 2011). Moreover, MIA-induced impairments in 
neurogenesis, hippocampal capillarization, granular cell 
density, levels of hippocampal parvalbumin-positive 
GABAergic interneurons, and levels of cortical extracel-
lular glutamate (Roenker et al., 2011) are each improved 
by chronic RIS treatment (Piontkewitz et al., 2012).

Other atypical antipsychotic drugs, such as paliperi-
done (a serotonin receptor 2A receptor and dopamine 
receptor antagonist) and aripiprazole (a dopamine 
agonist) also effectively treat schizophrenia-related 
symptoms in MIA offspring. As with RIS, paliperidone 
treatment normalizes levels of extracellular glutamate 
in the prefrontal cortex of rats born to MIA mothers 
( Roenker et al., 2011). Both paliperidone and aripiprazole 
correct APMH-induced locomotion in the MIA model as 
well (Richtand et al., 2011, 2012). In addition, the typi-
cal antipsychotic and dopamine receptor agonist halo-
peridol (HAL) (Pratt et al., 2012) prevents abnormal LI 
behavior (Zuckerman et al., 2003) and AMPH-induced 
hyperlocomotion in MIA offspring (Meyer, Spoerri, et al., 
2010). Interestingly, the selective serotonin reuptake 
inhibitor antidepressant fluoxetine (FLX) also exhibits 
therapeutic effects in the MIA model. Oral treatment with 
FLX during adolescence improves abnormalities in PPI 
and AMPH-induced hyperlocomotion in MIA offspring 
(Meyer, Spoerri, et al., 2010; Richtand et al., 2012).

Dietary choline supplementation is being increasingly 
explored as a potential treatment for  schizophrenia-related 
symptoms, based on associations of schizophrenia with 
genetic disruptions alpha7 nicotinic acetylcholine recep-
tor (α7nAChR) (Freedman et al., 1997; Leonard et al., 
2002), decreased brain α7nAChR expression ( Freedman, 
Adams, & Leonard, 2000), and maternal choline defi-
ciency (Miwa, Freedman, & Lester, 2011; Ross et al., 
2010). Moreover, stimulation of α7nAChR during the 
embryonic stage is important for the development of 
fetal brain inhibitory neurocircuits and sensorimotor gat-
ing behavior (Miwa et al., 2011; Ross et al., 2010). Inter-
estingly, MIA offspring, which display abnormalities in 
sensorimotor gating, anxiety, sociability, and repetitive 
behavior, exhibit improved behavioral performance after 
perinatal choline supplementation (Wu, Adams, Chow, 
Stevens, & Patterson, in preparation). This is consistent 
with the finding that perinatal choline supplementation 
improves the deficient P50 sensorimotor gating behavior 
in the inbred DBA mouse strain (Stevens et al., 2008).

Overall, several known antipsychotic drugs exhibit 
therapeutic effects on the MIA model, supporting the 
predictive validity of the model for advancing stud-
ies on the neurobiological bases of drug treatment. The 
face, construct, and predictive validity of the MIA model 
render it useful for studying underlying mechanisms of  
disease etiopathogenesis and drug efficacy (Figure 2).

GENE–ENVIRONMENT INTERACTIONS

Although modeling MIA in animals is useful for 
studying maternal infection as a primary environmen-
tal risk factor for schizophrenia, it is important to note 
that maternal infection on its own is not causal for schizo-
phrenia. That is, epidemiological studies indicate that 
maternal infection is associated with schizophrenia and 
increases the risk, or odds ratio, for schizophrenia in the 
offspring, but certainly, children born to mothers that 
experience infection during pregnancy do not necessarily 
develop schizophrenia. Schizophrenia is a complex, mul-
tifactorial disorder, believed to be caused by a combina-
tion of several genetic and environmental risk factors. In 
the context of MIA, it is plausible that maternal infection 
causes schizophrenia in the context of additional genetic 
susceptibility factors. An increasing number of studies 
are focused on so-called gene–environment interactions, 
and several reveal interesting interactions between MIA 
and known susceptibility genes for schizophrenia.

Interestingly, induction of MIA exacerbates sev-
eral behavioral, neuropathological, and neurochemi-
cal abnormalities seen in mice overexpressing mutant 
human DISC1 (mhDISC1) (Abazyan et al., 2010). 
Disrupted-in-schizophrenia 1 (DISC1) is a prominent 
susceptibility gene for schizophrenia, which encodes a 
pleiotropic protein that regulates a variety of biologi-
cal processes (Brandon et al., 2009; Brandon & Sawa, 
2011). Gene–environment interactions are similarly seen 
with maternal poly (I:C) injection and point mutation 
of the DISC1 gene at L100P (Disc1-L100P+/−) (Lipina, 
Zai, Hlousek, Roder, & Wong, 2013). Synergistic gene– 
environment interactions are also seen with MIA and the 
steroid hormone receptor Nurr1 (NR4A2). MIA induc-
tion in Nurr1+/− mice leads to hyperlocomotion, defi-
cient PPI, and decreased sustained attention compared 
with control Nurr1+/− offspring (Vuillermot et al., 2012).  

Poly(I:C) 
Model of MIA 

Construct Validity

Large epidemiological studies linking 
maternal viral infection to schizophrenia

Face Validity

Negative & positive 
behavioral 
symptoms

Neuropathological
& structural 

abnormalities

Neurochemical 
abnormalities

Predictive Validity

& typical 
antipsychotics

Neuroimmune
abnormalities

Synergistic effects with other 
genetic and environmental risk 

factors for schizophrenia

FIGURE 2 Construct, face, and predictive validity of the polyino-
sine-polycytidylic approach for maternal immune activation (MIA).
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MIA also displays a synergistic interaction with the 
CHRNA7 gene, which encodes for the alpha-7 acetylcho-
line receptor (α7nAChR). Mutations in CHRNA7 are asso-
ciated with an elevated risk for schizophrenia (Freedman 
et al., 1997). Recent studies demonstrate that offspring 
with reduced expression of α7nAChR are more vulnerable 
to prenatal poly (I:C) injection (Wu et al., in preparation).

ENVIRONMENT–ENVIRONMENT 
INTERACTIONS

MIA is being increasingly explored in the context 
of other environmental risk factors, wherein perinatal 
infection synergizes with postnatal challenges such as 
stress or drug exposure to precipitate schizophrenia-
related endophenotypes. The notion that an additional 
postnatal insult potentiates detrimental effects of a pre-
natal environmental risk exposure is often referred to as 
the “two-hit hypothesis.”

Postnatal stress is an environmental risk factor for 
schizophrenia (Brown, 2011) and has been studied in 
tandem with MIA in environment–environment inter-
action models. Combining prenatal immune chal-
lenge with postnatal restraint stress leads to synergistic 
effects on the development of deficient behavior and 
neuropathology (Deslauriers, Larouche, Sarret, & Gri-
gnon, 2013). A similar paradigm evaluating this two-hit 
hypothesis involves prenatal immune challenge fol-
lowed by variable and unpredictable stress during peri-
pubertal development (Giovanoli et al., 2013), where 
MIA and peripubertal stress produce synergistic effects 
on the development of abnormal behavior, microglio-
sis, and immune activation (Giovanoli et al., 2013). In 
addition, direct effects of MIA on abnormal maternal 
care can introduce postnatal stress on the developing 
offspring (Meyer, Nyffeler, Schwendener, et al., 2008; 
Meyer, Schwendener, et al., 2006; Richetto, Calabrese, 
Meyer, & Riva, 2013). Interestingly, cross-fostering con-
trol offspring to MIA surrogate mothers sufficiently 
leads to specific neurochemical abnormalities (Meyer, 
Nyffeler, Schwendener, et al., 2008; Richetto et al., 2013). 
This supports the two-hit hypothesis, suggesting that 
traumatizing postnatal experiences interact with MIA 
to precipitate the presentation of schizophrenia-related 
symptoms.

Abuse of drugs, such as cannabis, during adolescence 
is also linked to an increased risk for psychotic outcome 
and schizophrenia (Brown, 2011). In a rat model examin-
ing the synergistic effects of cannabis usage and MIA, 
offspring born to poly (I:C)-injected mothers that are 
exposed to cannabinoid display an elevated 5-HT1AR 
binding activity (Dalton, Verdurand, Walker, Hodgson, 
& Zavitsanou, 2012). This suggests that prenatal infec-
tion and adolescent cannabinoid exposure interact with 

each other to modulate the brain serotonergic system. 
Hallucinogenic drug abuse also contributes to the onset 
of schizophrenia (Paparelli, Di Forti, Morrison, & Mur-
ray, 2011). MIA offspring display stronger DOI-induced 
behavioral responses and greater brain activity that can 
be explained by increased levels of 5HT-2A in the prefron-
tal cortex (Holloway et al., 2013; Malkova et al., 2014).

Overall, translating the maternal infection risk factor 
to animal models reveals that immune activation dur-
ing pregnancy can perturb neurodevelopment in the 
offspring, and lead to the development of neuropatho-
logical and behavioral symptoms of schizophrenia. 
Furthermore, an increasing number of so-called gene–
environment and environment–environment studies 
demonstrate that MIA interacts with genetic and envi-
ronmental susceptibility factors for schizophrenia to 
potentiate schizophrenia-related abnormalities. Based 
on considerable construct, face and predictive validity 
for schizophrenia, animal models for maternal infection 
and MIA are useful for investigations into the molecu-
lar underpinnings of and treatments for schizophrenia-
related symptoms.

NEONATAL POLY (I:C) MODEL

A challenge to translating the maternal infection risk 
factor to animal models is in accounting for species-
dependent differences in physiological development. 
For example, glia proliferation and migration are known 
to reach a peak during the second trimester of pregnancy 
in humans, whereas in rodents this critical developmen-
tal period occurs during the early neonatal period (Nawa &  
Takei, 2006). This period is also known to be a critical 
time for neurogenesis in the hippocampus and for cor-
tical synaptogenesis (Bayer, Altman, Russo, & Zhang, 
1993). To account for disparity between the timing of 
brain development in humans versus rodents, many 
investigators use a modified MIA model, in which poly 
(I:C) is administered neonatally to better mimic brain 
development during the second trimester in humans (Ibi 
et al., 2009; Nagai, Yu, Kitahara, Nabeshima, & Yamada, 
2012; Ribeiro et al., 2013). Neonatal mice or rats repeat-
edly injected with poly (I:C) during the first week of 
postnatal life (postnatal days 2–6 for mice and postna-
tal days 5–7 for rats, respectively) develop deficient PPI 
behavior (Ibi et al., 2009; Nagai et al., 2012; Ribeiro et al., 
2013), increased anxiety impaired social behavior (Hida 
et al., 2014; Ibi et al., 2009; Nagai et al., 2012), and defi-
cient memory (Ibi et al., 2009; Nagai et al., 2012; Ribeiro 
et al., 2013). Moreover, these animals display enhanced 
sensitivity to methamphetamine (MAP)-induced hyper-
activity in adolescence (Hida et al., 2014), which could 
be interpreted as a schizophrenia-related positive symp-
tom. Several neurophysiological abnormalities are 
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observed in response to neonatal poly (I:C) injection, 
including decreased glutamate release (Ibi et al., 2009), 
microglial activation (Ribeiro et al., 2013), and oxidative 
stress (Ribeiro et al., 2013). Interestingly, CLZ treatment 
of adult rats exposed to neonatal immune challenge 
ameliorates microglial activation and signs of oxidative 
stress, and further reverses PPI and working memory 
deficits (Ribeiro et al., 2013). d-serine, an endogenous 
coagonist of NMDA receptors, is also effective in treat-
ing emotional and cognitive deficits in poly (I:C)–treated 
mice (Ribeiro et al., 2013).

Altogether, these results demonstrate that the neo-
natal poly (I:C) model displays strong face validity for 
behavioral and neuropathological symptoms of schizo-
phrenia as well as some intriguing predictive validity. 
The behavioral abnormalities induced by neonatal poly 
(I:C) exposure are consistent with what is observed in 
maternal poly (I:C) models (Harvey & Boksa, 2012a; 
Ibi et al., 2009). Both paradigms lead to increased anxi-
ety, impaired PPI, abnormal social interaction, deficient 
working memory, and glutamatergic hypofunction. The 
antipsychotic CLZ is effective in ameliorating particular 
schizophrenia-related phenotypes in both the maternal 
and neonatal poly (I:C) models. However, many behav-
ioral and biochemical abnormalities that are reported 
for MIA remain to be assessed in the neonatal poly (I:C) 
models. Moreover, although neonatal immune challenge 
may better mimic construct validity in terms of the tim-
ing of brain development, there are several potential 
disadvantages of neonatal poly (I:C) injection compared 
with maternal poly (I:C) injection. First, neonatal rodents 
are directly exposed to the immune challenge with poly 
(I:C), whereas in case of MIA there is a combination of 
complex interactions between maternal, placental, and 
embryonic sites. Second, the immune response to poly 
(I:C) is likely different in pregnant females versus neo-
natal animals. The mature maternal immune system 

undergoes phasic changes in cellular function and cyto-
kine profiles during pregnancy, and the immune system 
of neonatal animals is relatively immature; therefore, the 
cytokine response may vary under these two conditions. 
Third, daily injections and stress may contribute to the 
behavioral and biochemical abnormalities observed in 
the neonatal model. Fourth, early life infection can be 
an independent risk factor for schizophrenia and other 
neurodevelopmental disorders (Harvey & Boksa, 2012a). 
Taking this into account, replication of other behavioral 
phenotypes and morphological abnormalities reported 
for MIA models and schizophrenia patients as well as 
investigation of the role of the dopaminergic and seroto-
nergic systems in the control of these changes will be a 
promising avenue for future studies in the neonatal poly 
(I:C) model.

MODELING MIA IN PRIMATES

The rodent MIA models allow scientists to investi-
gate the mechanistic bases underlying how maternal 
infection impacts neurodevelopment and leads to the 
pathogenesis of symptoms relevant to schizophrenia. 
However, there are some obstacles to studying MIA 
in rodents, such as the need to account for differences 
between rodents and humans in behavioral presentation 
and brain development. The onset of key brain devel-
opmental events varies across humans, mice, and rats 
(Workman, Charvet, Clancy, Darlington, & Finlay, 2013) 
(Figure 3). Induction of MIA at gestational days (GD) 
9–10 in mouse resembles the midphase of the human 
first trimester of gestation, wherein locus coeruleus 
development, Purkinje cell differentiation, and hippo-
campal neurogenesis occurs. Induction of MIA at GD 17 
in mouse corresponds most similarly to the early second 
trimester in humans, during which the corpus callosum 

FIGURE 3 Trajectory of neurodevelopment across the mouse, rat, and human. Adapted from http://translatingtime.org/translate.

http://translatingtime.org/translate
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appears, and early hippocampal and cortical neurogen-
esis reach completion. As such, it is not surprising that 
variations in the timing of MIA exposure across various 
MIA models may yield differential effects on neurode-
velopment and behavior. A caveat of rodent MIA models 
is that key neurodevelopmental events characteristic of 
the second trimester of human gestation occur postna-
tally in mice and rats. In addition, the lack of behavior 
complexity in rodents is a primary drawback to study-
ing the role of MIA in predisposing for a human disease 
that is characterized by complex cognitive, social, and 
affective symptoms.

As an alternative to mice and rats, the rhesus monkey 
is a species that lives in a complicated, hierarchical social 
system. Rhesus monkeys exhibit complex facial expres-
sion and social gestures to communicate with conspe-
cies, with developmental trajectories that better match 
those of humans (Capitanio & Emborg, 2008). A recent 
study translates the MIA model to nonhuman primates, 
where pregnant rhesus monkeys are injected with a 
modified form of poly (I:C), called poly (ICLC), which 
is stabilized with poly-l-lysine and thus adapted for use 
in primates. Pregnant monkeys intravenously injected 
with 0.25 mg/kg poly (ICLC) during the first trimester 
(GDs 43, 44, and 46) or second trimester (GDs 100, 101, 
and 103) yield behavioral abnormalities relevant to both 
autism and schizophrenia. Young MIA offspring display 
abnormal distress and self-soothing behaviors, such as 
tantrums, convulsive jerk, self-clasp, and infant crook 
tail. They also produce persistently increased motor ste-
reotypic and self-directed behaviors and fewer contact 
“coo” calls than control offspring. Social behavior was 
similarly abnormal in a social approach assay, wherein 
the testing monkey is given the opportunity to inter-
act with a novel conspecific monkey. Offspring born to 
mothers exposed to MIA during the first trimester of 
gestation display inappropriate social interactions, char-
acterized by more duration spent with and in proximity 
to the unfamiliar monkey. Overall, this study demon-
strates that injection of pregnant rhesus monkeys with 
modified poly (I:C) yields offspring that display several 
behavioral abnormalities relevant to neurodevelopmental 
disorders, including schizophrenia. Future studies aimed 
toward testing construct and predictive validity in the 
MIA monkey model will be of significant interest.

MIA AS A RISK FACTOR FOR 
AUTISM SPECTRUM DISORDER AND 

SCHIZOPHRENIA

Several large epidemiological studies reveal that 
maternal infection is associated with an increased risk 
for, not only schizophrenia, but also autism spectrum dis-
order (ASD) in the offspring. Consistent with this, there 

are several clinical and biological links between ASD 
and schizophrenia (Brown, 2012a). In fact, the term 
“autism” was first introduced by the Swiss psychiatrist 
Eugen Bleuler to describe social and communication 
impairments seen in schizophrenic individuals. In addi-
tion, enhanced anxiety and deficient sensorimotor gat-
ing are similarly seen in both disorders. Structural and 
functional abnormalities in the cerebellum, insular cor-
tex, and fusiform gyrus are similar in both autistic and 
schizophrenic individuals (Cheung et al., 2010). Addi-
tionally, deficits in reelin, a neuronal protein involved 
in the control of neuronal connectivity and synaptic 
plasticity, are seen in both disorders (Folsom & Fatemi, 
2013). These shared abnormalities may reflect common 
etiological mechanisms (Brown, 2012a).

Consistent with this, maternal poly (I:C) injection in 
mice results in symptoms that are relevant to either, or 
both, disorders. Importantly MIA yields offspring with 
the core diagnostic features of ASD—impaired com-
munication, decreased social interaction, and stereo-
typed behaviors—as well as a hallmark neuropathology 
of ASD, a spatially restricted deficit in Purkinje cells. 
The hyperresponsiveness to hallucinogenic drugs and 
enlarged ventricles seen in MIA offspring may be more 
relevant to schizophrenia. The age of onset for particu-
lar phenotypes also recapitulate the human conditions, 
where ASD is diagnosed by 3 years of age, whereas 
schizophrenia most commonly diagnosed during ado-
lescence. MIA offspring display decreased communica-
tion, a key symptom of ASD, as early as first week of 
postnatal development (Malkova, Yu, Hsiao, Moore, & 
Patterson, 2012), whereas schizophrenia-related behav-
ioral phenotypes are seen later in adulthood (Meyer, 
Schwendener, et al., 2006; Vuillermot et al., 2010). There 
are also behavioral abnormalities in MIA offspring that 
are reported in both ASD and schizophrenia, such as ele-
vated anxiety and deficient sensorimotor gating. Over-
all, consistent with maternal infection as a risk factor for 
both schizophrenia and ASD, the MIA model exhibits 
both symptoms in common between the disorders and 
symptoms that differentiate them.

That maternal poly (I:C) injection models pheno-
types relevant to both schizophrenia and autism raises 
the interesting question of whether changes in the type, 
timing, route, or dosage of immune activation can skew 
the types or severity of neuropathological and behav-
ioral abnormalities in the offspring. Interestingly, there 
is some evidence that poly (I:C) injections at different 
gestational stages are associated with distinctive psycho-
pathological profiles in the adult offspring. MIA during 
early gestation yields offspring that exhibit suppressed 
spatial exploration, deficient sensorimotor gating, and 
disrupted latent inhibition, whereas MIA induced dur-
ing late gestation yields offspring with potentiated 
MK-801 sensitivity, impaired working memory, and 
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retarded reversal learning. Some behavioral pheno-
types, such as potentiated AMPH sensitivity and loss 
of unconditioned stimulus-preexposure effect, are com-
monly observed with both MIA approaches (Meyer,  
Feldon, & Yee, 2009). MIA-induced neuropathologies 
also differ by timing of injection. MIA during early gesta-
tion yields offspring with reduced D1R and D2R expres-
sion in the medial prefrontal cortex, increased GABAA-R 
subunit alpha 2 in the amygdala, and enhanced tyrosine 
hydroxylase in the nucleus accumbens, whereas MIA 
induction during late gestation results in offspring with 
reduced NR1 expression in the dorsal hippocampus, 
increased GABAA-R subunit in the ventral hippocampus 
and reduced parvalbumin expression in the hippocam-
pus. Reduced reelin and parvalbumin expression in the 
medial prefrontal cortex is commonly observed across 
both MIA approaches (Meyer et al., 2009). Overall, these 
studies suggest that early MIA results in behaviors that 
resemble positive symptoms of schizophrenia whereas 
injections at later time points yield impaired cognitive 
symptoms (Meyer, Feldon, et al., 2006; Meyer, Knuesel, 
et al., 2010; Meyer, Nyffeler, Schwendener, et al., 2008). 
Additional work on comparing ASD and schizophrenia 
related symptoms with changes in exposure to MIA will 
be of significant interest.

POTENTIAL MECHANISMS UNDERLYING 
THE EFFECTS OF MIA

Although several laboratories have investigated the 
face, construct, and predictive validity of MIA animal 
models, key questions regarding the molecular mecha-
nisms linking MIA to abnormal neurodevelopment and 
behavior remain. Converging evidence highlights an 
important role for maternal cytokines in relaying the 
maternal immune response to the developing embryo. 
As a direct response to MIA, levels of pro-inflammatory 
cytokines, such as IL-6, TNF-α, and interferon (IFN)-γ, 
are elevated in maternal blood (Connor et al., 2012;  
Harvey & Boksa, 2012b; Meyer, Feldon, et al., 2006; 
O’Leary et al., 2014; Vuillermot et al., 2012), consistent 
with inflammation and reductions in maternal weight 
gain by 24 h post-MIA (Dalton et al., 2012). Elevations 
in maternal pro-inflammatory cytokines are transient, 
declining by 48 h post-MIA (Meyer, Engler, et al., 2008). 
Importantly, the cytokine IL-6 is critical for mediat-
ing the effects of poly (I:C)–induced MIA on offspring 
behavior (Smith et al., 2007). Coinjection of poly (I:C) 
with a blocking antibody against IL-6, or injection of 
poly (I:C) into IL-6 knockout mice, effectively prevents 
the development of abnormal PPI, anxiety, and sociabil-
ity in MIA offspring. In contrast, maternal injection of 
recombinant IL-6 instead of poly (I:C) sufficiently yields 
offspring with behavioral abnormalities. Interestingly, 

MIA-induced increases in IL-6 and TNF-α are signifi-
cantly reduced after poly (I:C) injection into pregnant 
mice with genetic overexpression of IL-10 from mac-
rophages (macIL-10tg) (Meyer, Murray, et al., 2008), 
highlighting a potential role for maternal macrophages 
in modulating the MIA response. Overall, the finding 
that IL-6 is both necessary and sufficient for mediating 
effects of MIA offers a direction for tracing the biological 
pathways that lead to abnormal brain development and 
behavior relevant to schizophrenia and ASD.

As the primary site of direct maternal–fetal interac-
tions, the placenta plays an important role in translat-
ing the maternal response to MIA into the developing 
fetus. Shortly after MIA, pro-inflammatory cytokines 
are increased in the placenta, with corresponding 
activation of decidual immune cells (Hsiao & Pat-
terson, 2011). Placental IL-6 is particularly elevated, 
and is critical for relaying the MIA response to fetally 
derived cells in the placenta. These effects of mater-
nally derived placental IL-6 on activation of fetal tro-
phoblast cells result in significant changes in levels of 
endocrine factors, such as insulin-like growth factor 1 
and placental pro-lactin-like proteins. Increasing evi-
dence suggests an important effect of placental physi-
ology on neurodevelopment (Hsiao & Patterson, 2011, 
2012), raising the important question of whether pla-
cental responses to MIA are required for downstream 
effects on fetal brain. Placental IL-6 signaling is par-
ticularly important, as conditional knockout of IL-6R 
in placental trophoblast cells sufficiently prevents 
downstream effects of MIA on fetal brain activation, 
behavior, and neuropathology.

In addition to impacting placental immune and endo-
crine responses, MIA induces rapid increases in levels 
of several cytokines and chemokines directly in the 
fetal brain. In particular, IL-1β, IL-4, IL-5, IL-6, IL-17, 
and IL-13, the chemokines MCP-1 and MIP1α, are ele-
vated, suggesting that these factors confer deleterious 
effects of MIA on neurodevelopment (Abazyan et al., 
2010; Arrode-Bruses & Bruses, 2012; Connor et al., 2012; 
Meyer, Nyffeler, Engler, et al., 2006; Meyer, Nyffeler, 
Schwendener, et al., 2008; Pratt, Ni, Ponzio, & Jonakait, 
2013). In addition, chronic postnatal changes in brain 
cytokine levels are observed in MIA offspring, support-
ing the notion that early effects of MIA lead to prenatal 
programming of long-term neuroimmune dysfunction. 
Several cytokines are elevated in the prefrontal cor-
tex of newly born mice, followed by decreases during 
early adolescence and further increase in the adulthood 
(Garay, Hsiao, Patterson, & McAllister, 2013). Several 
studies demonstrate that alterations in brain cytokine 
levels lead to abnormal behavioral development. For 
example, intracerebroventricular administration of 
IL-1β induces stress, anxiety-like behavior, and memory 
impairment, in addition to changes in neurotransmission 
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(Song, Manku, & Horrobin, 2008; Song, Phillips, Leon-
ard, & Horrobin, 2004).

Global alterations in gene expression patterns are 
also detected in the fetal brain shortly after MIA. Several 
genes, including those encoding crystalline family pro-
teins known to play important roles in developmental 
neurogenesis, are highly upregulated in the fetal brain 
by 3 h post-MIA (Garbett, Hsiao, Kalman, Patterson, & 
Mirnics, 2012). Interestingly, increases in Cryaa, Cryba1, 
and Crybb1 transcript are highly correlated with the 
severity of placental weight loss, suggesting a potential 
link between placental and fetal brain responses to MIA. 
Genes related to dopaminergic development, such as 
Shh, Fgf8, Nurr1, and Pitx3, are also altered in fetal brains 
after maternal poly (I:C) injection (Meyer, Engler, et al., 
2008). Consistent with this, MIA offspring display ele-
vated levels of dopamine transporter in the fetal ventral 
midbrain as well as increased tyrosine hydroxylase posi-
tive neurons in the ventral aspect of the fetal mesence-
phalic flexure. Fetal cholinergic activity is also elevated, 
with increased choline acetyltransferase activity in basal 
forebrain after maternal poly (I:C) injection (Pratt et al., 
2013). In addition, MIA impairs cortical progenitor pro-
liferation and the formation of the cortical laminar layer 
in the fetal brain (Soumiya, Fukumitsu, & Furukawa, 
2011). Overall, activation of the maternal immune sys-
tem during gestation induces a rapid response in the 
placental and fetal brain that leads to impaired neurode-
velopment and lasting behavioral abnormalities relevant 
to both autism and schizophrenia.

IMMUNE ABNORMALITIES IN 
SCHIZOPHRENIA

The neuroimmunological abnormalities induced by 
the MIA model align well with increasing evidence 
that immune dysregulation plays an important role in 
the etiology and clinical manifestations of schizophre-
nia. Elevated levels of cytokines are detected in the 
cerebrospinal fluid, plasma, and sera of schizophrenic 
individuals, suggesting chronic immune  dysfunction 
(Miller, Buckley, Seabolt, Mellor, & Kirkpatrick, 2011; 
Potvin et al., 2008; Song, Lv, Li, Hao, & Zhao, 2009). 
In addition, peripheral blood leukocytes isolated 
from schizophrenic individuals are hyperresponsive to 
in vitro stimulation, consistent with pro-inflammatory–
like immune phenotypes in schizophrenia. Interestingly, 
a meta-analysis of 40 studies assessing blood and cere-
brospinal fluid cytokines in schizophrenia and first-
episode psychosis patients reveals that levels IL-1β, 
IL-6, and transforming growth factor-beta are increased 
in both states, and are normalized by antipsychotic 
treatment (Miller et al., 2011). Similarly, higher lev-
els of IL-1β are in peripheral blood leukocytes from 

schizophrenic individuals, and this effect is amelio-
rated by treatment with risperidone (Song et al., 2009). 
These findings suggest that changes in cytokine levels 
contribute to or respond to changes in schizophrenia-
related symptoms.

Alterations in immune-related genes are also 
detected by transcriptomic profiling of human post-
mortem brains from schizophrenic individuals (Arion, 
Unger, Lewis, Levitt, & Mirnics, 2007; Hwang et al., 
2013; Saetre et al., 2007). In addition to alterations in 
brain cytokine gene expression (Dean et al., 2013; Rao, 
Kim, Harry, Rapoport, & Reese, 2013), cortical and hip-
pocampal expression of SERPINA3, IFITM2 and IFITM3 
is upregulated in schizophrenia (Arion et al., 2007; 
 Saetre et al., 2007). SERPINA3 encodes serpin peptidase 
inhibitor (alpha-1 antiproteinase, antitrypsin), which is 
widely expressed by immune cells during an inflam-
matory response. IFITM 2 and 3 are interferon induced 
transmembrane proteins, synthesized as part of an anti-
viral proinflammatory immune response. TNF-β, IFN-
α, and IFN-γ elevate expression of SERPINA3, IFITM2, 
and IFITM3 in oligodendrocyte and endothelial cells 
(Saetre et al., 2007), suggesting a cascading effect of 
cytokine dysregulation on brain function.

Consistent with both peripheral and central immune 
abnormalities, brains of schizophrenic individuals 
also exhibit abnormal microglial and astrocyte physi-
ology. Elevated microglial activation, as measured by 
expression of class II human leucocyte antigen (HLA-
DR), is observed in the postmortem frontal cortex and 
hippocampus (Bayer, Buslei, Havas, & Falkai, 1999; 
 Radewicz, Garey, Gentleman, & Reynolds, 2000; Steiner, 
Bielau, et al., 2008). Degenerative traits of microg-
lia, including cytoplasm shrinkage, phagosomes, and 
process thinning, shortening, and fragmentation are 
seen in the schizophrenic frontal and temporal cortex 
(Wierzba-Bobrowicz et al., 2004;  Wierzba-Bobrowicz, 
Lewandowska, Lechowicz, Stepien, & Pasennik, 2005). 
Furthermore, quantitative (R)-[(11)C]PK11195 posi-
tron emission tomography scan provides evidence 
of increased microglial activation in total gray mat-
ter of living schizophrenic individuals (van Berckel 
et al., 2008). In addition, elevated levels of the astro-
cyte marker, GFAP, are seen in the dorsal lateral pre-
frontal cortex (Rajkowska et al., 2002) and various 
subcortical regions (Barley, Dracheva, & Byne, 2009), 
whereas reduced levels of GFAP are reported for the 
anterior cingulate cortex and corpus callosum (Steffek, 
 McCullumsmith, Haroutunian, & Meador-Woodruff, 
2008; Webster, O’Grady, Kleinman, & Weickert, 2005; 
Williams et al., 2013). There is also evidence of altered 
astrocyte function, in which increases in the activation 
marker S100B are seen in dorsal lateral prefrontal cor-
tex, particularly in paranoid schizophrenics (Steiner, 
Bernstein, et al., 2008).
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IMMUNE-RELATED GENETIC RISK 
FACTORS FOR SCHIZOPHRENIA

Although several environmental risk factors for 
schizophrenia seem to converge on immune activation 
pathways, many immune-related genetic risk factors, 
including common gene variants, copy number varia-
tions, and short nucleotide polymorphisms, are also 
associated with schizophrenia. The most replicable site 
is on chromosome 6, which harbors specific haplotypes 
of immune genes, including those encoding major his-
tocompatibility complex (MHC) proteins. Consistent 
with this, several large genome-wide studies have 
together identified over 450 schizophrenia-associated 
short nucleotide polymorphisms that map to the MHC 
locus (International Schizophrenia et al., 2009; Jia et al., 
2012; Lee, Woon, Teo, & Sim, 2012; Michel, Schmidt, & 
Mirnics, 2012; Shi et al., 2009; Stefansson et al., 2009). 
In addition, a meta-analysis of data from genome-wide 
association studies significantly associates a region of 
linkage disequilibrium on chromosome 6p22.1–6p21.31 
with schizophrenia (Shi et al., 2009). MHC1 is involved 
in different aspects of immunity, brain development, 
and synaptic plasticity (McAllister, 2014). Short nucle-
otide polymorphism rs6904-71, located in the MHC 
region, is associated with delayed episodic memory and 
decreased hippocampal volume in schizophrenia and 
healthy subjects (Walters et al., 2013). Interestingly, two 
protective HLA alleles, HLA-B*08:01 and DRB1*03:01, 
have been identified (Irish Schizophrenia Genomics & 
the Wellcome Trust Case Control, 2012). In searching 
for schizophrenia susceptibility genes in the class III 
region of the human MHC, three short nucleotide poly-
morphisms near the NOTCH4 locus are associated with 
schizophrenia-rs1009382, rs204887, and rs8283 (Wei & 
Hemmings, 2004). Mutations in stimulating factor recep-
tor 2 alpha (CSF2RA), IL3RA, IL1, and the promoter hap-
lotype for TNFA are also linked to schizophrenia (Katila, 
Hanninen, & Hurme, 1999; Lencz et al., 2007; Saviouk, 
Chow, Bassett, & Brzustowicz, 2005). Altogether, these 
findings suggest that genetic predisposition can contrib-
ute to the widespread immune dysregulation observed 
in schizophrenic individuals and further raises the 
interesting notion of convergent pathways by which 
immune-related environmental and genetic risk factors 
contribute to the etiopathology of schizophrenia.

CONCLUSION

Modeling MIA in animal models is a powerful 
approach for investigating the neurobiological under-
pinnings of schizophrenia and autism endophenotypes, 
and for further testing the efficacy of novel therapeu-
tics in treating neuropathological, neurochemical, and 

behavioral features of disease. To date, several labora-
tories have validated the face, construct, and predictive 
validity of maternal poly (I:C) exposure on yielding off-
spring with schizophrenia-related symptoms. Studies 
aimed toward elucidating the mechanisms linking MIA 
to abnormal fetal neurodevelopment and further link-
ing disruptions in early life brain development to later 
life behavioral abnormalities are warranted, and offer 
the exciting prospect of uncovering novel molecular 
targets for defined interventions. In light of increasing 
evidence for etiological and phenotypic overlap between 
schizophrenia and autism, the MIA model may serve as 
a useful tool for evaluating parallel and/or independent 
pathways for the etiopathogenesis of particular symp-
toms of disease. Moreover, MIA models are becoming 
increasingly valuable for the study of multifactorial con-
tributions to schizophrenia by studying the effects of 
gene–environment and environment–environment inter-
actions on manifesting or potentiating symptom severity.
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BACKGROUND

Introduction

Animal models of human diseases are useful to 
understand the mechanisms underlying an association 
between an outcome/disease and an exposure (identi-
fied by clinical or epidemiological observations). In the 
case of schizophrenia and other neuropsychiatric dis-
orders, the outcomes (symptoms) are difficult to model 
experimentally. With regard to environmental exposures 
conferring the risk for these outcomes, many of the 
associations are inconsistent and ill-defined. Before dis-
cussing the different virus infection models for schizo-
phrenia, I will start by reviewing the existing literature 
for support of the hypothesis that infections, particularly 
virus infections, may cause schizophrenia.

Although the causal involvement of infections in 
chronic neuropsychiatric disorders is, as we shall see, far 
from established, it is well-known that several common 
(and uncommon) microbial infections can indeed cause 
central nervous system (CNS)-related symptoms, includ-
ing psychotic features, in infected individuals. Usually 
these symptoms disappear as the infection is cleared. For 
example, Karl Menninger described several cases with 
schizophrenia-like symptoms in the aftermath of the 
Spanish flu in 1918–1919. Most of these, if not all, appeared 
to have recovered fully by the mid-1920s (Menninger, 
1926). Additional examples are psychotic episodes in 
individuals infected with HIV (Dolder,  Patterson, & Jeste, 
2004), herpes virus (Oommen,  Johnson, & Ray, 1982), or 
the spirochete Borrelia burgdorferi (Hess et al., 1999). Thus, 
a wide range of infectious agents targeting the brain are 
clearly capable of eliciting symptoms resembling some of 
those observed in patients with schizophrenia and other 
nonaffective psychoses.

Epidemiological Studies Associating Virus 
Infections with the Later Development  
of Schizophrenia

A large number of case–control studies have reported 
increased prevalence of a wide range of infections in patients 
with schizophrenia, previously reviewed ( Karlsson, 2003), 
and more recently as part of a meta-analysis (Arias et al., 
2012). Because these exposures were assessed after onset, 
often by several years, they may be confounded by dis-
ease-associated factors, such as differences in the lifestyle 
between cases and controls, rather than on a causal path-
way. Prospective studies, however, have detected an asso-
ciation between exposures to infectious agents well before 
the onset of symptoms, which raises the possibility that 
these exposures in fact contribute to disease development 
later on (see the following sections).

Seasonality in the births of individuals with schizo-
phrenia is an old and widely replicated observation dat-
ing back to the nineteenth century, reviewed elsewhere 
(Torrey, Torrey, & Peterson, 1977). The observed excess of 
births (10–15%) in the winter/spring months of individ-
uals with schizophrenia not only indicates environmen-
tal influences but also indicates that such influences act 
already during gestation or early postnatal life. Several 
factors that show seasonal variation, such as sunlight, 
vitamin D, rainfall, and infections, have all been investi-
gated for their involvement in the seasonality of schizo-
phrenia births (Torrey et al., 1977). In 1988, Mednick et al. 
made the seminal observation of an association between 
the 1957 influenza A virus epidemic and an increase in 
births of individuals who would later be diagnosed with 
schizophrenia (Mednick, Machon, Huttunen, & Bonett, 
1988). Subsequently, several studies replicated the asso-
ciation between gestational influenza and schizophre-
nia in offspring, whereas other studies failed to do so 
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(reviewed in Munk-Jorgensen & Ewald, 2001). The study 
by Mednick et al. (1988) was based on a purely ecological 
association (i.e., the investigators did not assess whether 
the mothers of future cases were actually infected with 
the flu virus, only that they were living in an area exposed 
to the epidemic). In a later study, Brown et al. reported 
a sevenfold (but nonsignificant) increase in the odds of 
developing schizophrenia following exposure to mater-
nal influenza A virus. The exposure was measured by 
hemagglutination inhibition assays on maternal sera 
detecting both immunoglobulin (Ig)M and IgG (Brown, 
Begg, et al., 2004). In a subsequent study, Brown et al. 
(2009) reported an association between gestational influ-
enza A virus exposure and cognitive deficits among 
cases of schizophrenia or related psychoses. Moreover, 
Ellman, Yolken, Buka, Torrey, and Cannon (2009) mea-
sured IgG directed at influenza A or B viruses in mater-
nal sera and cognitive performance at age 7 years among 
control cases with psychotic disease. Although cases 
exposed to maternal influenza B virus performed worse 
on the cognitive tests than unexposed cases already at 
age 7, the performance of exposed control children did 
not differ from unexposed controls, suggesting that 
genetic risk rendered the offspring more vulnerable 
to neurodevelopmental insults of the maternal infec-
tion (Ellman et al., 2009). Several other infections dur-
ing pregnancy have been associated (significantly) with 
the later diagnosis of schizophrenia in offspring. These 
include rubella (Brown et al., 2001), measles (Torrey, 
Rawlings, & Waldman, 1988), Toxoplasma gondii (which 
is a parasite, not a virus) (Blomstrom et al., 2012; Brown 
et al., 2005; Mortensen et al., 2007), herpes simplex virus 
type 2 (HSV2) (Buka, Tsuang, Torrey, Klebanoff, Bernstein, 
et al., 2001; Mortensen et al., 2010), and cytomegalovirus 
(Blomstrom et al., 2012). For most of these, associations 
have been based on serological analyses of maternal 
sera or neonatal dried blood spots where maternal IgG, 
actively transported across the placental barrier to pro-
vide passive immunization of the fetus, can be measured 
by commercially available enzyme-linked immunosor-
bent assays. Such specific IgGs develop weeks after the 
initial exposure and persist for years. They are therefore 
not informative with regard to the timing of the maternal 
infection, which in the vast majority of cases probably 
occurred preconceptually.

Although rubella, T. gondii, and cytomegalovirus 
(CMV) are known teratogens following primary infec-
tion in pregnant women, rubella (and measles) are 
unlikely to contribute to current cases thanks to success-
ful immunization programs in many, but not all, parts 
of the world (Centers for Disease Control & Prevention, 
2009). For Toxoplasma, HSV-2, or CMV, such programs 
are not in place and these agents remain potential causes 
of neurodevelopmental disorders such as schizophrenia. 

Because the reported associations are made with IgG 
and not IgM, it appears that chronic maternal infection 
rather than acute ones are of relevance for psychiatric 
outcomes in the offspring. Although these prevalent 
latent infections have generally been considered safe for 
the fetus, preconceptual CMV infections can reactivate 
during pregnancy to infect the fetus and cause long-
term sequelae (Townsend et al., 2013). In fact, a recent 
report indicate that reactivated CMV is a significant and 
perhaps underdiagnosed cause of intrauterine growth 
restriction (Pereira et al., 2014), a pregnancy complica-
tion associated with several adverse outcomes, includ-
ing schizophrenia (Abel et al., 2010; Nielsen, Mortensen, 
et al., 2013). More direct support for CMV in the etiology 
of neuropsychiatric disorders is suggested by the recent 
detection of CMV DNA in a larger than expected pro-
portion of neonatal blood samples collected from chil-
dren who were later diagnosed with autism ( Sakamoto, 
 Moriuchi,  Matsuzaki, Motoyama, & Moriuchi, 2014). 
Such studies have so far not been conducted on neonatal 
samples from individuals who later developed schizo-
phrenia and it is not known if the transmission of CMV 
or other infectious agents occur more often in these 
newborns.

Maternal Inflammation Rather than Infection?

The range of different infectious agents associated 
with schizophrenia pregnancies have led many research-
ers to propose that it is perhaps not transmission of the 
infectious agent that is causing schizophrenia in offspring 
but rather the maternal immune activation (MIA) that fol-
lows exposure to infectious agents. Indeed, experimental 
studies using rodents have consistently reported neu-
robehavioral disturbances in offspring to dams exposed 
to, not only viruses, but also lipopolysaccharides, 
polyinosine-polycytidylic (poly I:C), or cytokines that 
mimic some aspect of acute bacterial or viral infections. 
Molecular analyses of animals used in such experiments 
have suggested that interleukin-6 is a critical maternal 
mediator of the effects of MIA (Smith, Li, Garbett, Mir-
nics, & Patterson, 2007); see also the chapter on Maternal 
immune activation. In a comparison of MIA by influ-
enza A virus infection, interleukin-6, or poly I:C, Garbett 
et al. report very different effects on the transcriptome 
in the fetal brains but also some interesting commonali-
ties regarding crystalline gene expression that appeared 
to correlate with the degree of MIA elicited by the dif-
ferent exposures (Garbett, Hsiao, Kalman, Patterson, &  
Mirnics, 2012).

Direct clinical support for a MIA during pregnancy 
among women whose children will later develop 
schizophrenia or other psychoses is, however, cur-
rently provided by only two  studies. These report on 
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observations of elevated levels of tumor necrosis fac-
tor (TNF)-α (Buka, Tsuang, Torrey,  Klebanoff, Wagner, 
et al., 2001) or interleukin-8 (Brown, Hooton, et al., 2004) 
in biobanked sera obtained at various time points dur-
ing pregnancy from mothers whose children would 
later develop schizophrenia as compared with con-
trol mothers. Other investigated cytokines, including 
interleukin-6, were not detected at elevated levels in 
the sera from mothers of future cases (Brown,  Hooton, 
et al., 2004; Buka, Tsuang, Torrey, Klebanoff, Wagner, 
et al., 2001). In addition, two recent studies have inves-
tigated cytokines and other markers of inflammation 
and innate immune activation in neonatal blood sam-
ples from cases of schizophrenia or other nonaffective 
psychoses and control individuals (Gardner, Dalman, 
Wicks, Lee, & Karlsson, 2013; Nielsen, Agerbo, et al.,  
2014). Neither of these found any signs of ongoing 
inflammation among the cases. Gardner et al., however, 
observed significantly reduced levels of several mark-
ers of innate immunity, including serum amyloid A and 
tissue plasminogen activator among newborns who 
would later on develop nonaffective psychoses (Gardner 
et al., 2013). Thus, although attractive and biologically 
plausible, the direct clinical support for MIA during 
pregnancy in the etiology of schizophrenia is currently  
weak.

Acute Infection during Pregnancy

With the exception of influenza A virus, few studies 
have investigated if acute infections occur more often in 
pregnancies resulting in schizophrenia births, see Table 1.  
In the largest study, to date, Nielsen and coworkers have 
reported a small but significant association between 
infections requiring hospitalization during pregnancy 
and the risk of schizophrenia in the offspring in Den-
mark (Nielsen, Laursen, & Mortensen, 2013). Upon 

closer inspection, these authors found equally strong 
associations with both maternal and paternal infections 
at any time (i.e., also outside of pregnancy). The authors 
therefore suggest that it is not the acute infection during 
pregnancy per se, but a general familial vulnerability or 
sensitivity to (hospitalization for) infections that explains 
the association with schizophrenia. Nevertheless, Nielsen 
and coworkers observed a significant interaction between 
hospitalization during pregnancy and a diagnosis of psy-
chotic illness in the mother (Nielsen, Laursen, et al., 2013). 
This finding suggests that infections during pregnancy 
may contribute to disease in the offspring only among 
certain mothers—for example, those with a vulnerability 
involving the innate immune system, as is often reported 
in patients with schizophrenia and other psychiatric con-
ditions (reviewed in  Drexhage et al., 2010). The finding 
by Nielsen and coworkers is in agreement with an earlier 
study by Clarke et al., who reported a synergistic inter-
action between family history of psychotic disorder and 
exposure to maternal infection during pregnancy (Clarke, 
Tanskanen,  Huttunen,  Whittaker, & Cannon, 2009). Weak 
but significant associations have more recently been made 
also between maternal infections during pregnancy and 
the development of autism in the offspring ( Atladottir, 
 Henriksen,  Schendel, & Parner, 2012; Lee et al., 2014; 
Zerbo et al., 2013). More detailed analyses for potential 
interactions with parental disease or if associations with 
these childhood outcomes are observed also with infec-
tions outside pregnancy have so far not been reported. 
In conclusion, clinical and epidemiological studies con-
ducted so far have so far not firmly established if acute 
maternal infections during pregnancy are indeed associ-
ated with risk for the later development of schizophre-
nia or other neuropsychiatric disorders in the offspring. 
Only two studies report interactions between infections 
during pregnancy and family history of psychotic disor-
ders, but it is not known if this interaction is limited to the  

TABLE 1 register-Based Studies on the association between Maternal Infections during Pregnancy and the development  
of Schizophrenia or Schizophrenia Spectrum disorders in the offspring

Samples Published Studies Exposure
Type of Psychotic  
Disorder

Association with 
Psychotic Disorder

PDS, US cohort, N = 7800 Brown et al. (2000) Respiratory infection SSD, n = 58 OR 2.1 (95% CI 1.0–4.4)

Babulas, Factor-Litvak, Goetz, 
Schaefer, and Brown, (2006)

Genital/reproductive 
infection (first trimester)

SSD, n = 71 RR 0.9 (95% CI 0.2–3.7)

Finnish national cohort, 
N = 23,400

Clarke et al. (2009) Pyelonephritis Schizophrenia, n = 71 OR 1.5 (95% CI 0.9–2.4)

Danish cohort, N = 7900 Sorensen, Mortensen, 
Reinisch, and Mednick (2009)

Viral infection
Bacterial infection

Schizophrenia, n = 153 OR 0.5 (95% CI 0.1–2.1)
OR 2.1 (95% CI 1.1-4.3)

Danish national cohort, 
N = 1,115,700

Nielsen, Laursen, et al. (2013) Any infection Schizophrenia, n = 3700 RR 1.2 (95% CI 1.0–1.4)

CI, confidence interval; OR, odds ratio; PDS, prenatal determinants of schizophrenia; RR, relative risk; SSD, schizophrenia spectrum disorder. Bold indicates signifi-
cant associations.
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mother during pregnancy (Clarke et al., 2009; Nielsen, 
Laursen, et al., 2013).

Postnatal Infections

For schizophrenia, the risk associated with environ-
mental exposures, including infections, is not necessar-
ily limited to gestation. Postnatal infections may also be 
causally related to the later development of schizophre-
nia or merely a consequence of genetic liability to be 
hospitalized for infections not on the causal pathway to 
disease. Compared with pregnancy, far fewer studies on 
the role of infections have been conducted in the period 
between birth and onset of disease. An obvious limita-
tion to such studies is the general lack of prospectively 
collected biological samples that can be analyzed for evi-
dence of exposure during this period. Epidemiological 
studies using registered hospitalizations for infections 
during childhood, however, recently reported that hos-
pitalization for any infection during childhood, between 
birth and age 13, was more common among those who 
would later develop nonaffective psychoses in Sweden 
(Blomstrom et al., 2013). Importantly, this finding was 
not explained by parental psychiatric history, adverse 
social factors, or hospitalizations for reasons other than 
infections or psychiatric care, which were all the more 
common among children who would later develop psy-
choses (Blomstrom et al., 2013). Analyses of different 
classes of agents and ages at hospitalization indicated 
the strongest associations between bacterial infections 
during early adolescence. Interestingly, we observed an 
association between childhood infections and previous 
maternal infections during pregnancy, suggesting that 
postnatal infections are not entirely independent of pre-
natal exposures. Whether this association is explained 
by shared genetic factors between mother and offspring 
or by programming of the fetal immune system by 
maternal infections during pregnancy is not known but 
is the subject of ongoing studies. An association between 
childhood infections (particularly bacterial) and the 
later development of schizophrenia, regardless of 
parental psychiatric illness, were also recently made in 
Denmark by Nielsen, Benros, and Mortensen (2014). In 
neither of these recent Scandinavian studies were CNS 
infections during childhood associated with psycho-
sis risk, which contradicts some previous and smaller 
studies from  Finland ( Rantakallio, Jones, Moring, & Von 
Wendt, 1997),  Sweden (Dalman et al., 2008), and Brazil 
(Abrahao, Focaccia, & Gattaz, 2005), but not from Israel 
(Weiser et al., 2010). Interestingly, a prospective sero-
logical study recently reported an association between 
Epstein-Barr virus exposure during childhood and the 
appearance of psychotic symptoms in the Avon Longi-
tudinal Study of Parents and Children cohort (Khanda-
ker, Stochl,  Zammit, Lewis, & Jones, 2014), suggesting 

that future studies on postnatal exposures will benefit 
from inclusion of biological samples that can be investi-
gated for specific common exposures during childhood, 
or even at later time points, as exemplified by studies 
of individuals in the US armed forces (Niebuhr et al., 
2011, 2008), which are not captured by hospital regis-
ters. In conclusion, recent data from large epidemiologi-
cal studies find associations between infections during 
childhood and early adolescence and a later diagnosis 
of schizophrenia and related psychoses. These asso-
ciations remain after adjusting for several, but prob-
ably not all, potential confounders, including parental 
psychiatric illness, suggesting childhood infections are 
independent risk factors for the later development of 
schizophrenia and other nonaffective psychoses.

EXPERIMENTAL MODELS EMPLOYING 
VIRUSES

Animal experiments involving infections in schizo-
phrenia research have been carried out by inoculat-
ing experimental animals, including both rodents and 
monkeys with biological material, CSF, or brain tis-
sue obtained from affected patients (Baker et al., 1983; 
Baker, Ridley, Crow, & Tyrrell, 1989; Kaufmann et al., 
1988). In keeping with Henle-Koch’s modified postu-
lates (Evans, 1976), the purpose of these studies was 
to try to identify an infectious agent in schizophrenia 
by means of transmitting the agent to susceptible ani-
mals and monitoring them for signs of any infection 
ranging from very general signs such as weight loss 
to more subtle neurobehavioral symptoms. Despite 
very long observation periods allowing time for even 
a slow agent to exert its effects, these studies did not 
find any evidence in support of an infectious agent in 
schizophrenia (Baker et al., 1983, 1989; Kaufmann et al., 
1988). Renewed interest was sparked in 2003 when 
Shi and coworkers in the late Paul Patterson’s labora-
tory reported neurobehavioral abnormalities elicited 
in offspring to mice infected with the influenza A/
NWS/33 virus during pregnancy (Shi, Fatemi, Sidwell, 
&  Patterson, 2003). These offspring exhibited abnormal 
behavioral responses, including deficits in sensorimo-
tor gating as measured by the prepulse inhibition test. 
These investigators were unable to detect the flu virus in 
fetal tissues and concluded that the maternal response 
to the infection, or to poly I:C, and not a congenital 
infection was responsible for the behavioral problems 
in the offspring (Shi et al., 2003). The effects of poly 
I:C injections into pregnant mice on the offspring have 
subsequently been replicated and extended in several 
independent studies and have provided the scientific 
basis for the hypothesis of MIA, not only in schizophre-
nia but also in autism and related conditions, recently 
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reviewed in Knuesel et al. (2014). Models involving 
MIA are the subject of another chapter in this book and 
will not be further detailed here except where compari-
sons with viral infections are relevant.

Maternal or Neonatal Infection

As noted in the Introduction, it is far from clear that 
acute infections during pregnancy are more important 
than infections during postnatal life, at least based on 
epidemiological studies using medical registers. In fact, 
current studies indicate more solid associations with 
acute childhood infections requiring inpatient care than 
such infections among pregnant women. From an experi-
mental point of view, it should also be noted that many of 
the developmental processes that occur during the third 
human trimester correspond to those occurring during 
the first week of postnatal life in mice (Rice & Barone, 
2000). Moreover, the outcome of an experimental infec-
tion is determined, not only by the age of the exposed 
animal but also by the route of infection. Results of direct 
neonatal exposure, by for example intracranial injection 
of virus, is likely to differ from that of a congenital expo-
sure. The outcome is also determined by the type of cell 
that is permissive for infection and on the type of dam-
age that the infection does to that cell (Johnson, 1972). 
Regarding maternal infections, the virus does not neces-
sarily have to reach the developing fetus to have detri-
mental influences. Infection of cells in the placenta can 
cause impairments in placental function and/or release 
of effector molecules acting on the developing fetal brain 
(Johnson, 1972). It should also be kept in mind that the 
rodent placenta differs structurally from the human pla-
centa (Simmons et al., 2008) and any (or the lack of) effects 
observed in rodents cannot necessarily be extrapolated to 
the human situation. Moreover, experimental maternal 
infections tend to be performed in inbred strains with no 
genetic conflict between mother and fetus, which appear 
to impair placental function/fetal outcome (Madeja et al., 
2011) and may contribute to differences between inbred 
and outbred strains, as was recently reported following 
MIA (Babri, Doosti, & Salari, 2013).

SPECIFIC EXPERIMENTAL INFECTIONS

Influenza A Virus

Influenza A virus is a global common exposure with 
seasonal variation. Influenza A viruses infect and rep-
licate in cells in the respiratory epithelium. In addition 
to sickness symptoms, including hypersomnia during 
acute infection, cases with neurological complications 
are often reported during most, if not all, epidemics 
(Ekstrand, 2012). Such complications may indicate that 

virus variants can reach and infect cells in the brain 
parenchyma, potentially eliciting damage to neuronal 
populations. For example, cases of encephalitis lethar-
gica, or von Economo disease, that appeared in the wake 
of the 1918 influenza pandemic has long been suspected, 
but never proven, to be caused by the virus (reviewed in 
Reid, McCall, Henry, & Taubenberger, 2001). The obser-
vations of an association between the 1957 flu epidemic 
and an increase in schizophrenia births (Mednick et al., 
1988) sparked an interest in the potential effects of ges-
tational influenza A virus exposure on animal behavior 
related to neuropsychiatric disorders. Human isolates 
or strains can be easily adapted to infect and replicate 
to high titers in mouse lungs (Hirst, 1947). Passage of 
mouse-adapted strains in mouse brains also allow the 
isolation of neurovirulent strains (Ward, 1996). For exam-
ple, two mouse adapted strains, both derived from the 
first human flu virus isolated in 1933 by Wilson-Smith 
(Smith, Andrewes, & Laidlaw, 1933), the A/33/NWS 
(Stuart-Harris, 1939) and A/33/WSN (Francis & Moore, 
1940) strains were obtained by the 1940s following serial 
passages in rodent brains. Neurovirulent strains of influ-
enza A virus target different brain regions depending on 
the route of inoculation (e.g., intracranial injection, intra-
nasal instillation, intraperitoneal injection) (Reinacher, 
Bonin, Narayan, & Scholtissek, 1983). Following injec-
tion into the olfactory bulb of adult C57BL/6 mice, the 
A/WSN/33 strain appears to selectively target habenu-
lar, paraventricular thalamic, and brainstem monoami-
nergic neurons (Mori, Diehl, Chauhan, Ljunggren, & 
Kristensson, 1999). In the habenular and paraventricu-
lar thalamic areas, the infection caused an almost total 
loss of neurons. In these immunocompetent mice, virus 
proteins were cleared within 2 weeks (Mori et al., 1999). 
In a subsequent follow-up study of these animals were 
deficits in learning and increased anxiety levels (Beraki, 
Aronsson, Karlsson, Ogren, & Kristensson, 2005), sug-
gesting that a transient infection can cause persistent 
changes in behaviors of relevance for neuropsychiatric 
disorders, tentatively by a “hit-and-run” mechanism. 
Similar injections into adult mice lacking functional 
cytotoxic T-cells because of an absence of major histo-
compatibility complex (MHC) class I expression follow-
ing deletion of a transporter associated with antigen 
processing 1, Tap1, (i.e., Tap1−/− mice) results in virus 
persistence in the same regions for at least 17 months 
(Aronsson, Karlsson, Ljunggren, & Kristensson, 2001). 
This study indicates that an adaptive cytotoxic T-cell 
response is important for clearance of the virus and that 
the virus is able to persist and replicate at a low level in 
the absence of such a response.

To study the influence of the A/WSN/33 strain at 
earlier stages of development, we employed an intra-
peritoneal injection of neonatal mice with influenza 
A/WSN/33 virus (Asp, Beraki, Kristensson, Ogren, &  
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Karlsson, 2009; Asp, Holtze, Powell, Karlsson, & Erhardt, 
2010). To investigate the role of adaptive immunity in 
the potential sequelae of this infection we used both 
wild-type C57BL/6 and Tap1−/− mice on the same 
genetic background. The virus reached both lungs and 
brains of the inoculated animals with similar kinetics. 
Interestingly, both strains efficiently cleared the infec-
tion with more or less complete clearance of viral RNA 
within 40 days (Asp et al., 2009). Interestingly, the ani-
mals with defects in their adaptive immunity exhibited 
a prolonged innate immune response compared with 
wild-type animals. With regard to neurobehavioral 
problems, only Tap1−/− mice exhibited learning difficul-
ties (Asp et al., 2009) and deficits in sensorimotor gating 
(Asp et al., 2010) at 6 months of age. Following behav-
ioral testing, the prefrontal cortex, a region implicated in 
learning, harbored reduced levels of transcripts encod-
ing type III neuregulin, but not those encoding types I 
or II, in the affected animals compared with control ani-
mals. Such infected mice exhibited a transient activation 
of the kynurenine pathway of tryptophan degradation 
accompanied by a transient increase in kynurenic acid in 
the brain (Asp et al., 2010). In a subsequent study, some 
of the adult behavioral abnormalities induced by the 
neonatal influenza A virus infection were also observed 
following transient elevation of brain kynurenic acid 
during early postnatal life (Liu et al., 2014). The kyn-
urenine pathway is activated in vivo by a range of 
agents targeting the CNS, including bacteria (Too et al., 
2014), viruses(Asp et al., 2010; Eastman, Urbanska, Love, 
 Kristensson, & Schwarcz, 1994; Holtze, Asp, Schwieler, 
Engberg, & Karlsson, 2008), and T. gondii (Notarangelo 
et al., 2014) as part of the innate immune response. This 
finding suggests that some of the long-term effects of 
infection during early life can be mediated by activation 
of the kynurenine pathway. Taken together, these stud-
ies indicate that mice with defects in adaptive immunity 
are at risk to develop molecular and neurobehavioral 
changes relevant for schizophrenia following a neonatal 
infection with a neurotropic strain of influenza A virus. 
Subsequent genome-wide association studies of schizo-
phrenia consistently reported associations in the MHC 
region on chromosome 6 (reviewed in Corvin &  Morris, 
2014). Unfortunately, potential interactions between 
human genetic variation in the MHC region and envi-
ronmental exposures, such as infections, in conferring 
schizophrenia risk remain largely unexplored (Kodavali 
et al., 2014).

Both the A/NWS/33 and the A/WSN/33 strains of 
influenza A virus have been used to infect pregnant mice 
in independent studies. The ability to cross the murine 
placenta appears to differ between the two strains, with 
the A/NWS/33 strain being unable to target the fetus 
(Shi, Tu, & Patterson, 2005), whereas the A/WSN/33 
strain appears to be able to infect the placenta and target 

the fetus, including the fetal brain following a maternal 
respiratory infection during pregnancy (Aronsson et al., 
2002). Although congenital infection has been reported 
for other strains of influenza A virus in both human 
(McGregor, Burns, Levin, Burlington, & Meiklejohn, 1984; 
Yawn, Pyeatte, Joseph, Eichler, & Garcia-Bunuel, 1971) 
and rodent (Chen et al., 2009; Williams &  Mackenzie, 
1977) pregnancies, it is probably not a general feature 
(Irving et al., 2000). In our study (Aronsson et al., 2002), 
A/WSN/33 RNA was found to persist in the brain paren-
chyma for extended periods following congenital infec-
tion. We reported gene expression changes but no gross 
behavioral abnormalities in adult offspring to pregnant 
mice infected on gestational day 14 using a low dose of A/
WSN/33 intranasally (Asp et al., 2005). Interestingly, the 
changes in gene expression were investigated in 3-month-
old offspring and the ones verified could not be detected 
before postnatal day 60, suggesting multiple events 
occurring after gestational exposure resulting in persis-
tent changes in adult offspring. Moreno and coworkers 
(Moreno et al., 2011) used a similar experimental setup 
but employed CD1 mice and instillation of A/WSN/33 
on gestational day 9.5. They reported abnormal behavior 
relating to spontaneous locomotor activity, altered sero-
tonin, and glutamate receptor densities in brains of adult 
offspring as well as altered responses to hallucinogens 
and MK-801, an N-methyl-d-aspartate receptor blocker 
in these animals (Moreno et al., 2011). These investigators 
were unable to detect the replicating virus in the lungs of 
exposed offspring but detected antibodies directed at the 
virus in 5% of exposed offspring. Fatemi and coworkers 
have conducted a series of studies using the influenza 
A/NWS/33 strain reporting behavioral and molecular 
effects of maternal infection on the offspring that in many 
aspects resemble those observed in patients with autism 
or schizophrenia (Fatemi et al., 2004; Fatemi, Cuadra, El- 
Fakahany, Sidwell, & Thuras, 2000; Fatemi, Earle, et al., 
2002; Fatemi et al., 1999; Fatemi, Emamian, et al., 2002; 
Fatemi,  Folsom,  Reutiman, Abu-Odeh, et al., 2009; Fatemi, 
Folsom,  Reutiman, Huang, et al., 2009; Fatemi, Pearce, 
Brooks, & Sidwell, 2005; Fatemi et al., 2008). These changes 
involve defective corticogenesis, reduced expression of 
structural proteins, and abnormal behavior that to some 
extent is normalized by antipsychotic medication. Because 
this strain does not target the fetus, the mechanisms 
responsible for the effects on the fetuses remained elusive. 
These investigators therefore went on to investigate if the 
virus maternal infection caused disturbances in placental 
function that in turn may affect the developing fetus. Fol-
lowing maternal intranasal instillation of a sublethal dose 
of influenza A/NWS/33 virus on day 7 of pregnancy, they 
reported changes in expression of several genes in both 
placentae and postnatal brains of exposed offspring com-
pared with unexposed offspring (Fatemi et al., 2012) and 
recently reviewed in (Kneeland & Fatemi, 2013).
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Other strains of influenza A virus have subsequently 
been used in maternal infections during pregnancy. Short 
and coworkers (Short et al., 2010) employed intranasal 
instillation of the human influenza A/Sydney/5/97 
strain of the H3N2 serotype in pregnant rhesus monkeys 
during early third trimester. Virus was subsequently 
detected in nasal secretions along with the develop-
ment of maternal IgM and IgG, the latter but not the 
former, also being detected in the blood of the newborn. 
Offspring to infected dams did not differ from control 
offspring in terms of gestational length, birth weight, 
or hypothalamic-pituitary-adrenal responses. Neuroim-
aging of offspring at 1 year of age, however, indicated 
reduced intracranial volumes and reduced white matter 
in cerebellum and cortical regions and amygdalae.

In conclusion, a large number of independent experi-
mental influenza A virus infections during pregnancy 
conducted in different species consistently suggest that 
the offspring is at increased risk for subtle structural, 
molecular and neurobehavioral abnormalities. The 
experimental evidence indicate that these effects on the 
offspring can be mediated by both direct effects of the 
virus as well as indirect effects mediated by detrimen-
tal influences on the placenta or by an innate immune 
response to the infection. Experimental studies using 
mouse adapted neurotropic strains illustrate the impor-
tance of both innate and adaptive immune systems in 
clearing the virus following neonatal and adult expo-
sures and indicate that postnatal exposures may also 
be associated with persistent neurobehavioral deficits 
of relevance for adult-onset schizophrenia. Moreover, 
experimental infections of rodents by human isolates 
suggest that neurotropism of influenza A virus is not 
uncommon (Li et al., 2011; Nishimura, Itamura, Iwasaki, 
Kurata, & Tashiro, 2000; Tanaka et al., 2003).

Herpes Viruses

Human herpes viruses are highly prevalent through-
out the world and, following initial infection, can all 
establish life-long persistence characterized by episodes 
of latency with intermittent episodes of reactivation. Dif-
ferent herpes viruses have been proposed to contribute 
to chronic inflammatory (Owens, Gilden, Burgoon, Yu, 
& Bennett, 2011) neurodegenerative (Miklossy, 2011) 
CNS disorders as well as schizophrenia (Yolken, 2004). 
Despite the epidemiological associations between mater-
nal (chronic) infections with the human herpes viruses, 
HSV-2, and CMV, and the development of schizophre-
nia in offspring, few experimental studies evaluating 
relevant animal behaviors have been conducted using 
murine herpes strains. Experimentation using human 
herpes simplex strains in animals is limited by the fact 
that these wild-type human simplex strains are usually 
highly lethal to rodents following intracranial injection. 

In a series of experiments conducted during the 1970s, 
Lycke and Roos reported that before death, such animals 
exhibit changes in behavior along with changes in dif-
ferent neurotransmitter systems (Lycke & Roos, 1972, 
1974, 1975). Using an attenuated and nonlethal mutant 
strain of HSV-1, Crnic and Pizer (1988) reported specific 
behavioral problems in adult animals following subcu-
taneous injections during the neonatal period. Virus tar-
geted the brain in some but not all animals and appeared 
to be cleared by 20 days of age. Adult survivors exhib-
ited hyperactivity but no cognitive impairments. Using 
another attenuated strain (F) of HSV-1, Engel and 
coworkers (Engel et al., 2000) infected neonatal rats on 
postnatal day 2 and observed deficits in sensorimotor 
gating using the prepulse inhibition test at 37–58 days of 
age. No other abnormalities in locomotor activity were 
observed in the infected animals compared with animals 
injected similarly with saline. Similar observations were 
made by Rothschild, O’Grady, and Wecker (1999) using 
neonatal rats injected subcutaneously with a different 
herpes virus, rat CMV. These investigators reported 
impairments in PPI at 120 days of age in infected rats 
compared with control-injected rats. No attempt was 
made however to study the kinetics of the infection and 
it was not known if the virus targeted the brain in this 
model. Mouse CMV has been reported to target both 
glial cells and neurons in the developing brain following 
peripheral injection, causing a lytic infection (reviewed 
in Tsutsui, Kosugi, & Kawasaki, 2005). Moreover, fol-
lowing such injection, mouse CMV can establish latency 
in infected neuronal cells and thus have the potential 
to cause disturbance in CNS function many years after 
infection (Tsutsui et al., 2005). In light of the recent stud-
ies suggesting a potential involvement of human CMV 
in the etiology of schizophrenia (Blomstrom et al., 2012) 
and the genetic associations with the MHC region, 
murine models employing murine CMV strains and mice 
with known genetic deletions involving the immune 
system deserve to be further explored. Murine CMV 
does not cause congenital infection in immunocompe-
tent animals. Models employing human CMV (Tang 
et al., 2002) or murine CMV in immunodeficient mouse 
strains (Woolf, Jaquish, & Koehrn, 2007) have, however, 
been reported to recapitulate some aspects of congenital 
human disease, including infection of the fetal brain and 
fetal growth retardation. Long-term follow-up of such 
exposed offspring with regard to persistent be havioral 
abnormalities of relevance for neuropsychiatric disorders 
have not been reported.

Borna Disease Virus

Borna disease virus (BDV) is the infectious agent 
causing abnormal and stereotypical behavior and death, 
denoted Borna disease in infected animals, named after 
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the German city of Borna where these symptoms in 
horses was first described in the 1880s. BDV is a non-
segmented negative-strand RNA virus (Lipkin, Briese, &  
Hornig, 2011). Following infection of neonatal rats by 
intracranial injection, BDV causes a persistent nonlytic 
infection that gradually spreads to neurons throughout 
the brain parenchyma. Interestingly, BDV appears to be 
selectively harmful only to certain subtypes of infected 
neurons. Cerebellar Purkinje cells in the cerebellum and 
granule cells of the dentate gyrus in the hippocampus 
appear to be particularly vulnerable to BDV and continue 
to degenerate (reviewed in Pletnikov, Moran, & Carbone, 
2002). Thinning of the cortex during BDV infection has 
also been reported, suggesting a general neuronal loss 
during the infection (Hornig, Weissenbock, Horscroft, & 
Lipkin, 1999). The mechanisms underlying the observed 
neuronal loss are not completely elucidated but appear 
to involve endoplasmic reticulum stress (Williams & 
Lipkin, 2006). Neonatally infected rodents do not exhibit 
increased mortality and do not develop overt neuro-
logical disease but exhibit neurobehavioral abnormali-
ties reminiscent of those observed in cases of autism or 
schizophrenia. These involve impairments in learning 
and memory (Rubin et al., 1999) and social interactions 
(Lancaster, Dietz, Moran, & Pletnikov, 2007). Although 
serological studies indicate that BDV can infect several 
mammalians, including not only horses but also sheep, 
cattle, rodents, and primates, it is not established if BDV 
can infect humans. Even more controversial are the 
studies associating antibodies directed at BDV to neu-
ropsychiatric diseases in humans (Hornig et al., 2012). 
Regardless of its role in human disease, experimental 
BDV infections illustrate how a virus can lead to neu-
robehavioral abnormalities during a persistent, slowly 
progressing infection of the brain parenchyma. A recent 
report indicates that some rat strains are protected from 
neurodegeneration, but not from infection, and that sus-
ceptibility to disease in rats is dependent on host genetic 
factors (Wu et al., 2013). Interestingly, BDV-like sequences 
have been integrated into the genomes of several mam-
malian species, including human, during evolution 
(Horie et al., 2010). Although mammalian genomes are 
known to harbor large amounts of viral sequences, these 
were previously thought to be exclusively of retroviral 
origin. The human genome, for example, was reported 
to harbor two sequences with high similarity to the 
nucleocapsid (N) gene of BDV (Horie et al., 2010). These 
sequences contain fairly long open-reading frames, a 
3’poly-A stretch and are flanked by target-site duplica-
tions indicating that they are pseudogenes originally 
generated by L1-encoded reverse transcriptase activity 
(Horie et al., 2010). Functionality of such sequences in 
squirrels was recently indicated by their interference 
with exogenous BDV replication (Fujino, Horie, Honda, 

Merriman, & Tomonaga, 2014). Interestingly, reverse 
transcription of BDV transcripts was commonly detected 
de novo in infected brain tissues in bank voles, suggest-
ing that somatic integrations into host DNA may occur 
in infected individuals (Kinnunen et al., 2011). Lack of 
detectable pathology in infected bank voles, despite 
widespread neuronal infection, along with detection of 
viral shedding in feces and urine, indicates that bank 
voles may be part of a natural reservoir for this virus 
(Kinnunen et al., 2011). If Borna virus or other, unknown, 
viruses with similar properties cause disease or contrib-
ute to human neuropsychiatric disease in the human 
population remain to be established.

Picornaviruses

Viruses in the picornavirus family are ubiquitous 
among humans and several are known to have neuro-
tropic properties, such as enteroviruses, poliovirus, and 
Coxsackie viruses (Whitton, Cornell, & Feuer, 2005). For 
example, CNS involvement is often reported during 
epidemics of enterovirus 71 infections (Solomon et al., 
2010). Chronic sequelae including cognitive deficits or 
schizophrenia, particularly among those infected at a 
young age, have been reported in long-term follow-
up studies of infected individuals (Chamberlain et al., 
1983;  Rantakallio et al., 1997). Experimental infections 
of rodents with picornaviruses, such as Theiler murine 
encephalomyelitis virus (TMEV), report apoptosis in 
infected hippocampal neurons along with impaired 
spatial learning in the Morris’ water maze in a model of 
acute and transient CNS infection. In this model, virus 
is not restricted to the hippocampus, and only a small 
number of hippocampal pyramidal neurons are in fact 
infected. The selective death of these neurons is caused 
by bystander effects involving excitotoxic neurotrans-
mitter release and oxidative damage elicited by the infec-
tion (Buenz et al., 2009). Intracranial injection of neonatal 
mice with a sublethal dose of Coxsackie B3 virus on 
the other hand leads to selective targeting of the virus 
to dividing neural precursor cells resulting in reduced 
brain weight and cortical thinning along with a low 
level of viral persistence for several months ( Ruller et al., 
2012). Initiation of antiviral treatment (Ribavirin) during 
the persistent stage resulted in a recovery in brain weight 
suggesting that the slowly replicating stage contributed 
to the long-term sequelae and that the brain is able to 
recover from such adverse influences (Ruller et al., 2012). 
Behavioral testing of surviving animals was, however, 
not performed in this study. Meagher et al. reported that 
prior exposure to social stress exacerbates the outcome of 
acute experimental TMEV infections illustrating a plau-
sible environment × environment interaction of relevance 
for neuropsychiatric outcomes (Meagher et al., 2007). 
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Human maternal–fetal transmission of members of the 
picornavirus family, such as enteroviruses, following 
infection during pregnancy may occur but is more often 
occurring neonatally (reviewed in Abzug, 2008). Emerg-
ing evidence indicates, however, that congenital infec-
tions with enteroviruses may be more common than has 
previously been thought, (Abzug, 2008). Experimental 
murine TMEV infections during early pregnancy result 
in placental infection and fetal transmission, whereas 
infections during later stages of pregnancy result in 
placental infection but no transmission to the fetus (see 
Abzug & Tyson, 2000 and references therein). The out-
come of such infections with regard to behavior relevant 
for neuropsychiatric disorder is not known. An interest-
ing observation, however, suggests that a maternal infec-
tion Coxsackie virus B4 during pregnancy renders the 
offspring more vulnerable to a subsequent infection with 
the same virus (Bopegamage et al., 2012). In their study, 
Bopegamage and coworkers focused on insular pancre-
atic damage in the offspring which was indeed reported 
as a consequence of the infection in pups although no 
trace of the virus was found in the pancreatic tissue. 
Brain pathology or behavioral abnormalities were how-
ever not addressed in this study of the diabetogenic 
potential of coxsackie B4 virus (Bopegamage et al., 2012).

Lymphocytic Choriomeningitis Virus

Lymphocytic choriomeningitis virus (LCMV) is a non-
cytolytic arenavirus for which the common mouse is the 
natural reservoir. Infected mice excrete virus in saliva, 
urine, and feces. Humans usually become infected by 
inhaling dust contaminated by virus particles. Infec-
tions usually causes mild symptoms including fever, 
headache, and vomiting, but up to one-third of infected 
individuals remain asymptomatic. Following tempo-
rary improvement, classical symptoms associated with 
the development of meningitis can occur (Bonthius, 
2012). The virus is not thought to infect horizontally 
from human to human. LCMV is prevalent in many 
areas, and serological surveys in such areas indicate that 
approximately 5% of adult individuals have IgG directed 
at LCMV, indicating previous exposure. Experimental 
LCMV infection of adult mice using leads to generalized 
infection followed by T-cell–mediated clearance of virus 
within 2 weeks, whereas intracranial injection leads 
to a fatal disease within 6–8 days because of immune- 
mediated damage (reviewed in Kang & McGavern, 
2008). In immune animals following adult exposure, 
low levels of persisting LCMV, strain WE, have been 
detected in the form of both DNA (Klenerman, Hengart-
ner, &  Zinkernagel, 1997) and RNA (Ciurea et al., 1999), 
of which at least the RNA form retains biological activity 
(Ciurea et al., 1999). In infected pregnant mice, congenital 

transmission occurs with no obvious pathology in the 
fetus. LCMV is nonlytic (i.e., it does not disrupt its host 
cell) and congenitally infected animals appear to develop 
tolerance to the virus, such animals shed large amounts 
of virus throughout their life (reviewed in Bonthius & 
Perlman, 2007). Hotchin and Seegal reported behavioral 
abnormalities in mice neonatally infected with LCMV, 
including increased latency in the open field, decrease 
in the current necessary to elicit a startle response, and 
a decrease in running wheel activity (Hotchin & Seegal, 
1977). Neonatal infections of rats have illustrated how 
host age influences the outcome of the infection, indi-
cating that the differences in gestational age at infection 
can explain the different pathologies seen in congenital 
human infections (Bonthius & Perlman, 2007). Immuno-
histochemical studies of neonatally infected rats indicate 
structural and functional abnormalities in the hippocam-
pus that gradually evolve to result in severe loss of cells 
in the dentate gyrus. Pearce and coworkers reported 
that early infection causes defects of inhibitory GAB-
Aergic neurons that may be indirectly responsible for 
the later loss of neurons from uncontrolled excitation/
disinhibition (Pearce, Valadi, Po, & Miller, 2000), resem-
bling observations in TMEV-infected animals described 
in the previous section. Thus, the neonatal rat model of 
LCMV infection model illustrates that an infection dur-
ing early life can elicit delayed structural and behavioral 
abnormalities.

Endogenous Retroviruses

The genomes of all investigated vertebrate species to 
date contain numerous retroviral elements ( Hayward, 
Cornwallis, & Jern, 2014). These are remnants of previ-
ous germline integrations inherited by subsequent gen-
erations to become endogenous retroviruses (ERVs), a 
process that can currently be viewed in real-time in 
Koalas in western Australia (Stoye, 2006). Current esti-
mates indicate that approximately 8% of the human 
and 10% of the mouse genomes are made up of ERV 
sequences. The vast majority, if not all, ERV integra-
tions are replication-incompetent, meaning that such 
individual loci cannot, on their own, generate infec-
tious particles that can cause further spread within 
the infected host or between susceptible individuals. 
Individual elements can, however, become transcrip-
tionally active by exogenous cues acting on repressive 
chromatin and the retroviral promoter in the long ter-
minal repeat region to generate messenger RNA (and 
retroviral proteins if open reading frames are intact) 
(Nellaker et al., 2006). In fact, a few such retroviral env 
genes have been adopted to become bona fide mamma-
lian genes with key fusogenic functions reported in the 
mammalian placenta, such as  syncytin-1, encoded by 
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an element, ERVWE1, in the HERV-W family located on 
chromosome 7 (Mallet et al., 2004; Mi et al., 2000). Some 
exogenous virus infections, such as influenza A virus, 
can induce expression of ERVWE1 and other elements 
in the HERV-W family also in extraplacental human cell 
types by removing repressive chromatin modifications 
and inducing expression of transcription enhancers act-
ing on the long-terminal repeat region (Li et al., 2014). 
Similar effects of influenza A virus infection are also 
observed in extraplacental mouse cells in vitro (Asp, 
Nellaker, & Karlsson, 2007) and in vivo (Asp et al., 
2005, 2007). HERV-W–encoded transcripts and proteins 
have been observed in the CNS as well as systemically 
in individuals with schizophrenia (Karlsson et al., 2001; 
Perron et al., 2012, 2008). The mechanisms underlying 
the generation of HERV-W transcription in schizophre-
nia and if they play any role in disease development is 
not known. Intriguingly, individual replication incom-
petent ERV loci in the mouse genome were recently 
reported to complement each other to allow generation 
of recombinant infectious virus particles (Young et al., 
2012). Such particles were reported to infect suscepti-
ble animals both vertically and horizontally. Key roles 
for humoral adaptive immunity and translocation of 
components of the gut flora in the control and initia-
tion such events in host animals were identified (Young 
et al., 2012). Behavioral testing, particularly with regard 
to cognitive function or sensory-motor gating, of naive 
animals infected by such viruses has not been reported.

CONCLUDING REMARKS

From the clinical studies conducted so far, it is not 
evident that acute maternal or early-life virus infec-
tions are risk factors of large effect in the general 
population. Recent large population-based register 
studies suggest that acute infections pose larger risk 
for the offspring among mother with a history of psy-
chiatric disease, indicating perhaps that gene vari-
ants associated with psychiatric disease render the 
offspring more vulnerable to maternal infections. The 
true impact of infections is difficult to appreciate from 
such epidemiological studies because most infections 
do not warrant hospital admission or even in treat-
ment at outpatient facilities for which register data are 
becoming available in some countries. Despite includ-
ing a large number of individuals, maternal hospital 
treatment for infection during pregnancy is rare, and 
these types of studies are often underpowered to allow 
stratification by different maternal psychiatric diag-
noses and by different types of infections. Postnatal 
infections are more common and large register-based 
studies from Scandinavia report significant associa-
tions with a later diagnosis of schizophrenia and other 
psychoses regardless of the differences in social class, 

hospitalization for other causes, and parental psychi-
atric illnesses between case and control individuals. 
The serological studies conducted, to date, originate 
from the United States, Denmark, and Sweden and 
have focused on the role of “the usual suspects” (i.e., 
the TORCH agents well known to have teratogenic 
properties in terms of maternal exposures during 
pregnancy). These studies consistently report signifi-
cant associations between IgG levels directed at T. gon-
dii, and less consistently so with maternal IgG directed 
at HSV-2 and CMV. In addition to these, a single study 
report an association with antibodies directed at influ-
enza A virus in maternal serum. Thus, many specific 
maternal infections remain to be investigated by serol-
ogy and for evidence of maternal–fetal transmission. 
Future larger studies employing medical registers 
and biological samples from mothers and newborn 
children need to better identify specific risk factors in 
terms of genetic variants in both probands and their 
mothers and in terms of their interaction with specific 
infectious agents to cause neuropsychiatric disorders 
in children and adults.

The experimental models for schizophrenia that have 
employed virus infections reported to date are heavily 
biased toward influenza A virus. These include studies 
of infections during pregnancy in both mice and mon-
keys as well as neonatal and adult infections in mice. 
Taken together, these studies clearly suggest that influ-
enza A virus infection can cause long-term abnormali-
ties in molecular, structural, and behavioral outcomes 
relating to cognitive domains and sensorimotor gating 
in exposed animals by several different mechanisms. 
Other viral infections and combinations of exposures 
to infections during pre- and postnatal life are currently 
underinvestigated in terms of molecular, structural, and 
behavioral outcomes of relevance for chronic neuro-
psychiatric disorders and therefore warranted in future 
studies.

With the advent of next-generation sequencing of 
the human metagenome, from healthy individuals as 
well as from patients with schizophrenia or other disor-
ders, novel viruses infecting humans will be discovered 
and their potential role in human disease will require 
investigations using rodents to establish pathogenetic 
mechanisms and identify novel avenues for preven-
tion and treatment. As an example, Yolken and cowork-
ers recently identified, by next-generation sequencing, 
a chlorovirus, thought to only infect green algae, in 
human oropharyngeal samples. The presence of viral 
DNA in throat swabs was associated with cognitive defi-
cits among otherwise healthy individuals. Mice orally 
inoculated with the chlorovirus subsequently developed 
behavioral abnormalities relating to working memory 
and sensorimotor gating along with altered expression 
of synaptic plasticity and immune system genes in the 
hippocampus (Yolken et al., 2014).
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Our fear of psychosis or disruptive behavior may keep us 
from seeing the heroic struggle that people with this disorder 
[schizophrenia] face just to survive amidst the internal chaos 
and panic that is part of this chronic illness. Insel (2010)
  

INTRODUCTION

Schizophrenia is a profoundly disabling and persis-
tent psychiatric disorder that affects more than 21 million 
people worldwide based on the World Health Organiza-
tion estimate. It is characterized by broad-range devas-
tating symptoms that include those commonly defined 
as positive (hyperarousal, hallucinations, delusions, and 
racing thoughts) and negative (emotional flattening, social 
withdrawal, and apathy) in addition to cognitive impair-
ment (lack of insight, disorganized thoughts, and attention 
and memory deficits), with auditory hallucination and 
paranoid delusions being among the most striking and 
disruptive (Tamminga & Holcomb, 2005). The first signs 
of the disease appear at adolescence or early adulthood, 
with men showing an anticipated onset compared with 
women, on average by 3–4 years (Hafner, Maurer, Loffler, &  
Riecher-Rossler, 1993), usually followed by a long-term 
course of social and professional disability. Indeed, 
decreased community functioning has been recently sug-
gested to be a core symptom of schizophrenia together 
with somatic comorbidity (Rethelyi, Benkovits, & Bitter, 
2013; Scott & Happell, 2011). This latter includes cardio-
vascular complications, metabolic syndrome, impaired 

lung function (also from excessive cigarette smoking), and 
higher susceptibility to HIV, hepatitis, and tuberculosis 
leading to an overall increase in the management costs 
of these psychiatric patients who suffer from mortality 
rates—including suicide—2 to 2.5 times higher than the 
general population (Bradley & Dinan, 2010; Kelly et al., 
2011; McEvoy et al., 2005; Mitchell & Lord, 2010; Ringen, 
Engh, Birkenaes, Dieset, & Andreassen, 2014; Saha, Chant, 
& McGrath, 2007; Weinmann, Read, & Aderhold, 2009).

As recently pointed out by Insel (2010), 100 years 
ago, there were large public institutions for mental ill-
ness, tuberculosis, and leprosy; nowadays, whereas 
prevalence of infectious diseases has in most cases 
been reduced, the burden of mental disability, and 
particularly of schizophrenia, has not changed, if not 
increased (Hegarty, Baldessarini, Tohen, Waternaux, & 
Oepen, 1994). In fact, notwithstanding a large number of 
research efforts to derive pharmacological and psycho-
social treatments, schizophrenia still remains a puzzling 
syndrome with a very heterogeneous symptomatology 
and a mainly unknown multifactorial complex etiology.

Among psychiatric disorders, schizophrenia appears 
to be the most severe and the highest heritability, sug-
gesting that genetic factors play a main role in the etiol-
ogy of this disorder. Epidemiological studies on twins 
estimate its heritability at about 80% (Sullivan, Kendler, 
& Neale, 2003), whereas studies taking into account the 
family history provide a reliable estimate closer to 60% 
(Lichtenstein et al., 2009) or lower (Modinos et al., 2013; 
van Os, Kenis, & Rutten, 2010; Zuk, Hechter, Sunyaev, 
& Lander, 2012). Indeed, although several genes have 
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been proposed as strong candidates playing a role in the 
etiopathogenesis of schizophrenia, only weak evidence 
of association with disease risk were found (Allen et al., 
2008). Interestingly, many of these genes play a role dur-
ing neuronal development being involved in cell migra-
tion and proliferation, axonal outgrowth, myelination, 
synaptogenesis, and apoptosis, suggesting a major role 
of neurodevelopmental insults (Fatemi & Folsom, 2009). 
Most intriguingly, schizophrenia has also been associ-
ated with genes of the major histocompatability com-
plex on human chromosome 6, suggesting that major 
histocompatability complex proteins, in addition to their 
obvious role in immune response pathways, might also 
share an effect in neuronal development and synaptic 
plasticity (Shatz, 2009), further supporting the idea that 
immune challenges in critical developmental time might 
represent a risk factor for the onset of the disease (Knuesel 
et al., 2014).

The availability of new high-throughput genotyping 
technology has pushed genomic research to investigate 
beyond the risk conferred by single candidate genes 
by carrying out genome-wide association studies on 
psychiatric populations (Corvin, Craddock, & Sullivan, 
2010). This approach on the one hand has identified 
common and rare variants showing reliable association 
with schizophrenia and on the other has provided highly 
replicable results among different studies. However, the 
risk associated with each common variant is comparable 
to that based on a candidate gene hypothesis (Modinos 
et al., 2013). As for rare variants (e.g., copy number 
variants), the risk effects are much higher but being so 
rare they can only account for a small proportion of the 
genetic vulnerability to schizophrenia (Consortium, 
2008; Modinos et al., 2013; Stefansson et al., 2008). Thus, 
the picture emerging from this evidence is such that 
schizophrenia has a very complex genetic architecture 
that can only partially account for the onset of the 
disease.

This “missing heritability” calls into question the 
role of the environment as a main liability factor partici-
pating to the so-called “hidden heritability” of schizo-
phrenia (van Dongen & Boomsma, 2013; van Os et al., 
2010; Zuk et al., 2012). In this regard, adverse environ-
ments can be a source of stress provided by very dif-
ferent stimuli of biological or psychosocial nature that 
might occur early during the perinatal development of 
an organism and/or during subsequent life stages (as a 
further “hit” with additive effects on the genetic and/or 
the perinatal vulnerability) contributing to the etiology 
and course of the disease. Based on epidemiological stud-
ies, obstetric complications at birth (Cannon, Jones, &  
Murray, 2002; Mittal, Ellman, & Cannon, 2008), mater-
nal stress (Khashan et al., 2008), maternal malnutrition 
(Brown & Susser, 2008), childhood abuse (or early trau-
matic events in general) (Arseneault et al., 2011; Varese 

et al., 2012), urbanicity (Pedersen & Mortensen, 2006), 
minority or migrant status (Cantor-Graae & Selten, 
2005), and cannabis use (Arseneault et al., 2002)—just 
to mention a few—appear as reliable risk factors play-
ing causal roles in the etiopathogenesis of the disease. 
However, the neurobiological mechanisms underlying 
their effects on schizophrenia risk are mostly unknown. 
In addition, it must be emphasized that most of these 
risk factors show a poor outcome, if considered per se, 
are characterized by pleiotropic effects (being there-
fore not specific for schizophrenia) and are found to 
be associated with several other psychiatric conditions 
(Insel, 2010).

A widely accepted model takes into account both 
genetic and environmental risk factors in an integra-
tive vulnerability view that considers schizophrenia as 
a neurodevelopmental (and also a neurodegenerative) 
disorder. This hypothesis, sustained by strong epidemi-
ological and preclinical evidence, considers that mul-
tiple gene–environment interactions—and the deriving 
“epigenetic scars”—act as driving forces to reshape 
the brain circuitry (temporal and prefrontal cortical– 
thalamic–ventral striatal being the most affected path-
ways) during development (i.e., from prenatal life to 
adolescence) (Fatemi & Folsom, 2009; Feinberg, 1982; 
Insel, 2010; Lewis & Levitt, 2002; McGowan & Szyf, 
2010; Murray, Jones, & O’Callaghan, 1991; Weinberger, 
1987).

As briefly mentioned previously, many aspects of the 
environmental contribution to the neurodevelopmental 
origin of the disease can be broadly ascribed to stress. 
In this context, environmental stressors are no longer 
seen, just as the precipitants of conditions that will 
appear sooner or later during the life course of the 
individual or as exacerbating factors of an existing 
or dormant symptomatology, but rather as biologi-
cally active forces driving developmental trajectories 
through the interaction with a genotype leading to  
a unique vulnerable “epiphenotype.” Thus, a crucial 
challenge in this field of research is trying to under-
stand how stressors become integrated into the 
developmental program of an organism, leading to the 
specific brain functional and structural changes (e.g., 
hippocampal damage ventricular enlargement, altered 
cytoarchitecture, migration of neurons) and alterations in 
neurochemical parameters (dopamine (DA), glutamate, 
γ-amino butyric acid (GABA) serotonin, and brain-
derived neurotrophic factor (BDNF)) characterizing the 
disease, and persisting into adult life. Understanding 
the biological mechanisms occurring during the early 
stages of life, including pre- and perinatal phases, can 
help to predict specific changes in brain development 
(architecture, connectivity, neurochemistry) underlying 
mental disability in a life-long perspective (Bateson 
et al., 2004).
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Ultimately, health promotion might depend upon 
our ability to moderate or redirect the adverse effects of 
stress during specific developmental sensitive periods 
(time windows) through early intervention strategies.

STRESS AS A RISK FACTOR  
FOR PSYCHOPATHOLOGY

Mammalian development for most species relies 
upon a gradual process occurring before and after birth, 
leading to a continuous accumulation of small changes. 
This process results from the interaction between the 
individual genetic asset and the pre- and/or postnatal 
environment and is functional to the generation of very 
different phenotypes fitting with different environmental 
conditions promoting the successful perpetuation of the 
genotype and affecting both the existence of the individual 
and population biology (Bateson, 2001; Bateson et al., 
2004; D’Udine & Alleva, 1980). During development, 
the organism shows increased plasticity allowing the 
individual to adjust to environmental changes; however, 
the bad side of this developmental flexibility is such 
that it provides “diathetic windows” for later diseases. 
The final outcome of the developmental program will 
depend, beyond the genetic asset of the individual, 
upon the stability of the environment that contributed to 
prime developmental trajectories (Bateson et al., 2004).

It is widely accepted that body-mind homeostasis is 
lost following exposure to chronic stress (or “allostatic 
load”) (Bateson et al., 2004). The activation of stress sys-
tems results in an integrated repertoire of physiological 
responses that include the activation of the hypothalamic-
pituitary-adrenal (HPA) axis and the secretion of adrenal 
stress hormones (glucocorticoids (GC)), increased heart 
rate and blood pressure, elevated blood sugar, and redi-
rection of blood flow to the brain leading to increased 
vigilance and eventually ending up to a “fight or flight” 
coping strategy. The discrete activation of these systems 
results in a stress response, which is functional for organ-
ism to cope with an acute threat. However, an unwanted 
and prolonged response, such as during circumstances of 
chronic or overwhelming adversity, will lead to the over-
shooting of the system becoming harmful for the indi-
vidual (Shonkoff, Boyce, & McEwen, 2009). Thus, it has 
been hypothesized that early in life, adverse events can 
shape the experience-dependent maturation of the neu-
roendocrine systems and corticolimbic circuitry under-
lying emotional functioning, leading to increased stress 
responses at adulthood (Meaney, 2001; Schore, 2000; 
Seckl & Meaney, 2004; Tronick & Reck, 2009). Schizophre-
nia patients with a history of childhood abuse are indeed 
characterized by a dysfunctional HPA axis (Read, Perry, 
Moskowitz, & Connolly, 2001). Likewise, Walker and 
Diforio suggest that prenatal stress by affecting HPA axis 

development might lead to its overdrive and in turn to 
increased DA receptors and DA release that character-
ize the positive symptoms of the disease (for review see 
Read et al., 2001; Walker & Diforio, 1997). Moreover, early 
life abuse or neglect has been associated with abnormal 
development of those brain areas involved in emotional 
disorders including volume loss in hippocampus, corpus 
callosum, prefrontal cortex, altered symmetry in cortical 
regions, and reduced neuronal density and integrity in 
the anterior cingulate (Bremner et al., 1997; Carrion et al., 
2001; De Bellis et al., 2002; Driessen et al., 2000; Stein, 
Koverola, Hanna, Torchia, & McClarty, 1997; Teicher 
et al., 2004).

In a mechanistic perspective, several theories have 
been put forward to describe how liability can become 
“embedded” into brain physiology: among others, a 
“cumulative stress” also known as the “two-hit” (or 
three-hit) hypothesis and a “mismatch hypothesis” are 
of main interest (Nederhof & Schmidt, 2012). According 
to the cumulative stress model, environmental stressful 
conditions lead to a “first hit” perturbing the early 
developmental trajectories of neurochemical pathways 
and neuronal circuits and providing a long-term vulner-
able background. These same pathways may be targets 
also for a “second hit” of stress occurring in the adolescent 
or adult organism (often providing a triggering factor for 
the onset of the disease). The final outcome is therefore 
the result of cumulative hits dur ing development 
(allostatic load), whereas individual susceptibility to 
early programming is provided by the genetic asset 
(three-hit model) (Daskalakis, Bagot, Parker, Vinkers, & 
de Kloet, 2013).

A different and somehow provocative idea, inspired 
from evolutionary theories, is the “mismatch hypothe-
sis.” According to this theory, individuals are more likely 
to be affected by a disease if a mismatch occurs between 
the environmental conditions experienced during early 
life developmental stages and the adult environment. 
Also in this case, the genotype provides the ground for 
environmental stress-related shaping effects on develop-
ing neurochemical pathways and neuronal brain circuits 
and for the selection of the most adapted phenotype. A 
reconciling and intriguing view proposes that specific 
genes or genetic variants (individual genetic asset) by 
increasing the individual plasticity, or programming 
sensitivity, may predispose an organism to be more 
vulnerable to stressful environmental conditions, also 
explaining the often observed inter-individual differ-
ences in the outcomes of stress (Belsky et al., 2009). Thus, 
the cumulative stress hypothesis should better apply to 
individuals characterized by a “genetic resiliency” to 
environmental programming, whereas the mismatch 
hypothesis applies to individuals characterized by 
“genetic plasticity” who experienced strong program-
ming effects (Nederhof & Schmidt, 2012).
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AN INTEGRATIVE 
NEURODEVELOPMENTAL APPROACH 

TO THE ETIOPATHOGENESIS OF 
SCHIZOPHRENIA

Schizophrenia is generally not diagnosed until adoles-
cence or early adulthood, suggesting that this disease 
originates as the final outcome of some disruptive pro-
cess acting on the immature brain of a developing organ-
ism (“neurodevelopmental hypothesis of schizophrenia” 
(Fatemi & Folsom, 2009; Harrison, 1997; Rehn & Rees, 
2005)). Epidemiological studies have provided ample 
evidence for prenatal immune challenges (e.g., exposure 
to influenza viruses), obstetric complications—involv-
ing hypoxic events—prenatal maternal psychological 
stress, and maternal and fetal nutritional deficiency to be 
risk factors for the onset of schizophrenia later in life (see 
Rethelyi et al., 2013 and references therein). However, 
because not every individual develops the disease, the 
etiopathogenesis of schizophrenia likely involves inter-
actions at multiple levels between genetic vulnerability 
and environmental factors taking place at different time 
points throughout the development of an organism to 
produce a very heterogeneous symptomatology. Thus, it 
has been hypothesized that an early insult might occur 
followed by a quiescent phase; the onset of the disease 
usually appears in late adolescence or early adulthood, 
a sensitive time characterized by a massive neuronal 
rearrangement (pruning). A possible explanation for 
this phenomenon is provided by the “developmental 
allostasis” hypothesis (Thompson & Levitt, 2010) i.e., a 
“lesion” early during development does not manifest 
until a much later developmental stage, when compen-
satory changes can no longer compensate. Alternatively, 
the developmental lesion influences pathways or regula-
tory processes, such as the fine balance of excitatory and 
inhibitory synapses in the prefrontal cortex, which may 
have only subtle effects until a fine tuning is required 
in late adolescence. Current data cannot distinguish 
between these two options, but either way a neurodevel-
opmental perspective implies the importance of timing 
and the opportunity for earlier intervention and preven-
tion (Insel, 2010). This model is based on the occurrence 
of early abnormalities during the neurodevelopmental 
processes, well in advance of the disease onset. How-
ever, as pointed out by Limosin, all stages of proper 
brain development may be affected, from proliferation 
to the differentiation and migration processes, and then 
from dendritic and axonal growth to myelination, a pro-
cess that continues at least until early adulthood, notably 
in the prefrontal cortex (Limosin, 2014).

Despite being one of the most accepted and 
exhaustive models, critics to the neurodevelopmen-
tal hypothesis of schizophrenia claim that it does not 
fully address the issues of the long time lapse between 

neurodevelopmental insult and the development of 
symptoms as well as the progressive clinical deteriora-
tion observed in some patients and evidence of progres-
sive changes in certain ventricular and cortical brain 
structures (Bertolino et al., 1998; Lieberman, 1999). In 
this context, a further interesting vision integrates the 
neurodevelopmental approach with a neurodegen-
erative etiopathogenesis hypothesis of the onset of the 
disease, suggesting that one potential mechanism that 
could account for the progressive nature of schizophre-
nia is apoptosis, or programmed cell death, especially 
synaptic apoptosis, which is localized to distal neurites 
without inducing immediate neuronal death (Fatemi & 
Folsom, 2009; Jarskog, Glantz, Gilmore, &  Lieberman, 
2005; Mattson & Duan, 1999). However, a more accepted 
view implies that the changes in brain structure and 
morphology observed in postmortem tissues from 
schizophrenic patients account for an increased reduc-
tion of neuritic processes (dendrite and synapses) rather 
than loss of neuronal or glial cell bodies, a physiological 
phenomenon also known as “pruning,” which charac-
terizes adolescence and late adulthood. Thus, abnormal 
reduction in synaptic connectivity should result from 
developmental disruption of synaptogenic processes 
taking place during early developmental phases and/
or of synaptic pruning during adolescence (Andersen, 
Thompson, Rutstein, Hostetter, & Teicher, 2000; Limosin, 
2014; McGlashan & Hoffman, 2000).

ANIMAL MODELS OF SCHIZOPHRENIA

Being characterized by a very heterogeneous clini-
cal symptomatology, and having a frank multigenic 
component, devising reliable animal models as useful 
tools to study schizophrenia has never been an easy 
task. In the past few decades, with the availability of 
new technologies, there has been great advancement 
in investigating susceptibility genes for schizophre-
nia leading to the identification of signaling cascades 
related to the pathophysiology of the disease. How-
ever, as mentioned previously, a direct cause–effect 
link is still complex to prove (Jaaro-Peled, Ayhan,  
Pletnikov, & Sawa, 2010). Nonetheless, the generation  
of specific animal models aimed at translating the 
human genetic mutations represents an important 
strategy to investigate the etiology and pathogenesis 
of schizophrenia, to identify new potential drug tar-
gets, and to test the efficacy of novel antipsychotic 
treatments. Endpoints assessed in animal models of 
schizophrenia are mainly related to changes in brain 
morphology, neurochemistry, or behavior (Boksa, 
2004). So far several genetically modified mouse mod-
els have been generated that reproduce with good 
approximation some aspects of the pathology ranging 
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from specific anatomical features to positive, negative, 
and cognitive symptoms characterizing the disease. 
Interestingly, several genetic mouse models for schizo-
phrenia are based on the targeted disruption of genes 
involved in neurodevelopment and neuronal plastic-
ity (e.g., reeler mice, heterozygous or inducible BDNF 
knock-out mice, DISC1 mutants, NCAM-deficient 
mice (Albrecht & Stork, 2012; Cash-Padgett & Jaaro-
Peled, 2013; Chen, Lipska, & Weinberger, 2006; Sakata 
& Duke, 2014)), whereas others have been specifically 
generated in the search for vulnerability factors affect-
ing the molecular pathways of the dopamine and 
glutamine neurotransmission systems most relevant 
to the disease—hyperdopaminergic and hypogluta-
minergic hypotheses (e.g., Nrg1 knock-out mice char-
acterized by deficit in the neurotrophic regulation of 
GABAergic and dopaminergic neurons, myelination, 
and N-methyl-d-aspartate (NMDA) receptor function; 
dopamine transporter and dopamine D1 and D2 recep-
tors; DARPP-32 knockout mice, NMDA receptor sub-
unit 1 and calcineurin knock-out mice; (Rethelyi et al., 
2013) see also Chen et al. (2006) and references therein 
for a complete review). However, a comprehensive dis-
cussion of genetic models of schizophrenia is beyond 
the scope of this chapter and reference has been made 
in a dedicated chapter.

There is a large body of evidence that stress, 
especially experienced during early life phases, plays a  
pivotal role as a risk factor for the development of almost 
all psychiatric disorders ranging from posttraumatic  
stress disorder (Bremner, Southwick, Johnson, Yehuda, &  
Charney, 1993) and major depressive disorder (Heim &  
Nemeroff, 2001) to schizophrenia (van Os et al., 2010). 
However, despite decades of research in this field, 
questions related to which particular stressor or 
combination of stressful events are the most etiologically 
relevant and how they interact at different time points  
during life to forecast the development of psychopathology 
remain currently unanswered (Daskalakis et al., 2013). 
A traumagenic hypothesis of schizophrenia is based 
upon studies correlating early life stressful events to the 
development of the disease later in life (Limosin, 2014; 
Read et al., 2001). Nonetheless, this evidence is quite 
speculative, being based upon retrospective subjective 
reports. In addition, events leading to traumatic wounds 
with long-lasting consequences for one person can be 
perceived just as temporary obstacles for others. For 
obvious ethical reasons, the manipulation of the early 
environment for subsequent assessment of emotional 
state in humans is unfeasible. Thus, early life stress-based 
animal models are mandatory to understand how early 
adversities can affect behavioral and neurobiological 
features relevant to the disease and to establish and 
evaluate novel pharmacological approaches to treat 
schizophrenia patients.

Before the identification of genetic susceptibility fac-
tors for schizophrenia different approaches to model the 
disease were built around the administration of drugs 
(Ellenbroek & Cools, 2002)—often mimicking psychotic 
symptoms—or were aimed at dissecting out the neuro-
developmental risks of schizophrenia. As for drug-based 
models, these show some predictive or construct valid-
ity and have been instrumental to theorize three of the 
most prominent mechanistic assumptions of schizophre-
nia: the dopamine, serotonin, and glutamate hypoth-
esis. These involve the administration of dopaminergic 
or serotonergic agonists to mimic positive symptoms or 
antagonist of the NMDA receptors to mimic the nega-
tive ones (Geyer & Moghaddam, 2002). As for neuro-
developmental models, they involve two very different 
approaches relying either on brain neurotoxic lesions 
(Lipska & Weinberger, 1993; Molteni, Lipska, Weinberger, 
Racagni, & Riva, 2001) or on environmental stressors  
at appropriate timing (Jaaro-Peled et al., 2010). The for-
mer class involves neonatal excitotoxic lesions of the 
ventral hippocampus able to produce postpubertal 
behavioral abnormalities, such as increased spontane-
ous, amphetamine-induced, and NMDA antagonist-
induced locomotion (Lipska & Weinberger, 1993). By 
contrast, as for the developmental stress models, the 
most frequently used to assess long-term consequences 
on schizophrenia-related emotional and cognitive defi-
cits range from prenatal maternal immune activation 
(Meyer, Feldon, Schedlowski, & Yee, 2006), obstetric 
complications (Boksa, 2004), and prenatal maternal psy-
chological challenges (Baier, Katunar, Adrover, Pallares, 
& Antonelli, 2012; Kinnunen, Koenig, & Bilbe, 2003; Lee, 
Brady, Shapiro, Dorsa, & Koenig, 2007) to maternal vita-
min D deficiency (Kesby et al., 2012), maternal depriva-
tion (Ellenbroek, van den Kroonenberg, & Cools, 1998; 
Garner, Wood, Pantelis, & van den Buuse, 2007; Girardi, 
Zanta, & Suchecki, 2014), and social isolation rear-
ing starting from weaning (Geyer, Wilkinson, Humby, 
& Robbins, 1993; Moller, Du Preez, Emsley, & Harvey, 
2011).

This neurodevelopmental approach will be the focus  
of this chapter and the main emphasis will be given to 
rodents’ models of perinatal stress resulting, at adult 
age, in behavioral deficits as well as in neuropatho-
logical features similar to those observed in brains of 
schizophrenia patients. The following sections will be 
devoted to dissect the mechanisms through which the 
stress system and its effectors can modulate brain func-
tion and behavior in a long-term perspective, paving 
the way for vulnerability to psychopathology. Interest-
ingly, stress and the underlying changes of the neuro-
endocrine system appear both as causal factors and 
part of the symptomatology of the disease. In fact, it 
has been suggested that early life adversities by affect-
ing HPA axis maturation might lead to its overdrive 
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and, in turn, to increased DA receptors and DA release 
characterizing the positive symptoms of the disease 
(for a review, see Read et al., 2001; Walker & Diforio, 
1997). In addition, psychotic disorders appear to be 
associated with increased HPA activity both at baseline 
and after stressful challenge; moreover, antipsychotic 
treatments reduce HPA activation, whereas stress and 
the consequent increase in circulating glucocorticoid 
hormones can exacerbate psychotic symptoms (Walker, 
Mittal, & Tessner, 2008). Thus, the role of the neuro-
endocrine system, and of the HPA axis in particular, 
will be described in the context of psychopathology. In 
addition, the role of dynamic epigenetic remodeling 
will be explored as a potential mechanism underlying 
the long-term programming effects of stress and as a 
promising target for environmental or pharmacologi-
cal interventions.

MODELING SCHIZOPHRENIA  
WITH PRENATAL STRESS

Stress is any change of the internal or external milieu 
perturbing the maintenance of homeostasis. In complex 
organisms, it implies a coordinated set of intercellular 
signals and physiological and behavioral responses 
that result in avoidance or adaptation to the stressful 
stimulus. The activation of the neuroendocrine system 
(HPA axis) in response to stress, in the short run, is 
functional to adapt and maintain the homeostasis (allo-
stasis = maintaining stability through changes). Yet, 
over prolonged times, it imposes a cost (allostatic load) 
that might affect growth, metabolism, reproduction, 
inflammatory/immune, and neuroendocrine responses 
(de Kloet, Joels, & Holsboer, 2005; Maccari & Morley-
Fletcher, 2007; McEwen, 1998; Seckl, 2004).

During prenatal phases, the effects of environmental 
challenges are transmitted to the fetus, shaping devel-
opmental trajectories in a tissue-, time-, and challenge-
specific fashion (Harris & Seckl, 2011). Thus, the allostatic 
load accumulated during early life phases can pervasively 
impact on animal’s biology, setting the stage for the emer-
gence of phenotypes vulnerable to the onset of many and 
different pathologies during adult life, including cardio-
vascular disease, type 2 diabetes, emotional disorders, and 
psychopathology, just to mention a few (Cirulli & Berry, 
2013). As is often the case, the occurrence of the previ-
ously mentioned pathological conditions is not mutually 
exclusive and comorbid clinical frames can be observed 
involving the presence of metabolic, cardiovascular altera-
tions, and psychiatric disorders, including schizophrenia, 
strengthening the hypothesis of a common origin for vul-
nerability to diseases (Engum, 2007; Fan et al., 2010; Fan, 
Wu, Shen, Ji, & Zhan, 2013; Leonard, Schwarz, & Myint, 
2012; McEvoy et al., 2005).

Human epidemiological studies consistently pro-
vide evidence for an association between environmen-
tal challenges during pregnancy, altered fetal growth 
(often characterized by intrauterine growth restriction), 
and the development and occurrence of many pathologi-
cal conditions later in life, findings that gave origin to 
the so-called “Barker hypothesis,” also known as “devel-
opmental origins of adult disease” (Barker et al., 1993; 
Seckl, 1998). Interestingly, these associations seem inde-
pendent from lifestyle-related risk factors (e.g., obesity, 
smoking, alcohol consumption, social class) (Harris &  
Seckl, 2011; Leon et al., 1996; Levine, Hennekens, & Jesse, 
1994; Osmond, Barker, Winter, Fall, & Simmonds, 1993) 
and, as assessed in studies on twins, the genetic asset 
can just moderately account for this association (Baird 
et al., 2001; Bateson et al., 2004). Indeed, decreased 
weight at birth has been associated with cognitive dis-
abilities, depression, schizophrenia, anxiety, attention 
deficit/hyperactivity disorder, and antisocial behaviors  
(Famularo & Fenton, 1994;  Khashan et al., 2008;  Raikkonen 
& Pesonen, 2009;  Raikkonen et al., 2008; Wust, Entringer, 
Federenko, Schlotz, & Hellhammer, 2005). Several mater-
nal complications have been specifically related to nega-
tive fetal outcomes, including preeclampsia, depression, 
diabetes, infection/inflammation, and obesity ( Zammit 
et al., 2009), whereas maternal psychosocial stress 
results in altered fetal weight; insulin resistance; meta-
bolic, immune, and endocrine function; and decreased 
cognitive performance (Entringer et al., 2010). With 
respect to schizophrenia, obstetric complications, both 
during pregnancy and at labor, are considered a main 
factor in the etiopathogenesis of this disease. These 
include diabetes, rhesus incompatibility, bleeding, pre-
eclampsia, emergency cesarean section, uterine atony, 
and asphyxia. In this context, hypoxic/ischemic injury 
has been proposed as a reliable common mechanism 
leading to the later onset of the disease (Boksa, 2004; 
 Cannon et al., 2002). In addition, maternal infection 
during pregnancy, prenatal stress, and prenatal malnu-
trition can be all considered as risk factors for schizo-
phrenia (Brown, 2011; Brown & Susser, 2008; Knuesel 
et al., 2014).

Most of these mentioned causal links have been inves-
tigated in animal models of prenatal stress including 
restraint or chronic unpredictable stress in the third week 
of pregnancy—a time window during gestation par-
ticularly sensitive to stress in rodent models (Welberg, 
Seckl, & Holmes, 2001). Metabolic or immune challenges 
have been also used such as disruption of maternal 
metabolic pathways (chronic undernutrition, nutrient 
unbalance, maternal diabetes) (Harms, Eyles, McGrath, 
Mackay-Sim, & Burne, 2008; Johansson, Meyerson, & 
Eriksson, 1991; Palmer, Printz, Butler, Dulawa, & Printz, 
2004) or viral/bacterial infections (Meyer, Schwendener, 
Feldon, & Yee, 2006) often providing insights into the 
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mechanisms mediating the effects of maternal stress on 
the fetus and the behavioral abnormalities characteriz-
ing adult age and strengthening the conclusions deriv-
ing from human studies (Boksa, 2004; Koenig et al., 2005; 
Meyer & Feldon, 2009; Meyer & Feldon, 2010). As a result 
of these early challenges, several abnormal behaviors 
can be observed in the postpubertal offspring, such as 
increased anxiety and depressive-like behavior, impaired 
cognitive abilities, greater vulnerability to psychostimu-
lants, disrupted circadian rhythm, and increased para-
doxical sleep in addition to increased markers of brain 
inflammation and oxidative stress (Bilbo & Tsang, 2010; 
 Darnaudery & Maccari, 2008; Koenig et al., 2005; Maccari 
&  Morley-Fletcher, 2007; Vallee et al., 1999; Vallee et al., 
1997). Most of these features, including pharmacological 
abnormalities, are consistent with a schizophrenia-like 
phenotype. In this regard, following prenatal restraint 
stress, both a potentiation of the locomotor response to 
novelty or amphetamine (Deminiere et al., 1992) and a 
facilitation of amphetamine sensitization (Henry et al., 
1995) have been observed. These data appear overall in 
agreement with a dopaminergic hypothesis of schizo-
phrenia and strongly suggest that prenatal psychophysi-
cal stressors can have long-term programming effects on 
the dopaminergic system as well as on the individual 
perception and responsivity to environmental stimuli 
leading to a hyperaroused phenotype.

In the search for specific behavioral markers to eval-
uate the validity of animal models of schizophrenia, 
many studies have reported a deficit in the sensorimo-
tor gating of experimental subjects undergoing different 
prenatal insults as assessed in the prepulse inhibition 
of the startle reflex (PPI) and/or in the latent inhibition 
(LI) tests. The PPI refers to the reduction of an acoustic 
startle response upon preexposure to a weak, nonstar-
tling stimulus, whereas LI is based on the phenomenon 
of reduced conditioning after preexposure to stimulus 
(Ellenbroek & Riva, 2003; Leumann, Feldon, Vollenwei-
der, & Ludewig, 2002). The popularity of these experi-
mental paradigms is related to clinical observations 
showing that schizophrenia patients are characterized 
by impairment in the ability to filter or “gate” irrelevant, 
intrusive sensory stimuli (Swerdlow, Weber, Qu, Light, &  
Braff, 2008). Worth noticing, the original face valid-
ity of the PPI paradigm derives from the observation 
that apomorphine, a dopamine agonist, disrupts PPI in 
rats while attenuating or abolishing LI (Leumann et al., 
2002). As far as animal models of prenatal challenges 
are concerned, disrupted PPI is found in the offspring 
as a result of maternal immune challenges (Shi, Fatemi, 
Sidwell, & Patterson, 2003), chronic unpredictable stress 
(Koenig et al., 2005), and protein deprivation (Palmer 
et al., 2004) in mice and rats as well as a result of cesar-
ean section in guinea pigs (Vaillancourt & Boksa, 2000). 
Worth noticing, alteration in the sensorimotor gating 

have been also reported in animal models of postnatal 
stress mimicking traumatic adverse early experiences 
such as maternal deprivation or rearing in social isola-
tion (Ellenbroek & Riva, 2003; Geyer et al., 1993). Thus, 
animal models of schizophrenia characterized by dys-
functional sensorimotor gating are generally considered 
robust and reliable also across species. However, despite 
specific changes in the PPI and LI being greeted with 
great enthusiasm when trying to model schizophrenia, 
data in the literature are overall conflicting varying 
upon the nature of the prenatal (or postnatal) stressor 
the selected animal model and the gender of the off-
spring (Patterson, 2012). These discrepancies should not 
be surprising because it must be emphasized that, taken 
alone, PPI and LI cannot be considered as diagnostic 
instruments in the clinical practice. In addition, there 
are many different disorders in which affected individu-
als show reduced PPI, on average, when compared with 
a normal population; moreover, not all schizophrenia 
patients are characterized by disrupted LI (Braff, Geyer, 
& Swerdlow, 2001; Weiner, 2003). Last but not least, sev-
eral physiological conditions might affect the sensorim-
otor gating, including estrogens as well as pregnancy 
both in humans and in animal models (Jovanovic et al., 
2004; Koch, 1998; Plappert, Rodenbucher, & Pilz, 2005; 
Swerdlow, Hartman, & Auerbach, 1997). To this aim, 
Bonsignore and coworkers have provided evidence 
that lactating rats, born under conditions of cesarean 
section and acute perinatal asphyxia, are characterized 
by a deficit in maternal care associated with increased 
arousal in the plus maze (a test of anxiety) as well as 
with increased freezing in the fear conditioning (an asso-
ciative learning task involving a freezing response as 
the result of pairing an unconditioned stimulus—such 
as foot shock—with a conditioned stimulus a particu-
lar context and/or such a cue) (Bonsignore, Venerosi, 
Chiarotti, Alleva, & Cirulli, 2006). Thus it is possible to 
hypothesize that the long-term effect of obstetric com-
plication on maternal arousal might reflect an overall 
inability of the mother to filter out irrelevant stimuli 
while caring for the offspring. This feature is of main 
adaptive value for the mother–infant dyad and has been 
found disrupted in schizophrenia (Boksa, 2004; Cirulli, 
Berry, & Alleva, 2003).

A different class of behavioral alterations related 
to the individual’s hypofunctionality rather than to a 
hyperresponsiveness to environmental stimuli is that 
of negative symptoms. The negative symptoms of 
schizophrenia, that include anhedonia, affective flat-
tening, and impaired social functioning (among oth-
ers), represent core features of the disorder, accounting 
for much of the long-term morbidity and poor func-
tional outcome (Insel, 2010; Limosin, 2014). Notwith-
standing their prominence and prognostic value the 
research for effective and feasible animal models of 
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these negative symptoms has not been completely 
successful ( Ellenbroek & Cools, 2000; Moser, 2014). In 
fact, as pointed out by Ellenbroek and Cool, although 
an approach based on exogenous drug administra-
tion (psychomimetic drugs such as phencyclidine or 
amphetamine see also Geyer & Moghaddam, 2002) to 
mimic negative symptoms has led to weak or sometimes 
inconclusive results (with main reference to predictive 
validity), the growing consensus on the neurodevelop-
mental hypothesis of schizophrenia has started to call 
for different animal models where early life stressful 
events can account for the long-term behavioral changes 
observed (Ellenbroek & Cools, 2000)—also in the search 
of valid novel therapeutic approaches. In this regard, it 
is interesting to note that two very recent papers report 
comparable long-term effects on social behavior in the 
adolescent offspring as a result of different perinatal 
stressors such as prenatal restraint stress or maternal 
deprivation (Berry et al., 2015; Girardi et al., 2014). In 
particular, Girardi and coworkers found that adolescent 
rats that have experienced 24 h of maternal deprivation 
were characterized by reduced sociality and affective 
flattening (Girardi et al., 2014). Likewise, Berry and 
coworkers found that prenatally stressed rats, at ado-
lescence showed not only a reduction in social interest 
and in affiliative behaviors but also decreased hippo-
campal expression levels of BDNF, a neurotrophin play-
ing a pivotal role in neuronal development as well as 
synaptic plasticity, emotionality and cognitive abilities 
(Cirulli & Alleva, 2009). These effects were also associ-
ated to a specific change in the hippocampal NKCC1/
KCC2 ratio (two genes related to GABA signaling), sug-
gesting an imbalance between neuronal inhibitory and 
excitatory mechanisms possibly related to an immature 
GABA system (Hyde et al., 2011). Most intriguingly, 
the authors also provide evidence that, for a prenatally 
stressed rat, the interaction with a nonstressed control 
subject leads to an improvement in sociality suggesting 
that the social environment could be exploited for non-
pharmacological therapeutic intervention (Berry et al., 
2015). In this regard, Luoni and coworkers showed that 
early treatment with lurasidone, an atypical multire-
ceptor antipsychotic, prevents the observed reduction 
in BDNF levels in prenatally stressed rats (Luoni et al., 
2014), further suggesting that an early therapeutic inter-
vention (environmental, pharmacological, or, even bet-
ter, a combination of the two) in vulnerable individuals, 
during critical developmental phases, has the potential 
to act on dynamic systems enhancing the expression of 
neuroplastic molecules in key brain regions, leading to 
long-term beneficial effects on brain function as well as 
enhanced resilience to stress-related disorders.

Exposure to prenatal stress in rodents results in 
increased responsiveness of the HPA axis to stress, 
though this overdrive of the neuroendocrine system may 

vary according to gender and to the nature or the inten-
sity of the stressor (Maccari et al., 1995; Morley-Fletcher 
et al., 2003; Vallee et al., 1997). In addition, reduced lev-
els of both mineralocorticoid and glucocorticoid recep-
tors (the main receptors for the adrenal stress hormones  
cortisol and corticosterone) are found in the hippo-
campus of adult offspring, revealing a possible mecha-
nism for the deficit of HPA axis feedback processes  
(Maccari et al., 1995). Moreover, a reduced hippocampal 
mineralocorticoid/glucocorticoid receptor ratio could 
also account for the disrupted circadian rhythmicity of 
corticosterone secretion, observed as a result of prenatal 
stress (Koehl et al., 1999). Likewise, it has been proposed 
that specific alterations related to the dopaminergic sys-
tem (e.g., enhanced sensitivity to dopaminergic agonists 
in prenatally stressed rats) observed as a result of prenatal  
stress might be the result of a permanent reprogramming 
of the neuroendocrine system; in fact, there is ample evi-
dence that DA synthesis, reuptake, and receptor sensitiv-
ity are, at least in part, under the control of the HPA axis. 
Most interestingly, it has been proposed that the neuro-
endocrine and the dopaminergic system might interact 
in a mutual synergistic fashion resulting in an increased 
vulnerability to stress and, in turn, in the onset of psychi-
atric disorders, such as schizophrenia (Baier et al., 2012; 
Deminiere et al., 1992; Walker & Diforio, 1997).

Several animal models of early manipulations have 
provided evidence that altered GC secretion and behav-
ioral response occur earlier than the often-observed 
cognitive alterations that are mainly observed later in 
life, and these cognitive alterations could be one con-
sequence of early HPA axis hyperactivity (Vallee et al., 
1999; Viltart et al., 2006). Interestingly, the response of 
adult prenatally stressed female rats to an early stress is 
less evident, and despite showing hyperactivity in the 
HPA axis, females are characterized by reduced anxiety-
like behavior and improved learning, suggesting an early 
effect of stress on hormonal systems with an impact on 
their “organizational effects.” These preclinical studies 
are quite interesting particularly when considering that 
women with schizophrenia often show better premorbid 
functioning, a later onset, and better course of the dis-
ease, in addition to different structural brain abnormali-
ties and cognitive deficits (Canuso & Pandina, 2007). By 
contrast, it has been proposed that greater premorbid 
behavioral dysfunction, earlier onset of symptoms, and 
poorer prognosis found in male patients can be triggered 
and/or exacerbated (in vulnerable individuals) by a 
hyperresponsive HPA axis (Walker & Diforio, 1997).

Apart from maternal psychophysical stress, which has 
been amply reviewed in this chapter, most of the animal 
models related to prenatal stress and mentioned previ-
ously (e.g., maternal infection, malnutrition and diabetes 
during pregnancy), have been shown to be associated with 
enhanced maternal glucocorticoid secretion (Boksa, 2004;  
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Koenig, Kirkpatrick, & Lee, 2002). Thus excessive prena-
tal exposure to GCs might indeed represent a common 
risk factor and a possible mechanism underlying vulner-
ability to schizophrenia.

COMMON MECHANISMS UNDERLYING 
PRENATAL ADVERSITIES ASSOCIATED 

WITH SCHIZOPHRENIA

A great body of evidence suggests that prenatal  
insults represent the main risk factors for developing 
schizophrenia later in life, and that exposure to a very 
different range of prenatal insults seems to converge to 
comparable effects on the fetal development, suggest-
ing that some kind of “funneling effect” occurs during 
pregnancy (Cirulli & Berry, 2013). Given the prevalent 
effects of stress on the functionality of the HPA axis, this 
phenomenon should not be surprising providing a main 
link between the adaptation of the central nervous sys-
tem to environmental challenges and peripheral behav-
ioral, endocrine, and metabolic responses (Cirulli &  
Alleva, 2009; McEwen et al., 1992; McEwen, Brinton, & 
Sapolsky, 1988; Sapolsky, Krey, & McEwen, 1986).

The placenta is the main mother–fetus interface, a 
temporary structure that, for the growing fetus, per-
forms the functions of several adult organs related 
to metabolism, respiration, excretion, and endocrine 
function. Most importantly, it handles stress signals 
from the mother to the fetus through the expression of 
specific transporters regulating the access of glucose, 
amino acids, vitamins, and ions required for growth 
and development (Bale et al., 2010; Fowden, Sferruzzi-
Perri, Coan, Constancia, & Burton, 2009). In addition, 
the presence of the 11β-hydroxysteroid dehydrogenase 
type 2 (HSD2) enzyme, by acting as a shield, guaran-
tees the rapid inactivation of maternal GCs (Edwards, 
Benediktsson, Lindsay, & Seckl, 1993; Meaney, Szyf, & 
Seckl, 2007). However, HSD2 provides only a partial 
barrier, allowing a moderate amount of maternal GCs to 
reach the fetus (Benediktsson, Calder, Edwards, & Seckl, 
1997) promoting lung maturation (Ward, 1994) and brain 
development, remodeling axons and dendrites, and 
affecting cell survival (Meyer, 1983; Yehuda, Fairman, & 
Meyer, 1989). In fact, GCs are essential for the fetus to 
develop, they bind to GR and mineralocorticoid recep-
tors that are widely expressed in the fetal tissues and in 
the placenta, acting as transcription factors to alter gene 
expression. Controlled fluctuations in the expression 
levels or in the functionality of HSD2 naturally occur 
during pregnancy to allow the correct amount of GCs 
to reach the fetus at the proper time for organs matu-
ration. As a consequence, an incorrect activation of the 
HSD2 barrier can profoundly impact on the exposure 
of the fetus to GCs hormones and on its development.  

Worth noticing, emotional stressors (Mairesse et al., 
2007) and metabolic/nutritional challenges (Bertram, 
Trowern, Copin, Jackson, & Whorwood, 2001; Langley-
Evans, 1997) have an equal potential to impact on the 
expression and/or activity of the HSD2 leading to high 
levels of GCs reaching the fetus, with a consequent effect 
on growth retardation and on developmental program-
ming resulting in an increased vulnerability to diseases 
later in life (Benediktsson et al., 1997; Edwards et al., 
1993; Seckl, 1998). In addition, in vitro studies using pla-
cental cells lines have also provided evidence that the 
activity of HSD2 can be downregulated by several other 
factors including hypoxia, catecholamines, and proin-
flammatory cytokines (Chisaka, Johnstone, Premyslova, 
Manduch, & Challis, 2005; Hardy & Yang, 2002; Homan, 
Guan, Hardy, Gratton, & Yang, 2006). Thus, hormonal 
signals of maternal status, including GCs, insulin-like 
growth factors, insulin, and leptin, are sensed by the 
placenta and transmitted to the fetus predominantly 
through effects on placental function.

A proper placental functionality is strictly related to 
successful birth. In this regard, it is interesting to note 
that preeclampsia-like conditions have been observed 
both in animal models of prenatal stress and in a model 
of gestational diabetes (Boksa, 2004; Ishihara, Hiramatsu, 
Masuyama, & Kudo, 2000; Takiuti, Kahhale, & Zugaib, 
2002). These data are also in agreement with recent obser-
vations in mice that high-fat diet administration during 
pregnancy results in a pervasive impact on maternal 
physiology leading to a disrupted placental functionality 
in addition to increased pregnancy length and maternal 
emotionality often leading to increased mortality around 
the time of delivery (Bellisario et al., 2015) overall suggest-
ing that obstetric complications per se might represent a 
risk factor for the later onset of diseases.

Despite this evidence, prenatal challenges certainly 
cannot act alone and interesting results from rodents’ 
models have clearly proven that the maternal genetic 
asset can critically act in determining the developmental 
origin of health and diseases. A nice example is provided 
by two strains of rats selectively bred for high or low 
anxiety-related behavior. In particular, it has been shown 
that low anxiety-related behavior rats can modulate pla-
cental HSD2 in response to restraint stress during preg-
nancy protecting their offspring from the negative effects 
of a too high exposure to maternal GCs (Lucassen et al., 
2009). Moreover, knock-out mice for the HSD2 enzyme 
are characterized by a reduced birth weight only on 
C57Bl/6J but not on the 129 × MF1 background (Holmes 
et al., 2006; Kotelevtsev et al., 1999). Thus, not only the 
fetal but also the maternal individual genetic asset can 
interact with the environment leading to a complex 
remodeling of the developing organism providing an 
“allostatic load,” which results in long-term diathesis 
toward mental health.
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ENVIRONMENTAL IMPACT ON 
THE EPIGENETIC SHAPING AND 

IMPLICATIONS FOR SCHIZOPHRENIA

Not every individual characterized with a vulnerable 
genetic background will develop schizophrenia. In fact, 
the etiopathogenesis of this disorder is quite complex, 
likely involving interactions at multiple levels between 
genetic susceptibility and environmental factors taking 
place at different time points throughout the develop-
ment to produce a heterogeneous symptomatology. 
In this regard, the concept of epigenetics—that is the 
influence of the environment operating over or above 
the level of the genetic code—is well suited to describe 
gene by environment interactions, and it has been suc-
cessfully applied to the neurodevelopmental hypoth-
esis of psychiatric disorders. Indeed, the idea that a 
multitude of external or internal challenges can affect 
the genome during brain development is particularly 
intriguing in the context of the neurobiological models 
of schizophrenia (Akbarian, 2014). The most striking 
example, in this regard, is provided by monozygotic 
twins that are characterized by an identical genetic 
background but do not share the same pre- and post-
natal experiences. Thus, specific environmental-driven 
changes in their epigenome can account for the often 
observed discordance in their prevalence of mental 
disorders, including schizophrenia (McDonald, Lewis, 
Murphy, O’Reilly, & Singh, 2003; Petronis et al., 2003; 
Tsujita et al., 1998).

Epigenetics is the study of heritable changes differ-
ent from those provided by DNA sequence that include 
DNA methylation and histone modifications (methyla-
tion, acetylation, phosphorylation, and sumoylation) 
(Callinan & Feinberg, 2006). The state of modification 
of the histones defines the accessibility of the DNA to 
the transcription machinery necessary for gene function; 
inaccessible genes are relatively silent, whereas acces-
sible genes are actively transcribed (Razin, 1998).

Interestingly, because genetic and epigenetic silencing 
could have similar phenotypic consequences, it can be 
hypothesized that a great part of the phenotypic varia-
tion observed in human populations might also result 
from differences in the long-term programming of gene 
function rather than the sequence per se (McGowan &  
Szyf, 2010). Thus, if the plasticity characterizing the 
developing organism is based on epigenetic mecha-
nisms, disease-related outcomes might result from the 
disruptions of epigenetic processes elicited by internal 
or external stressful challenges during sensitive times. 
This epigenetic vision of brain plasticity might provide 
a mechanistic explanation for the long-term effects of 
adverse/stressful fetal, infant, and childhood environ-
ments and a growing body of preclinical evidence sup-
port this idea.

As already widely discussed, stress and the conse-
quent allostatic load on the neuroendocrine system are 
both causal factors (early in life), as are elements con-
tributing to the symptomatology of schizophrenia (later 
in life). Animal models have provided ample evidence 
for the contribution of early (positive or negative) envi-
ronment/experiences to epigenetic alterations in stress 
responsiveness. As an example, Meaney and Szyf inves-
tigating epigenetic effects of maternal care in rats found 
that higher maternal care increases the expression of 
the glucocorticoid receptor in the hippocampus, while 
reducing hypothalamic corticotrophin- releasing hor-
mone and HPA responsivity to stress (Francis & Meaney, 
1999; Liu et al., 1997; Meaney & Szyf, 2005), providing a 
direct link between early experiences (maternal behav-
ior) and DNA methylation in glucocorticoid receptor 
gene. Most intriguingly, the same authors also pro-
vided evidence that such early effects can be reversed 
by central infusion of methionine (a methyl donor), 
suggesting that these epigenomic modifications are 
potentially reversible later in life (Weaver et al., 2004; 
Weaver et al., 2005). By contrast, early life stress as 
provided by maternal separation has shown that low 
maternal care results in a DNA hypomethylation in 
the arginine-vasopressin neurons of the hypothalamic 
paraventricular nucleus resulting in a hyperactive HPA 
axis in adult mice offspring (Murgatroyd et al., 2009). 
Another early life stress model based on stressed, 
abusive rat dams has shown that pups reared under 
these conditions are characterized by reduced levels 
of BDNF expression in the prefrontal cortex, which 
correlates with DNA hypermethylation at the activ-
ity dependent exon IV promoter. These authors on the 
one hand provided evidence for the transgenerational 
effects of these epigenetic modifications; on the other 
hand, they were able to reverse this effect by infus-
ing the DNA methylation inhibitor zebularine (Roth, 
Lubin, Funk, & Sweatt, 2009). More recently, it has been 
shown that prenatal stress in rats leads to a specific 
decrease in the expression of BDNF, possibly medi-
ated by increased DNA methylation of BDNF exon IV 
(Boersma et al., 2014). These preclinical data are inter-
esting not only because this neurotrophin may act as 
a neuroendocrine effector involved in the response 
to stress (Cirulli & Alleva, 2009), but also because a 
reduced expression of BDNF in pyramidal neurons, 
and of its receptor TrkB in GABAergic interneurons, 
might be responsible for changes in brain plasticity, as 
exemplified by decreased spine density observed in the 
brains of schizophrenia patients (Lewis, Hashimoto, &  
Volk, 2005).

Most of the studies just mentioned support the 
hypothesis that epigenetic modifications occurring dur-
ing early life phases are potentially reversible also in 
predominantly postmitotic tissues, such as the brain  
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(McGowan & Szyf, 2010). In particular, it has been 
proposed that the DNA methylation pattern is the bal-
ance between methylation and demethylation reactions 
occurring as a result of physiological and environmental 
signals setting the stage for gene–environment interac-
tions (Ramchandani, Bhattacharya, Cervoni, & Szyf, 
1999; Weaver et al., 2004). Differently from the static 
architecture of the genome, this dynamic nature of the 
epigenome might provide a mechanism for reprogram-
ming gene function in response to changes in lifestyle 
and/or to pharmacological interventions specifically 
targeting epigenetic mechanisms. As an example, val-
proic acid is a mood stabilizer showing some effects in 
alleviating psychotic symptoms (in adjunct to antipsy-
chotics) in schizophrenia and, very interestingly, it acts 
as a histone deacetylase inhibitor (Phiel et al., 2001). 
Although the biological and behavioral effects of some 
epigenetic drugs such as histone deacetylase inhibitor 
have been characterized in the brain, the mechanisms 
underlying specificity in the gene targeted by these com-
pounds, which are fundamental for an effective use in 
mental illnesses, are still being actively investigated.

All in all, identifying epigenetic changes accounting 
for behavioral pathological traits could have important 
implications for therapy because these mechanisms are 
potentially reversible (McGowan & Szyf, 2010). In this 
regard, in the future, building an epigenome map of the 
brain as a consequence of mental illness appears as an 
appealing strategy.
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INTRODUCTION

With increasing pressure and improved methodolo-
gies to understand transmissible agents, renewed recog-
nition of infectious causation of both acute and chronic 
diseases from cancers to affective disorders is occurring. 
That certain infectious agents can cause psychiatric syn-
dromes when they infect adult humans is now well- 
documented (Caroff, Mann, Gliatto, Sullivan, & Campbell, 
2001). Of even greater interest, perhaps, is whether infec-
tious agents’ exposure of a developing fetus, newborn, 
or young child can cause psychiatric syndromes such 
as schizophrenia later in life (Mortensen et al., 2007). 
Schizophrenia is a severe and usually chronic mental 
health condition that presents a significant burden on 
individuals, their families, and society as a whole. Cur-
rent antipsychotic medications are unable to effectively 
treat “positive symptoms” (hallucinations, delusions, 
thought disorders) in nearly 30% of the patient popu-
lation and are not effective treatments for “negative 
symptoms” (emotional blunting, anhedonia, decreased 
motivation) or cognitive deficits (attention, memory and 
learning deficits). The etiology of schizophrenia is highly 
complex, with both genetic and environmental risk factors 
undoubtedly playing major, but as yet not fully under-
stood, roles (Torrey, Bartko, & Yolken, 2012; Torrey &  
Yolken, 2003). Some of the key environmental risk factors 
proposed, to date, include cannabis use, pregnancy and 
birth complications, childhood adversities, urbanic-
ity and immigration (first and second generation), par-
ticularly in certain ethnic groups, and infections of the 
central nervous system, particularly in early childhood  

(Matheson, Shepherd, & Carr, 2014; Torrey & Yolken, 
2014). An infectious etiology of schizophrenia was first 
proposed as early as 1896 (Editorial, 1896). The infec-
tious agents proposed have been wide-ranging, with 
Chlamydophila psittaci, Chlamydophila pneumoniae, human 
endogenous retrovirus W, Borna disease virus, human 
herpesvirus 2, and, in particular, Toxoplasma gondii, being 
some of the most currently convincing examples (Carter, 
2009; Kaushik, Lamberton, & Webster, 2012; Matheson 
et al., 2014).

Here we focus on the risk factors of T. gondii infection 
for schizophrenia, the potential mechanisms involved, 
and whether studies of T. gondii in rodents can serve 
as a valid model to study schizophrenia in humans. 
As with any model of human neuropsychiatric dis-
eases, particularly those incorporating rodents and in 
this instance T. gondii–exposed rodents as a model for 
human schizophrenia, a valid and useful model must 
aim to optimize (1) face validity, that is, resemblance 
to the human symptoms; (2) construct validity, that 
is, similarity to the underlying causes of the disease; 
(3) predictive validity, that is, expected responses to 
treatments that are effective in the human disease; 
and (4) use ethically and epidemiologically appro-
priate host–parasite combinations and behavioral 
assays  (Crawley, 2004; Webster, Kaushik, Bristow, 
&  McConkey, 2013). We believe that the T. gondii rat 
model of schizophrenia, if used ethically and appro-
priately, provides a highly useful and promising tool 
to aid future research applicable to many, but of course 
not all, areas of human schizophrenia symptomology 
and ideal management.
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TOXOPLASMA GONDII AS A CULPABLE 
PARASITE

Toxoplasma gondii, the causative agent of toxoplasmo-
sis, is a highly successful apicomplexan protozoan capa-
ble of infecting all warm-blooded animals worldwide. 
Infection seroprevalence levels can be very high, with 
for example 20–80% prevalence in humans (Desmonts & 
Couvreur, 1974). Members of the cat family (Felidae) are 
the only definitive hosts of T. gondii, within which the 
parasite undergoes full gametogenesis and sexual repro-
duction within the intestinal epithelium, culminating in 
the generation of oocysts containing sporozoites that are 
shed in cat feces (Hutchison, Dunachie, Siim, & Work, 
1969). In addition to congenital transmission, infection of 
intermediate (such as rodents and birds) or other second-
ary (such as humans and domestic livestock) hosts can 
occur following ingestion of oocysts (via contaminated 
soil, water, or food) or tissue cysts (through raw/under-
cooked infected meat, including via cannibalism) as well 
as potentially, under certain conditions, by sexual trans-
mission. Within intermediate/secondary hosts the para-
site undergoes asexual reproduction, characterized by 
rapidly dividing tachyzoites and the more slowly divid-
ing bradyzoites. Bradyzoites encyst in the brain, heart, 
and other tissues, where they can potentially remain for 
the host’s lifetime. Transmission to the feline definitive 
host occurs when an immunologically naive cat ingests 
an infected intermediate host through predation (and/or 
consumes contaminated meat). Because sexual repro-
duction of T. gondii can be accomplished only in felines, 
there are likely to be strong selective pressures on the 
parasite to evolve mechanisms to enhance transmission 
from the intermediate host to the definitive feline host. 
The predilection of T. gondii for the central nervous sys-
tem (CNS) also places this parasite in a privileged posi-
tion to alter host behavior (Webster, 2001, 2007).

Although the severe sequelae of congenital infections 
are well-known, until relatively recently, latent adult-
acquired toxoplasmosis in immunocompetent humans 
and animals was generally considered to be asymptom-
atic. We know little, however, of the potential impact of 
this parasite on the host brain and, indeed, it is classi-
fied as a “neglected tropical disease” or “neglected par-
asitic infection” by the US Centers for Disease Control 
and Prevention (http://www.cdc.gov/parasites/npi/ 
Document CS245336A, 2014). Behavioral studies of wild 
animals with naturally occurring infections are, in par-
ticular, rare, although wild brown rats, Rattus norvegicus, 
on farmlands have been demonstrated to exhibit higher 
levels of activity and, at least under certain situations, 
an increased propensity to be trapped in cages, among 
T. gondii–infected individuals relative to their unin-
fected counterparts (Webster, 1994; Webster, Brunton, & 
Macdonald, 1994). Laboratory and/or experimentally 

controlled naturalistic studies on rats and mice have also 
shown that T. gondii infection is associated with a range 
of subtle behavioral alterations, many of which would 
facilitate parasite transmission from the infected inter-
mediate host to the feline definitive host. For example, 
T. gondii–infected rodents exhibit an increase in activity 
and a decrease in predator vigilance behavioral traits 
(Berdoy, Webster, & Macdonald, 1995; Hay, Aitken, Hair, 
Hutchison, & Graham, 1984; Hay, Aitken, Hutchison, &  
Graham, 1983; Hutchison, Aitken, & Wells, 1980; Hutchison,  
Bradley, Cheyne, Wells, & Hay, 1980; Lamberton,  
Donnelly, & Webster, 2008; Webster, 1994, 2001, 2007; 
Webster et al., 1994; Webster, Lamberton, Donnelly, & 
Torrey, 2006). Moreover, although uninfected rats show 
a strong innate aversion to predator odor, T. gondii infec-
tion appears to subtly alter the rats’ cognitive percep-
tion of cat predation risk, turning their innate aversion 
into a suicidal “fatal feline attraction” (Berdoy, Webster, 
& Macdonald, 2000; Vyas, Seon-Kyeong, Giacomini, 
Boothroyd, & Sapolsky, 2007; Webster et al., 2006). Such 
fatal feline attraction appears specific to a response to 
cat (urine) odor, with no difference observed between 
infected and uninfected rats in their responses to odors 
of nonpredatory mammals such as rabbit (Berdoy et al., 
2000; Vyas, Seon-Kyeong, et al., 2007; Webster et al., 2006), 
nor contrasting potential predatory species odors such 
as mink (Lamberton et al., 2008) or dog (Kannan et al., 
2010). There do, however, appear to be some differences 
between species of feline host, potentially in relation to 
their capacities as efficient definitive hosts (Kaushik, 
Knowles, & Webster, 2014). Overall, such rodent studies 
are consistent with the hypothesis that T. gondii specifi-
cally manipulates the behavior of its rodent, rat at least, 
intermediate host rather than simply causing a broad 
pathology or destruction of particular behavioral traits.

Within the feline definitive host itself some poten-
tial “general pathology” neurological signs have been 
reported, such as circling, head bobbing, atypical crying, 
and increased affectionate behavior, even though CNS 
toxoplasmosis in felines may be relatively uncommon— 
only 7–10% of cats postmortem with toxoplasmic 
symptoms have been reported to have apparent CNS 
involvement (Bowman, 2002; Dubey & Carpenter, 1993). 
In terms of secondary, nonintermediate hosts, although 
empirical studies are again rare, T. gondii appears to induce 
a range of behavioral alterations across host species.  
California sea otters with moderate to severe toxoplasmic 
encephalitis have been observed to be 3.7 times more likely 
to be attacked by sharks than their uninfected counter-
parts (Miller et al., 2004), suggesting that they may exhibit 
aberrant behavior similar to that displayed by infected 
intermediate host rodents, although as a “byproduct” of  
infection with no current adaptive advantage to the para-
site in this host–predator combination. Human studies 
have also revealed a range of subtle behavioral alterations 

http://www.cdc.gov/parasites/npi/
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associated with T. gondii infection, many of which may 
be comparable to those observed among infected rodent 
intermediate hosts—such as increased activity, decreased 
reaction times, and altered personality profiles (Flegr, 
2007, 2013; Flegr, Havlícek, Kodym, Maly, & Smahel, 
2002; Flegr & Hrdy, 1994; Flegr et al., 2003; Webster, 2001).  
Furthermore, consistent with a possible impairment in 
psychomotor performance and/or enhanced risk-taking 
personality profiles, individuals with latent toxoplasmosis  
have reported a 2.65 times increased risk to be involved 
in a road traffic accident relative to the general pop-
ulation (Flegr et al., 2002), a result subsequently  
replicated by other groups (Flegr, Klose, Novotná, 
Berenreitterová, & Havlícek, 2009; Kocazeybeka et al., 
2009; Yereli, Balcioğlu, & Ozbilgin, 2006). Another study, 
albeit significant only in a subset with lower socioeco-
nomic status, linked T. gondii seropositivity with work-
place accidents (Alvarado-Esquivel, Torres-Castorena, 
Liesenfeld, Estrada-Martínez, & Urbina-Álvarez, 2012). 
Even an equivalent of the fatal feline attraction phenom-
enon observed in infected rats (Berdoy et al., 2000) has 
been identified in humans, in which T. gondii positive 
humans showed altered questionnaire responses to 
the odors of the domestic cat (and of the brown hyena) 
(Flegr, Lenochova, Hodny, & Vondrova, 2011).

RELATIONSHIP BETWEEN TOXOPLASMA 
GONDII AND SCHIZOPHRENIA

Latent T. gondii infection in the human host may, 
in a small proportion of cases, have substantial health 
implications. Within humans infected with T. gondii, 
including immunocompetent adult hosts and/or those 
infected but asymptomatic at birth, severe pathologies, 
including meningoencephalitis (Kaushik, Mahajan, 
Sharma, Kaushik, & Kukreti, 2005), ocular abnormalities 
(Faucher et al., 2012), and T. gondii–related brain can-
cers (Thomas et al., 2011), have been reported. There is, 
furthermore, an ever-growing and convincing body of 
evidence concerning a potential relationship linking 
T. gondii infection with some forms of affective and neu-
rological disorders in humans. Correlations have been 
found for obsessive-compulsive disorder (Miman et al., 
2010), biopolar disorder (Pearce, Kruszon-Moran, & 
Jones, 2012), generalized-anxiety disorder (Gale, Brown, 
Berrett, Erickson, & Hedges, 2014), panic disorder (Gale 
et al., 2014; Yolken, Dickerson, & Torrey, 2009), Par-
kinson’s disease (Miman et al., 2010), Alzheimer’s dis-
ease (Kusbeci, Miman, Yaman, Aktepe, & Yazar, 2011),  
attempted suicide (Alvarado-Esquivel, Sanchez-Anguiano, 
Arnaud-Gil, et al., 2013; Arling et al., 2009; Ling, Lester, 
Mortensen, Langenberg, & Postolache, 2011; Pedersen, 
Mortensen, Norgaard-Pedersen, et al., 2012), lower 
cognitive scoring (Dickerson et al., 2014), and reduced 

memory in older individuals (Dickerson et al., 2014; 
Gajewski, Alkenstein, Hengstler, & Golka, 2014). The 
most substantial body of empirical evidence gathered, to 
date, relates to the potential association between T. gondii  
and some cases of schizophrenia in humans (Table 1). 
For example, there are similarities in the epidemiology 
of schizophrenia (Cichon et al., 2009) and toxoplas-
mosis (Johnson, Suzuki, & Mack, 2002) in which, for 
instance, both have been demonstrated to have strong 
familial associations, affecting multiple members of the 
same family. Toxoplasma gondii seroprevalence has also 
been directly positively correlated with (first incidence) 
schizophrenia in at least 39 studies to date (Mortensen 
et al., 2007; Torrey, Bartko, Lun, & Yolken, 2007; Torrey 
et al., 2012; Torrey, Rawlings, & Yolken, 2000; Torrey 
& Yolken, 2003; Yolken & Torrey, 2008). Indeed, meta-
analyses assessing potential associations between differ-
ent infectious agents and schizophrenia found a highly 
significant association with T. gondii infection (odds 
ratio (OR) = 2.70; 95% confidence interval, 1.34–4.42; 
p = 0.005) (Arias et al., 2012) and a stronger association 
between schizophrenia and detection of T. gondii anti-
bodies (combined OR 2.73) than for schizophrenia and 
any human gene in a genome-wide linkage analysis 
study (OR ≤ 1.40) (Purcell et al., 2009). Further support 
for an association includes analyses of serum samples 
obtained from mothers shortly before or after giving 
birth that revealed a significantly raised proportion of 
immunoglobulin (Ig) M antibodies to T. gondii in those 
whose children went on to develop schizophrenia in 
later life (Torrey & Yolken, 2003). Individuals suffering 
from first-episode schizophrenia also have significantly  
elevated levels of IgG, IgM, and/or IgA class antibodies  
to T. gondii, within both serum and cerebral spinal fluid, 
compared with uninfected control subjects (Yolken 
et al., 2001). In a study of military personnel from whom 
serum specimens were available from periods of up to 
11 years before the onset of their schizophrenia (180 
individuals with schizophrenia and 532 matched con-
trols), significantly increased levels of IgG antibodies to 
T. gondii were observed before the onset of schizophrenic 
illness (hazard ratio = 1.24, p < 0.01), with a peak in the 
6 months before onset but seen as early as 3 years before 
the onset (Niebuhr, Millikan, Cowan, et al., 2008). A 
recent study also considered the epidemiological asso-
ciation between T. gondii and schizophrenia through the  
relatively novel perspective of estimating the population- 
attributable fraction for schizophrenia if T. gondii were 
assumed absent from within human populations (Smith, 
2014). In particular, they calculated what would be the 
potential lifetime reduction in the risk of a diagnosis of 
schizophrenia if we could prevent human infection with 
T. gondii, using a modified parameter of the population- 
attributable fraction. Their estimated population-
attributable fraction was 21.4% (within a potential range 
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TABLE 1 Toxoplasma gondii as a Causative Agent in Some Cases of Schizophrenia: Some Key Examples of Association

Neurological Epidemiological Pharmacological Mechanistic

Toxoplasma gondii’s persistent CNS 
infection and behavioral alterations 
observed in both infected animals 
and humans (Flegr, 2013; Webster 
et al., 2013).

Both T. gondii antibodies and 
schizophrenia risk associated with cat 
exposure in childhood (Torrey et al., 
2000; Torrey & Yolken, 1995; Torrey & 
Yolken, in press).

Toxoplasma gondii 
antibodies are 
lower/reduced in 
patients undergoing 
antischizophrenia drug 
treatment (Leweke et al., 
2004).

Toxoplasma gondii infection and 
schizophrenia characterized 
by significant differences in 
levels of homovanillic acid, 
norepinephrine, and in particular, 
altered dopamine (Stibbs, 1985; 
Torrey et al., 2000; Torrey & 
Yolken, 2003).

Neurological and psychiatric 
symptoms in some T. gondii–
infected individuals (Kramer, 
1966).

Countries with high levels of T. gondii 
infection also tend to have high levels 
of schizophrenia.

Antipsychotic drugs inhibit 
T. gondii replication in vitro 
(Jones-Brando, Torrey, & 
Yolken, 2003).

Dopamine D2 antagonists 
(e.g., haloperidol) can prevent 
development of T. gondii–induced 
behavioral alternations in rats 
(Webster et al., 2006).

Similar glial cells, especially 
astrocytes, are selectively affected.

Both T. gondii infection and 
schizophrenia have strong familial 
associations.

Antipsychotic drugs inhibit 
T. gondii replication in vivo 
(Webster et al., 2006).

Tyrosine phenylalanine 
hydroxylase encoded in the  
T. gondii genome that synthesizes  
l-DOPA, the precursor to 
dopamine (Gaskell, Smith, Pinney, 
Westhead, & McConkey, 2009).

Both T. gondii infection and 
schizophrenia have significant gender 
associations.

Dopamine release is increased 
by T. gondii in vivo and in vitro 
(Prandovszky, Gaskell, Dubey, 
Webster, & McConkey, 2011).

Toxoplasma gondii–positive 
schizophrenia patients express 
more severe psychosis than  
T. gondii–negative patients.

Toxoplasma gondii increases risk of 
schizophrenia (odds ratio 2.73) > any 
gene for schizophrenia (odds ratio, 
1.09).

MRI reduction in brain gray matter 
“characteristic” of schizophrenia, 
only in patients with T. gondii 
(Horacek et al., 2011).

US military personnel T. gondii 
seroconversion 6 months–2 years 
before schizophrenia onset (hazard 
ratio = 1.24) (Niebuhr et al., 2008).

Olfactory lobe alterations observed 
in both T. gondii infection and in 
certain neuropsychiatric disorders 
including schizophrenia (Prandota, 
2014).

Serum samples obtained from 
mothers shortly before or after 
giving birth revealed a significantly 
raised proportion of IgM antibodies 
to T. gondii in those whose children 
subsequently develop schizophrenia in 
later life (Torrey & Yolken, 2003).

Individuals suffering from first-episode 
schizophrenia have significantly 
elevated levels of IgG, IgM, and/or IgA 
class antibodies to T. gondii antibodies, 
within both serum and cerebral spinal 
fluid compared with uninfected control 
subjects (Yolken et al., 2001).

CNS, central nervous system; Ig, immunoglobulin.

of 13.7–30.6%), and the author thus proposed that, as it 
is estimated that schizophrenia in the United States, for 
instance, affects a minimum of 0.5% of the population  
(Wu, Shi, Birnbaum, Hudson, & Kessler, 2006), were  
T. gondii infection to be one of the most common causes of a 
diagnosis of schizophrenia, that would amount to more 
than 335,000 potentially preventable cases of schizophre-
nia in the United States over a single human lifetime 

(Smith, 2014)—if indeed T. gondii infection/exposure 
could be prevented and or infections cleared.

Although there are few drugs available that success-
fully clear the T. gondii bradyzoite stage within the CNS, 
studies have, however, demonstrated that T. gondii anti-
bodies in patients with schizophrenia and treated with 
antipsychotic drugs are intermediate between those 
of schizophrenia patients never treated and those of  
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T. gondii–uninfected (or unaffected) control groups, with 
a significant reduction in those patients undergoing 
current drug treatment, thereby suggesting that anti-
psychotic treatment may reduce T. gondii infection levels 
(Leweke et al., 2004). Indeed, antipsychotic drugs used in 
the treatment of schizophrenia inhibit the replication of 
T. gondii tachyzoites in vitro (Goodwin, Strobl, & Lindsay,  
2011; Jones-Brando et al., 2003) and in vivo (Webster et al., 
2006). Toxoplasma gondii–infected/exposed rats treated 
with the same key antipsychotic or mood stabilizer 
drugs during the tachyzoite replicative stage of infec-
tion, in particular that of the dopamine D2 antagonist 
haloperidol (Webster et al., 2006) or the dopamine selec-
tive uptake inhibitor (GBR 12909 1-[2-[bis(4-fluorofenyl)
metoxy]-etyl]-4-[3-fenylpropyl]piperazin) (Skallova,  
Kodym, Frynta, & Flegr, 2006), did not develop the 
potentially suicidal feline attraction or other predation-
specific altered behavioral profiles displayed by their 
untreated but infected counterparts. There was also 
lower parasite establishment within the brains of these 
drug-treated infected rats relative to their untreated 
infected counterparts (Webster et al., 2006). Such results 
therefore raise the hypothesis that the antipsychotic and 
mood stabilizing activity of some medications used for 
patients with schizophrenia may at least be augmented 
through their inhibition of T. gondii replication, inva-
sion, and/or subsequent modulatory impact in infected 
individuals.

SCHIZOPHRENIA, TOXOPLASMA 
GONDII, AND POTENTIAL SHARED 

MECHANISM(S) OF ACTION

Dopamine dysregulation has been a long-standing para-
digm in schizophrenia, although the relationship remains 
unclear. Risk genes that have been identified may lead 
to downstream impairments in dopaminergic function. 
 Toxoplasma gondii also alters dopamine levels in its infected 
host, potentially indicating a pathway through which  
T. gondii infection could confer a risk of developing schizo-
phrenia. Raised or disrupted dopamine levels have been 
reported in both rodent and human T. gondii infections 
and within human patients with schizophrenia (Howes 
& Kapur, 2009; Prandovszky et al., 2011; Stibbs, 1985;  
Torrey & Yolken, 2003), together with other affective disor-
ders such as obsessive-compulsive disorder, bipolar dis-
order, and in individuals with suicide attempts (Berk et al., 
2007; Denys, Zohar, & Westenberg, 2004; Diehl &  Gershon, 
1992; Roy, Karoum, & Pollack, 1992). Research indicates 
that the parasite itself may actually be a source of this 
dopamine (Gaskell et al., 2009; Prandovszky et al., 2011). 
In mammals, dopamine is synthesized in two steps from 
its precursor amino acid tyrosine: tyrosine hydroxylase 
metabolism to produce l-DOPA then decarboxylation of 

l-DOPA by aromatic l-amino acid decarboxylase to dopa-
mine. In noradrenergic cells, dopamine is further metabo-
lized to norepinephrine by dopamine beta-hydroxylase. 
 Toxoplasma gondii was found to encode a protein with high 
homology, and showing similar catalytic properties, to the 
tyrosine hydroxylases found in mammals. This T. gondii  
ortholog synthesizes l-DOPA, the precursor to dopa-
mine, as well as tyrosine, and is correlated with increased 
dopamine levels within T. gondii cysts in the rodent brain 
(Prandovszky et al., 2011). The degradation of tryptophan 
through the kynurenine pathway, which contains several 
neuroactive metabolites, including 3-hydroxykynurenine, 
quinolinic acid and kynurenic acid, has also been suggested 
as a potential mechanistic connection between T. gondii and 
the pathophysiology of schizophrenia. Toxoplasma gondii 
infection enhanced the production of kynurenine pathway 
metabolites in the brain in mice; however, during the first 
2 months after infection, the kynurenine pathway changes 
did not reliably duplicate abnormalities seen in the brain of 
individuals with schizophrenia (Notarangelo et al., 2014).

SCHIZOPHRENIA RISK GENES AND 
POTENTIAL INTERACTIONS IN 

TOXOPLASMA GONDII INFECTION

Selected genetic marker studies and, more recently, 
genome-wide association studies (GWAS) have impli-
cated a large number (>100) of genes potentially asso-
ciated with schizophrenia. It is possible that specific 
schizophrenia-related genes may interact with T. gondii 
infection in the host exacerbating schizophrenic behaviors 
and/or the chance of them being induced. Variations in 
the associated genes range from rare alleles with a large 
effect to common alleles with less effect. Among those 
genes that have been correlated with schizophrenia are 
genes whose products are involved in cell connectivity,  
cell adhesion and myelination, neurotransmission, and 
cell metabolism (proliferation, apoptosis, transcription 
factors, and growth factors). The genes associated with 
the highest risk identified, to date, are DISC1 (dis-
rupted-in-schizophrenia 1), TCF4 (transcription factor 
4), MBP (myelin basic protein), and HSPA1B (heat shock 
70 KDa protein 2). In addition, strong positive associa-
tions have been observed for neurotransmitter-related 
genes (COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, 
HTR2A, SNAP-25, TNIK) and cell adhesion and connec-
tivity genes (NCAM1, RELN) based on GWAS, and other 
expression data, and single nucleotide polymorphism 
data from both human and animal models (Ayalew 
et al., 2012). Because schizophrenia is a developmental 
disorder, genes regulated during cerebral cortex devel-
opment have been implicated, such as regulation in 
genes encoding receptors and transporters with neuro-
transmission (DRD1, DRD1a, NOTCH2, and SLC1A2), 
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gamma-aminobutyric acid (GABA) regulation (GAD1, 
DBI), and transcription factor NR4A2 with a role in dopa-
minergic neurones during subplate layer development 
(Hoerder-Suabedissen et al., 2013). Rare loss-of-function 
variants and copy number variants are strongly corre-
lated with the phenotype of schizophrenia. An excess of 
rare novel loss-of-function variants in synaptic genes are 
correlated with both schizophrenia and autism spectrum 
disorders (Kenny et al., 2014), although, for example, 
neurexins (Nrxn1), involved in synaptic formation and 
maintenance, have copy number variations in the gene 
(also in autism spectrum disorder (Reichelt, Rodgers, & 
Clapcote, 2012)).

Drug-target gene network analysis of drugs approved 
for schizophrenia has also indicated genes in several 
pathways that may be positively associated with the 
disease. Bridge genes between the drug networks identi-
fied GRIN2A, GRIN3B, GRIN2C, GRIN2B, DRD1, and 
DRD2 representing the N-methyl-d-aspartate (NMDA) 
receptor family and dopamine receptors as potential 
biological factors correlated with schizophrenia (Putnam, 
Sun, & Zhao, 2011). Recently, a study identified 108 loci 
associated with schizophrenia using the GWAS (Group, 
2014). Of the 108 loci, 75% include protein-coding genes 
(40% of which are monogenic). There were strong associ-
ations with genes involved in glutamatergic neurotrans-
mission (DRD2), synaptic plasticity (GRM3, GRIN2A, 
SRR, GRIA1), and voltage-gated calcium channel subunits 
(CACNA1C, CACNB2, and CACNA1I). Associations 
were also enriched among genes encoding proteins that 
have important roles in immunity (Group, 2014). Hence, 
it is clear that there is a large range of genes affecting 
various systems, from catecholamines to neuronal con-
nectivity as well as genes associated with immune 
responses that could interact with T. gondii during infec-
tion and facilitate schizophrenia.

The importance of genetic factors in schizophrenia has 
prompted the development of mutant (or drug-exposed) 
rodent models aimed to advance our understanding of 
biological mechanisms underlying schizophrenia symp-
tomology and the neurological alterations involved in 
cognitive changes associated with schizophrenia. To 
date, no genetic mutant rodent models have incorpo-
rated environmental exposure to T. gondii as a (two-hit) 
cofactor, although there in an ever-gathering selection 
of mouse and rat models available to do so. Among 
the first rodent models of schizophrenia studied was 
the inbred mouse strain DBA/2J that exhibits higher 
stress and anxiety-related behavioral traits as well as a 
lower reward-seeking for substances including ethanol, 
nicotine, amphetamine, and morphine relative to the 
C57BL/6J inbred strain (Sarnyai, Jashar, & Olivier, 2015). 
DBA/2J mice also exhibited a significantly reduced  
prepulse inhibition of startle compared with several 

other mouse strains. Following the success of dopami-
nergic antagonists that target the dopamine receptor D2, 
such as haloperidol, to treat the symptoms of schizophre-
nia, mice that overexpress D2 receptors in the striatum 
(D2R-OE mice) were then also generated as a potential 
model of schizophrenia (Simpson, Waltz, Kellendonk, 
& Balsam, 2012). The D2R-OE mice exhibit a deficit in 
incentive motivation as observed by a decreased effort 
in appetite rewards that may result from an inability to 
assess the value of positive outcomes. Another exam-
ple is the discovery that the mouse strain 129S6/SvEv, 
which exhibits deficits in cognitive functions, has at least 
a partially deleted DISC1 gene, a major risk-associated 
schizophrenia gene. Indeed, modifications in genes 
involved in cognitive dysfunction, a central feature of 
schizophrenia, have helped contribute to understand-
ing cognitive processes (Papaleo, Lipska, & Weinberger, 
2012). Neurological systems that have been scrutinized 
include dopaminergic transmission (e.g., genes D1, D2, 
D3, D4, D5, DAT, COMT, MAOA), GABAergic transmis-
sion (e.g., genes deltaGABA(A), GABA(B1), GAT1), glu-
tamatergic (e.g., genes GluR, NR1, NR2A, NR2B, GRM2, 
GRM3, GLAST), acetylcholine (e.g., nAChR), calcium 
balance (e.g., genes CaMKII, neurogranin, CaMKK, 
CaMKIV), and schizophrenia risk-associated genes dys-
bindin (DTNBP1), neuregulin (NRG1), DISC1, reelin 
and proline dehydrogenase (PRODH). Genetic modi-
fications within the stress-sensitive systems of cortico-
tropin-releasing factor and brain-derived neurotrophic 
factor also exhibit cognitive alterations aligned with 
schizophrenia.

Several parallels have also been found between 
schizophrenia and dopaminergic-mutant mice. Stud-
ies of dopamine D2 and D3 receptor null mutant mice 
(−/−) find that the mice are deficient in their response to 
a T-maze spatial delayed alternation task, although the 
D2−/− mice performance may be inaccurate because these 
mice also have impaired locomotor activity. Overall, the 
genetic disruption of dopamine D2 and D3 receptor 
pathways appear to impact executive memory functions, 
analogous to schizophrenia. Mice lacking the dopamine 
transporter DAT are characterized by high extracellular  
dopamine levels and spontaneous hyperlocomotion 
and intriguingly, along with D2 knock-out (KO) mice, 
show some neurochemical changes in olfactory bulbs 
and olfactory deficits. Such increased dopamine, hyper-
locomotion, and olfactory alterations may be similar to 
those same specific behavioral alterations observed in  
T. gondii–infected rodents. Changes in the neurotransmitter- 
related gene COMT, involved in the dopamine turnover, 
such as overexpressing human COMT Val variant, are 
generally not associated with disease, but overexpres-
sors showed impairments in attention shifting in a pre-
frontal cortex dopamine-sensitive digging test (modeled 
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on the human Wisconsin Card Sorting Test) similar to 
the effects of dopamine depletion in monkeys (Papaleo, 
Burdick, Callicott, & Weinberger, 2014).

GABA receptors also have been strongly implicated 
in schizophrenia, and findings in mutant mice suggest 
that the A and B receptors might have opposing roles in 
cognitive function based on studies of GABA transport-
ers (GAT1-GAT4) involved in GABA neurotransmission 
termination. Changes in GAT1 expression in mice alter 
GABA concentrations in the hippocampus and affect 
learning and memory capabilities in tests such as the 
Morris water maze, passive avoidance, and contextual 
fear conditioning (Yu et al., 2013). Toxoplasma gondii has 
been shown to affect the host generation of GABA and 
glutamate, with differential effects depending on the 
strain of the organism (Fuks, Arrighi, Weidner, et al., 
2012; Xiao, Li, Jones-Brando, & Yolken, 2013).

Although disruption of a gene provides a concrete 
test of the product’s role in the brain, for etiologic valid-
ity, partial KOs and single-nucleotide substitutions are 
being pursued with testing in both hetero- and homo-
zygous mice to mimic the features of schizophrenia. 
DISC1 is one of the genes with the highest association 
with schizophrenia and among the most studied in 
mouse models and is known to interact with the envi-
ronmental factor stress (Gamo et al., 2013). DISC1 was 
identified by a pedigree analysis with members of the 
same family suffering from a variety of psychiatric disor-
ders including schizophrenia, major depression, bipolar  
disorder, and adolescent conduct disorder and has 
been linked to autism. DISC1 regulates many aspects 
of development and function of the nervous system 
(Blackwood et al., 2001). Several DISC1 models in mice 
have been generated with different genetic manipula-
tion, assays for characterizing, and behavior tests, com-
plicating comparison between models (Cash-Padgett 
& Jaaro-Peled, 2013). Yet overall, these genetic models 
exhibit abnormalities relevant to schizophrenia and 
mood disorders such as synaptic deficits, dysfunction 
in the dopaminergic system, and cognitive and emotional 
behavioral deficits. Hence, although the selection of 
a particular mutant may grossly effect the results of 
testing and limit the application as a model of schizo-
phrenia, clear gene × environment interactions can be 
observed (Niwa et al., 2013).

Many of the genes associated with schizophrenia, 
including those that closely regulate levels of nutrients 
in the blood as well as neurophysiological genes, also 
affect the lifecycle of T. gondii. Numerous schizophre-
nia susceptibility genes are partially responsible for 
membrane components that T. gondii binds to, directly 
before entering the host cell. The gene GNPAT codes for 
expression of proteins that metabolize glycerone-3-phos-
phate to acylclyceronephosphate, which parasites may 

metabolize from the blood stream. Also, tryptophan is 
required by many parasites for growth, including T. gon-
dii, and the gene that encodes tryptophan hydroxylase 
regulates serotonin levels. The gene coding for expres-
sion of NMDA receptors is very sensitive to concentra-
tions of glutathione, which is depleted in cerebrospinal 
fluid and the brain in people with schizophrenia. This 
presents an advantage for T. gondii because fewer NMDA 
receptors to bind glutathione allows for more available 
glutathione, which activates an apyrase released by 
T. gondii, causing the parasite to leave the vacuole it is 
contained in. This results in T. gondii quickly using up 
the host cell’s adenosine triphosphate and draining it 
of energy (Carter, 2009). Various other genes metabo-
lize and provide ligands that T. gondii binds to, includ-
ing PLA2, GALNT7, and B3GAT1, which may also be 
involved in interactions with schizophrenia or other 
disorders. In addition, an orthologous region to a gene 
found in rats that is associated with resistance to T. gondii 
(Toxo1) has been found in the human genome, includ-
ing a gene ALOX12, which has recently been associated 
with susceptibility to human congenital toxoplasmosis 
(Cavaillès, Bisanz, et al., 2006; Cavaillès, Sergent, et al., 
2006; Witola et al., 2014). Allelic variants of ALOX12 
are also associated with diseases including schizophre-
nia, atherosclerosis, and cancers, although potential 
mechanisms had not been defined (Phillis, Horrocks, & 
Farooqui, 2006).

Further to the genes mentioned previously, the 
presence of cysts of T. gondii in the brain and spinal 
fluid induces immune response genes to increase pro-
duction of proinflammatory cytokines, with diffusion 
to blood plasma and cerebrospinal fluid. Elevated lev-
els of these cytokines in the blood plasma (e.g., tumor 
necrosis factor) and cerebrospinal fluid (e.g., inter-
leukin-6) have been closely associated with suicidal 
behavior (Kaushik et al., 2012). Accumulating evi-
dence indicates that neuronal major histocompatibil-
ity complex class I molecules do not simply function 
in an immune capacity, but also are crucial for normal 
brain development, neuronal differentiation, synap-
tic plasticity, and even behavior (Boulanger & Shatz, 
2004). Expression of 15 immunomodulatory molecules 
have recently been observed to be significantly altered 
in individuals with schizophrenia and those with an 
at-risk mental status for psychosis compared with 
healthy controls (Hayes et al., 2014). These included 
interleukin-6 receptor, tumor necrosis factor-alpha, 
and angiotensin converting enzyme inversely corre-
lated with T. gondii antibody titer in the cerebrospinal 
fluid, suggesting a possible involvement of T. gondii 
infection in the pathology (Hayes et al., 2014). Further 
understanding of these functions of immune proteins 
may well provide insights into how infections such as 
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T. gondii can contribute to the causation of mental ill-
ness (Kaushik et al., 2012; Mortensen et al., 2007).

GENE–ENVIRONMENT  
INTERACTIONS—“A > TWO-HIT 

TOXOPLASMA GONDII MODEL OF 
SCHIZOPHRENIA”

If T. gondii is involved in the etiology of some cases of 
schizophrenia, its synergy with genes may determine the 
person’s brain development, immune response to infec-
tions, and response to other infectious agents (Torrey &  
Yolken, 2003). Infections, particularly in the fetal or 
neonatal period (Mortensen et al., 2007), in genetically 
predisposed individuals could present a scenario in 
which the combination have a high likelihood of devel-
oping characteristics of schizophrenia. There are many 
possibilities for how changes induced by T. gondii could 
interact with the host’s genetic makeup to contribute to 
neurological disorders. Based on the observed changes 
in dopamine with infection, for example, there is poten-
tial for T. gondii to interact with alleles with differing 
catecholamine proteins such as COMT, dopamine 
receptors, and transporters. Alternatively, T. gondii 
may provide the dopamine changes that may comple-
ment genetic changes in connectivity such as Nrxn and 
NCAM1. Indeed, alterations in the expression of argi-
nine vasopressin in the amygdala of rats infected with  
T. gondii were recently found (Hari Dass & Vyas, 2014). 
The vasopressinergic neurons were found to be more 
activated after exposure of infected rats to cat odor than 
uninfected rats. This could thereby potentially link with 
schizophrenia since vasopressin receptor expression 
has been shown to decrease in the amygdala follow-
ing MK-801 treatment, an NMDA antagonist used as 
an animal model of schizophrenia (Tanaka et al., 2003).

Toxoplasma gondii may facilitate the action and/or inter-
act with of other infectious agents such as endogenous 
retroviruses, in a form of “three hit” model for schizo-
phrenia T. gondii, host genetics, and an additional coin-
fecting agent (Webster et al., 2013; Webster & McConkey,  
2010). This may particularly be plausible as T. gondii 
is known to have the ability to activate retroviruses in 
animal model systems (Gazzinellim et al., 1996) and is 
also consistent with the observation that many persons 
with schizophrenia also exhibit increased retroviral acti-
vation within their central nervous systems (Karlsson  
et al., 2001). Interactions between autoimmune dis-
eases, gastrointestinal infections, gut microbiomes, and 
schizophrenia have been recently reviewed elsewhere 
and further support the potential connections between  
multiple risk factors for inducing schizophrenia-associated 
behaviors (Severance, Yolken, & Eaton, in press; Stilling, 
Dinan, & Cryan, 2013).

FUTURE POTENTIAL TOXOPLASMA 
GONDII MODELS OF SCHIZOPHRENIA

Toxoplasma gondii can be successfully maintained 
in vitro and hence many studies on the parasite, such 
as those examining gene expression, can be performed 
without the need for animal infections. However, to fully 
elucidate the impact upon behavior, and the mecha-
nisms involved, future studies, across a range of differ-
ent host species and individuals, will remain essential. 
The choice of animal host to study, down to species, 
strain, gender, and past parasitic and behavioral histo-
ries clearly will have an effect on the outcome of any 
behavioral assay used, and in doing so should provide 
further key information regarding the evolution, mecha-
nisms involved, and the behavioral outcome of infection 
(Webster et al., 2013). For instance, recent studies have 
revealed sex-specific changes in gene expression and 
behavior induced by chronic T. gondii infection in mice 
(Xiao et al., 2012). Similarly, T. gondii has been reported 
to increase testosterone levels in men but decrease levels 
in women (Flegr, Lindova, & Kodym, 2008). The associa-
tions with schizophrenia in humans is equally unclear. 
Recent studies have indicated that T. gondii is a risk factor 
for schizophrenia in women (Khademvatan, Khajeddin,  
Izadi, & Yousefi, 2014), although others observed ele-
vated T. gondii antibody levels in males with schizophre-
nia, but not in women (Flegr et al., 2014). Furthermore, 
the gender of the person performing the laboratory 
experiments may also be important, and hence must be 
controlled for between experimental trials, with male 
olfactory cues inducing stress within the rodents, which 
may bias the subtle behavioral changes under investiga-
tion (Sorge et al., 2014). In a similar manner, the choice of 
the parasite used as well as the route and timing of infec-
tion may also influence the behavioral outcomes within 
such studies (Webster et al., 2013). Key parasite associ-
ated factors may plausibly relate to the route of infection, 
such as oocyst or tissue cyst (Webster, 2001; Webster & 
McConkey, 2010) or perhaps even sexually transmitted 
route, and recent development in serological diagnostics 
may not enable us to differential such routes of trans-
mission in natural/wild-sourced studies (Hill, Coss, & 
Dubey, 2011). The timing of initial infection may also 
be important, whether congenital (and at which trimes-
ter), neonatal, prepubescent, or adult-acquired (Webster, 
1994, 2001; Webster et al., 2013). Prepubescent infection 
may be particularly important in models of schizophre-
nia. The strain of T. gondii is also undoubtedly of para-
mount importance in terms of the clinical, behavioral, and 
ethical outcomes of infection. Toxoplasma gondii is com-
posed of three major genotypes, types I, II, and III (pre-
viously estimated to encompass 94% of all isolates when 
combined), which have emerged as the dominant strains 
worldwide (Howe, Honore, Derouin, & Sibley, 1997).  
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Although type I strains tend to be fatal in mice,  
type II and III parasites are relatively avirulent and 
more readily form cysts and thereby establish chronic 
infections (Howe, Summers, & Sibley, 1996; Sibley & 
Boothroyd, 1992; Sibley, Mordue, Su, Robben, & Howe, 
2002), which make the latter two strains more suitable 
for the study of behavioral changes with chronic infec-
tion. Type II and III strains also show higher expression 
of the parasite’s tyrosine hydroxylase genes, proposed 
to be involved in behavioral changes, relative to type I 
strains (Gaskell et al., 2009; Prandovszky et al., 2011). 
Infection with type II also accounts for most human cases 
(60–80%) in Europe and North America (Ajzenberg et al., 
2002; Ajzenberg et al., 2009; Peyron et al., 2006), although 
both types I and III are commonly found in Colombia 
(Peyron et al., 2006). However, it is critical to clarify that 
sampling has been largely biased toward parasites recov-
ered from symptomatic humans and domestic animals, 
and hence relatively little is known about the majority of 
wild animal infections or even potentially those human 
infections with no apparent disease. A role for atypi-
cal genotypes in cases with severe host morbidity has, 
however, been indicated by the Californian sea otters 
populations suffering from increased mortality—where, 
although 40% were infected with the common zoonotic 
type II strain, 60% were infected with a genotype that 
possessed novel alleles at three genetic loci different 
from the alleles found in the standard types I–III (Miller 
et al., 2004). Furthermore, recent research suggests that 
such atypical strains, previously referred to as A and X, 
may designate together as a “type 12” (Khan et al., 2011), 
and this type 12 lineage may actually account for 46.7% 
(79/169) of isolates and are dominant among wildlife 
of North America (Dubey et al., 2011). One could thus 
perhaps postulate that future molecular typing studies 
could reveal different clinical and behavioral outcomes 
in human or other T. gondii infections in relation to 
whether the zoonotic infection route may be wildlife or 
domestic, and typical or atypical genotype. Even within 
the T. gondii type, however, different clinical and behav-
ioral outcomes may be predicted. Within type II alone, 
variation in host cell gene expression (Hill, Gouffon, 
 Saxton, & Su, 2012) and development (Diana et al., 2004), 
host immune and encephalitic response (Araujo & Slifer, 
2003; Hill et al., 2012), parasite dissemination, reactiva-
tion and recrudescence (Saeij, Boyle, Grigg, Arrizabal-
aga, & Boothroyd, 2005), and impact on host behavior 
(Kannan et al., 2010) have all been reported between 
different strains. For example, although both Prugniaud 
(Pru) and ME49 have been reported to increase attrac-
tion to cat odor in mice at 2 months postinfection, in 
at least one study this behavior was no longer present 
with the ME49 strain at 7 months postinfection (Kannan 
et al., 2010). Prugniaud-infected mice in this study were 
also reported to have greater hyperactivity than their 

ME49-infected counterparts, although only the ME49-
infected group showed impaired spatial working mem-
ory (Kannan et al., 2010).

It is strongly proposed that experiments with more 
“resistant” animals, such as rats, provide a superior 
model in which to study the behavior changes induced 
by T. gondii, from both an ethical and biological perspec-
tive in terms of their generalizability to humans, relative 
to the mouse model (Hrda, Votypka, & Kodym, 2000; 
Webster, 2007; Webster et al., 2013). In terms of future 
research into the T. gondii model of schizophrenia, sev-
eral potentially useful rat in vivo models are already 
available that could plausibly provide valuable experi-
mental tools to further test the hypotheses of causal-
ity. For example, one could propose the spontaneously 
hypertensive rat model of anxiety to further elucidate 
host from parasite associations in relation to generalized 
anxiety profiles. Prenatal exposure to various infectious 
agents has been linked to an increased risk of neurode-
velopmental brain disorders, and specifically those 
associated with altered dopaminergic development. 
For example, there is recent evidence that rats born to 
mothers exposed to the viral mimic polyriboinosinic-
polyribocytidylic acid in pregnancy provide a useful 
rodent model for human affective disorders such as 
schizophrenia (Vuillermot et al., 2012). Although admit-
tedly previous studies found no significant difference 
in the hyperactivity profiles between adult-acquired 
and congenitally acquired T. gondii infections among 
rats (Webster, 1994), it may be fascinating to examine 
the impact of T. gondii on the resulting developmental,  
behavioral, and neurophysiological phenotypes among 
such polyriboinosinic-polyribocytidylic acid off-
spring—hence, a “two-step environmental–environmental  
(i.e., infection:infection) hit.” Likewise, although there 
are no rodent models available as of yet for hallucina-
tions, NMDA receptor antagonists, such as MK-801, 
can induce schizophrenia-like psychoses, together with 
other “positive symptoms,” in rats (Brigman, Graybeal, 
& Holmes, 2010). Intriguingly, the effects of MK-801 on 
mouse behavior were found to parallel the effects of T. 
gondii infection on behavior (Nishikawa et al., 2013). The 
mechanism involves hyperactivity of mesolimbic dopa-
mine neurons, although multiple brain regions and mul-
tiple neurotransmitter systems are affected (Seeman, 
1987). Notably, Wang and colleagues also showed, using 
MK-801 administration in mice as their model of schizo-
phrenia, that when such mice were also infected with T. 
gondii, they showed impaired learning relative to unin-
fected mice on certain “state of despair” task such as the 
forced swimming and tail suspension tests (Wang et al., 
2013). Hence, one may predict future studies incorporat-
ing the additional exposure of T. gondii in such rodent 
models, ideally using ethically and phenotypically 
appropriate behavioral assays (Webster et al., 2013), may 
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further provide valuable insights in to the mechanisms 
involved and potential phenotypic outcomes.

As raised previously, genetically engineered and 
naturally occurring mutant rodent models can also be 
particularly useful in providing requisite information 
about the neurodevelopmental, behavioral, and molecu-
lar consequences of dysregulation of specific genes, and 
hence the potential gene–environment interactions of  
infection with T. gondii on subsequent behavioral out-
comes. At present, there are several relevant mouse mod-
els available that may be particularly useful for future 
T. gondii research, in particular those using KO mice 
involving dopamine (dopamine synthesis and/or regu-
lation genes) (Kirby, Waddington, & O’Tuathaigh, 2010). 
Unfortunately, there are few KO rat models yet avail-
able, although several are underway and these will need 
to be validated, and their development is likely to prove 
extremely valuable for examining  gene– environment 
interactions, particularly with the newly developed 
technologies. In particular, we may predict that, for 
example, the combination of such genetic (KO line) 
and environmental (T. gondii infection) factors not only 
exerts additive effects on behavioral traits such as loco-
motor hyperactivity and “fatal feline attraction,” but  
further produces synergistic effects in the development 
of, for instance, impaired attentional shifting and sustained 
attention. Furthermore, we may predict that the combi-
nation of both these gene–environmental factors is nec-
essary to trigger maldevelopment of the host dopamine 
system in these etio-pathological processes.

Future studies aimed to elucidate that mechanisms of  
action may also benefit from recent advancements in 
mutant T. gondii strain development. Within type I, for 
instance, new conditional mutant RH lines have recently 
been constructed via promoter replacement strategies 
that target genes encoding proteins that are conserved 
and unique to these Apicomplexan parasites (Sheiner 
et al., 2011). RHΔhxgprt and PruΔhxgprt strains, for 
example, have been produced to provide parasites in 
which the selectable marker HXGPRT is used for gene 
insertion/replacement (Donald, Carter, Ullman, & Roos, 
1996), although targeting specific T. gondii genes for 
KO has previously proved difficult because of a high 
frequency of nonhomologous recombination in the para-
site. The production of RHΔku80Δhxgprt (Fox, Ristuccia,  
Gigley, & Bzik, 2009) and also notably the type II 
PruΔku80Δhxgprt (Fox et al., 2011) has, however, greatly 
improved the efficiency of gene replacement by homolo-
gous recombination in T. gondii strains, thereby increas-
ing the opportunity to investigate the contributions of 
individual T. gondii genes to behavioral modifications of 
the host. Indeed, within type II, and hence those lines 
particularly applicable for the “T. gondii-rat-manipu-
lation-schizophrenia” model, key areas of interest will 
be parasites such as Pru lines with differential levels 

of expression and/or KO of the tyrosine hydroxylase 
gene shown to be associated with dopamine metabolism 
(Gaskell et al., 2009; Prandovszky et al., 2011; Webster & 
McConkey, 2010).

In addition to replicating prior observations, novel 
approaches and tests are required, and there is no doubt 
that animal models can play an essential role in further-
ing this theoretically and applied area of research. How-
ever, if such animal studies are to be performed, it is 
imperative that they are performed appropriately, test-
ing biologically and evolutionary applicable hypoth-
eses, and equally importantly, in the most ethical and 
noninvasive manner possible, particularly considering 
today’s 3Rs environment (Webster et al., 2013). When 
specifically testing hypotheses relating to the role of  
T. gondii in human affective disorders such as schizophre-
nia, the behavioral assays to be used are not necessar-
ily the same as those for either studying schizophrenia 
alone or the impact of T. gondii on host behavior alone. 
Furthermore, when choosing such assays, one must 
consider that, in the absence of any true “schizophre-
nia rodent model,” the behavioral repertoire of a rodent 
infected with T. gondii may well be altered but not nec-
essarily in the same way as that of a human with schizo-
phrenia. For instance, if considering selective benefits to 
the parasite of T. gondii in rodents, one should focus on 
behavioral traits specifically associated with enhanced 
predation rate (such as altered activity, feline attrac-
tion, altered neophobia profiles). On the other hand, 
if explicitly testing for the spectrum of traits relevant 
to schizophrenia, a different set of behavioral assays 
(such as working memory, selective attention, set shift-
ing, social interaction, and psychophysiological mea-
sures) may be more appropriate. There are generally 
considered to be three groups of major symptoms of 
schizophrenia in humans: that of positive, negative and 
cognitive/executive. “Positive symptoms” are so-called 
because they add to the normal behavioral repertoire. 
Although there are no rodent models available as of yet 
for hallucinations, other “positive symptoms,” such as 
psychomotor agitation and hyperresponsivity to psy-
chotomimetic drugs, are modeled in rodents by testing 
locomotor responses and hyperactivity-inducing effects 
of psychostimulants (e.g., amphetamine) and other psy-
chotomimetics (e.g., NMDA receptor antagonists dizo-
cilpine/MK-801 or PCP) (Brigman et al., 2010). Thus 
one could perhaps propose that the increased activ-
ity observed in T. gondii–infected rat studies (Webster, 
1994; Webster et al., 2013), be also useful as a “positive 
symptom” assay. Likewise, as the fatal feline attrac-
tion invoked by this parasite is not simply a reduction 
or removal of a behavioral trait, but instead a positive 
reversal of an innate behavior, an apparent “alteration 
of the mind of the rat in the face of predation” (Berdoy 
et al., 2000; Webster et al., 2006), one could perhaps also 
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propose that altered fatal feline attraction behavioral 
assays may be another valuable behavioral assay rel-
evant to both T. gondii epidemiology and evolution but 
also as a potential “positive symptom” indictor for fur-
ther T. gondii models of schizophrenia.

“Negative symptoms” of schizophrenia are so-called 
because they subtract from the normal behavioral rep-
ertoire, and include blunted affect, social withdrawal, 
and loss of pleasure in normally rewarding activities 
(anhedonia). Various rodent assays for social behavior 
and anhedonia have been typically used to model other 
disorders such as anxiety (File, Zangrossi, & Andrews, 
1993), autism (Crawley, 2004), and depression (Strekalova, 
Spanagel, Bartsch, Henn, & Gass, 2004), but may also lend 
themselves well to the study of similar behavioral abnor-
malities in rodent models of schizophrenia. However,  
although T. gondii–infected mice may suffer severe 
morbidity and hence may show equivalent “negative 
symptoms” as a result of generalized pathology, T. gondii 
does not generally induce any specific “negative symp-
toms” in rats, as can be illustrated by the normal social 
behavior and mating success between infected and 
uninfected rats maintained under naturalistic condi-
tions (Berdoy et al., 1995). Nevertheless, the fact that the 
“pleasure/reward” system does appear to be altered in 
T. gondii–infected rodents, even if in perhaps an opposite 
direction to those related to schizophrenia in humans (i.e., 
some evidence of increased pleasure/fatal feline attrac-
tion) through increased sex drive (enhanced pleasure 
rather than loss of pleasure, again potentially associated 
with increased dopamine levels), there is an argument 
for use of these behavioral assays when examining the 
“T. gondii-rat-manipulation-schizophrenia model.” For 
instance, in relation to modelling “negative symptoms,” 
one could perhaps test for alterations between infected 
and uninfected rodents in terms of their preference or 
motivation to obtain rewarding substances, such as 
sucrose, even if the direction of response predicted may 
be different between rats and humans.

Abnormalities in cognition and executive functions 
are also a prominent feature of schizophrenia in humans 
and range from deficits in episodic memory, impaired 
attention, and sensorimotor gating, to impaired rever-
sal learning and set-shifting. Learning and memory can 
certainly, and frequently is, assessed in rodents using a 
range of standard behavioral assays, such as that of the 
reference memory version of the Morris water maze. 
However, although impaired episodic memory is one of 
the strongest features of the cognitive profile of schizo-
phrenia (Ranganath, Minzenberg, & Ragland, 2008), 
rodent models of this disease have generally not relied 
upon such measures, and indeed do not distinguish a 
model of schizophrenia from other conditions that are 
also characterized by memory deficits, e.g., Alzheimer’s 
disease (Brigman et al., 2010). Furthermore, one could 

perhaps particularly question their utility here for any  
T. gondii rat model of schizophrenia. This may be 
explained as, if T. gondii is selectively altering inter-
mediate host behavior to alter the predation rate, one 
may predict there to be no selective advantage for this 
parasite to alter such traits—as with a cat the change 
of avoiding predation on encounter is likely to be all 
or none—and hence such assays are less relevant to 
understanding the epidemiology and evolution of such 
manipulation. Indeed, although there are some conflict-
ing results, particularly in the early literature, indicating 
potential cognitive deficits in mice after infection with 
T. gondii (Piekarski, Zippelius, & Witting, 1978;  Witting, 
1979) found no difference between infected and unin-
fected individuals. Likewise, recent research, using 
C57BL/6 mice chronically infected with the avirulent 
T. gondii (ME49, a type II strain), found no impact of 
T. gondii infection on cognition (Gulinello et al., 2010). 
This again emphasizes how any potential rodent model 
for human neuropsychiatric diseases is unlikely ever to 
fully encompass all characteristic traits and deficits.

Other potential behavioral assays for both T. gondii 
and schizophrenia concern incorporating odor detec-
tion. Damage of the olfactory system has been indicated 
to be, at least in part, responsible for the development 
of depression and may be involved in other neuropsy-
chiatric disorders including schizophrenia (Prandota, 
2014). Although there are inconsistencies between 
studies, experimental exposure studies of T. gondii in 
rodents have revealed cysts in various regions of the 
brain, including the olfactory bulb (McConkey, Gaskell, 
Bristow, & Webster, 2013). Studies, to date, suggest that 
rodents infected with T. gondii do not, however, appear 
to have any general disruption of their odor/olfaction 
system—as they can, for instance, discriminate between 
feline and other predator and nonpredator odors and 
even between different concentrations of odor pre-
sented—and hence it appears rather their perception of 
cat odor is affected (Berdoy et al., 2000; Kannan et al., 
2010; Lamberton et al., 2008; Vyas, Kim, & Sapolsky, 
2007). Olfaction dysfunction is frequently observed in 
patients with schizophrenia, with the greatest impact 
on odor identification (Cohen, Brown, & Auster, 2012), 
which may thereby present a parallel to that observed 
in T. gondii–infected rodents. Thus, further examination 
of the subtle changes in odor-specific thresholds and 
identification deficits observed are warranted as part of 
the T. gondii-rat-manipulation-schizophrenia model and 
a range of standardized behavioral assays are available.

Cognitive flexibility is a critical executive function 
that can be broadly defined as the ability to adapt behav-
iors in response to changes in the environment. There 
are potentially useful noninvasive behavioral assays for 
these deficits in rodents available that could be highly 
applicable for a T. gondii model of schizophrenia. These 
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include, among others, intradimensional/extradi-
mensional digging tasks. During such assays, rodents 
are trained to dig for food reward using either olfac-
tory (digging medium odor) or tactile (digging medium 
texture) cues. The rewarded cue in the same dimension 
is switched to test for intradimensional shifting. The 
rewarded cue can also be changed to a different dimen-
sion to test for extradimensional shifting. Likewise, the 
Wisconsin Card Sorting Task (WCST; Grant & Berg, 1948) 
has been one of the more commonly employed assays for 
impaired cognitive flexibility in schizophrenic patients, 
and analogous versions have been developed for use 
in rodents. In essence, these tasks involve the subject 
selecting between stimuli, which vary from one another 
in more than one perceptual dimension, and being rein-
forced for choosing a stimulus based upon one specific 
dimension alone (e.g., odor). During an “intradimen-
sional shift,” the form of the dimension the subject must 
choose is changed by the experimenter (e.g., from cinna-
mon to chocolate odor). In an “extradimensional shift,” 
the correct dimension is changed altogether, such that 
choices must be guided by the new dimension (texture) 
while ignoring the previously rewarded dimension. In 
a rodent intradimensional shift/extradimensional shift 
analog of the Wisconsin Card Sorting Task, rats (Birrell 
& Brown, 2000) dig in sand to make choices based on 
the dimension of texture or smell, thereby providing 
another example of a potentially useful, biologically 
and ethically behavioral assay available and able to be 
incorporated into future research in this field.

GENERAL DISCUSSION

As we expand our knowledge of how the brain 
functions, it is important to understand the potential 
impact of infectious agents, particularly chronic neuro-
logical pathogens. Infectious diseases, and the immune 
response to infections, may influence behavior and, 
in some cases, be related to psychiatric disorders. 
 Toxoplasma gondii is a common, chronic neural infection 
of humans and other animals. Several of these species, 
including humans, have considerably longer lifespans 
than a “natural” rodent intermediate hosts, and hence 
one could reasonably propose may be more susceptible 
to developing “unselected” pathological behavioral 
changes simply as a byproduct of their extended dura-
tions of infections. One of these potentially associated 
pathologies may thereby include schizophrenia in some 
humans. There seems little doubt that the subtle behav-
ioral changes observed in rodents infected with T. gondii 
will be reflected by similar subtle behavioral changes in 
humans, and a convincing body of empirical evidence 
now exists in support of this. However, when it comes 
to considering animal infection models for human 

severe behavioral alterations, such as those that occur 
within schizophrenia, the case is undoubtedly more 
complex. There is no doubt that animal, in particular 
rodent, models have been and continue to be useful 
in helping us understand aspects of schizophrenia— 
such as in terms of elucidating how current and poten-
tial future antipsychotic drugs work. Indeed, it was an 
understanding of the interaction of certain neuroleptics 
with dopamine receptors that was an instigator in for-
mulating the still-maintained theory that schizophrenia 
involves some form of dysregulation of brain dopa-
mine function (Creese, Burt, & Snyder, 1976; Seeman, 
1987; Seeman, Lee, Chau-Wong, & Wong, 1976). How-
ever, we are unlikely to ever be able to reproduce the 
full phenotypic spectrum of a human psychiatric disor-
der such as schizophrenia in a rat or mouse (Arguello 
& Gogos, 2006). Schizophrenia is a highly heteroge-
neous disorder of myriad symptoms. The presenta-
tion of different symptoms and their severity varies 
considerably across patients. Nevertheless, although 
this complexity cannot be fully recapitulated in rodent 
models, specific symptom categories can be behavior-
ally modeled. A constructive starting point has been to 
demarcate schizophrenia-related phenotypes into the 
clinical categories of “positive,” “negative,” and cog-
nitive/executive symptoms (Brigman et al., 2010). Of 
course, an essential step in clarifying the etiology of 
schizophrenia is understanding the gene–environment 
interactions contributing to this and associated disor-
ders. In this context in particular, animal models will 
have a central and indispensable role in the process of 
elucidating the mechanisms involved and perhaps the 
epidemiology of certain causes of psychiatric disorders 
(Arguello & Gogos, 2006). For a better understanding of 
the synergy between genetic factors and environmental 
factors such as T. gondii in the pathogenesis of schizo-
phrenia, we need to establish well-controlled analyses 
of gene–environment interactions.

CONCLUSIONS

Schizophrenia is a pervasive neuropsychiatric disease  
of uncertain, and probably multiple, audiologies that 
affects approximately 0.5–1% of the adult popula-
tion in the United States and Europe (Wu et al., 2006).  
Toxoplasma gondii is a protozoan parasite of the CNS that 
affects approximately 20–80% of the adult population 
worldwide and approximately 30% in the United States 
and Europe (Dubey, 2010). Although there is an ever-
gathering body of evidence supporting an association 
between the two (Table 1), can the simple difference in 
prevalence alone confound the potential for T. gondii  
as a valid model for schizophrenia? Our hypothesis 
suggests that the two are compatible, in that T. gondii, 
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as an environmental stressor, can initiate or amplify 
behavioral deficits in rodent models, including geno-
type mutant models, of schizophrenia. We hypothesize 
that at least a “two-hit” or “three-or-more-hit” mode 
for development of schizophrenia and/or cognitive 
abnormalities could occur with interaction between T. 
gondii and the genotype of the individual. Toxoplasma 
gondii may thereby serve in gene–environment inter-
actions with processes affected by schizophrenia risk 
genes potentiating and/or triggering a psychiatric dis-
order in susceptible individuals. We may now be gain-
ing some insight into the behavioral changes observed 
within rats chronically infected with T. gondii, partic-
ularly because T. gondii can be associated with dopa-
mine dysregulation and the parasite encodes a tyrosine 
hydroxylase. Based, at least in part, on the observation 
that compounds that elicit dopamine release, such as 
amphetamine, induce psychosis, whereas agents that 
block dopamine D2 receptors ameliorate psychotic 
symptoms, the dysregulation of dopamine has been 
the prevailing neurochemical hypothesis of schizo-
phrenia. The interactions of genetic and environmen-
tal factors in the etiology of schizophrenia and other 
psychiatric disorders are undefined, but a gathering 
body of empirical evidence strongly supports a role for 
T. gondii in the interplay with genetic factors in some 
cases of schizophrenia etiology. Future research is now 
required to rigorously test whether T. gondii infection 
exacerbates behavioral deficits in rodent models of 
schizophrenia and interacts with three well-defined 
schizophrenia risk genes. Additional studies should 
be directed at the more detailed evaluation of expo-
sure to T. gondii and other infectious agents during 
pregnancy and childhood. Future studies are needed  
to elucidate the critical periods for infection; the possible 
role of other specific infections; if, or to what extent, 
confounding genetic factors related to disease suscep-
tibility may explain the association between T. gondii 
infection and schizophrenia; and to what extent gene–
infection interactions are relevant to the causation of 
schizophrenia. Only when such factors are elucidated 
can we hope to have successful prevention and/or con-
trol of T. gondii–associated schizophrenia morbidity. A 
recent overview of the potential pathophysiological 
relationship between depression, suicide, and T. gondii 
infection provides guidelines for the screening, diagnosis, 
and treatment of depression for nurse practitioners 
(Hsu, Groer, & Beckie, 2014), and similar guidelines 
should become available for T. gondii and schizophrenia 
screening, diagnosis, and treatment. Understanding 
the neurological effects of T. gondii infection and potential 
interactions may suggest approaches to reduce schizo-
phrenia burden potentially with implications for other 
neurological disorders and neuropathic infectious 
agents.
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MATERNAL NUTRITION AND 
SCHIZOPHRENIA: ECOLOGICAL DATA

There has been a long-standing interest in the con-
nection between nutritional deficits and psychotic 
disorders. Historically, it was known that deficiency 
in nicotinic acid (vitamin B3, or niacin) led to pellagra, 
a syndrome that may involve psychotic symptoms 
(Ban, 2001; Hoffer, 2008). This, in part, led to the use 
of nicotinic acid as an early treatment for schizophre-
nia (Pauling, 1968). In the North American arctic, a 
syndrome of psychosis-like hysteria—piblokto—has 
been associated with the deficiency of vitamin D, cal-
cium, or vitamin C, although the actual cause has not 
been established (Carney, 1995; Katz & Foulks, 2010). 
Research in the mid-twentieth century continued to 
report associations between vitamin deficiencies and 
disorders such as depression and schizophrenia. In 
his seminal article titled “Orthomolecular Psychiatry,” 
Pauling synthesized the science linking brain func-
tioning with brain concentrations of diverse vitamins 
and nutrients ( Pauling, 1968). Importantly, this paper 
identified potential mechanisms linking nutrition and 
disease. Pauling’s work provided a robust framework 
that paved the way for ongoing research examining the 
effects of nutrition on pathogenesis of schizophrenia 
and other psychiatric disorders (Hoffer, 2008).

Another pivotal shift in our understanding of the 
relationship between nutrition and schizophrenia 
emerged after a series of world events, which generated 
population data linking maternal malnutrition during 
gestation with the risk of schizophrenia in adulthood. 
The first of these studies examined the Dutch  Hunger 
Winter (1944–1945). This period was associated with 
severe food shortages, for which there was excellent 
documentation of individual food rations (Susser,  
St Clair, & He, 2008). When compared with individuals 
conceived immediately before or after this famine, those 
conceived during the height of the famine exhibited a 
 twofold increase in the risk of developing schizophrenia 
during adulthood (Susser et al., 1996). This finding was 
replicated in two studies examining health outcomes 
of those living during the 1959–1961 Chinese famine. 
Comprehensive demographic and clinical records in 
China allowed researchers to identify that individuals 
conceived or born during the peak period of the famine 
also exhibited a twofold increase in the risk of schizo-
phrenia (St Clair et al., 2005; Xu et al., 2009). This risk 
was found to be higher in rural areas, where the sever-
ity of famine was greater (Xu et al., 2009).

These naturalistic studies not only reinforce the asso-
ciation between nutrition and schizophrenia risk, they 
establish a link between maternal nutrition and the risk 
of schizophrenia in offspring. This is consistent with 
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the bulk of the risk-factor epidemiology for this dis-
ease, which indicates that exposure to certain risk fac-
tors during pre- or perinatal stages increases the risk of 
schizophrenia later in life. This epidemiology is largely 
responsible for the now long-held belief that schizophre-
nia has its origins in early brain development (Wein-
berger, 1987). Findings from a number of animal models, 
constructed to understand the neurobiology behind 
such nutritional factors, continue to highlight how 
maternal nutritional deficiencies adversely affect brain 
development.

WHICH MICRONUTRIENT 
DEFICIENCIES ARE MOST RELEVANT TO 

SCHIZOPHRENIA?

The famine studies described previously were not able 
to identify whether schizophrenia risk was mediated by 
deficiency of a specific nutrient, or via general effects of 
malnutrition. In recent decades, numerous epidemio-
logical studies and intervention trials have attempted 
to elucidate the role of individual nutritional candidates 
in the hope of identifying preventive or treatment inter-
ventions. The types of candidates examined are diverse. 
Some, most noticeably polyunsaturated fatty acids 
(PUFAs), folate, iron, and vitamin D, have generated an 
important body of epidemiological or clinical research. 
This research indicates that deficiencies in such factors 
during early periods of brain development increase the 
risk of either schizophrenia or neurodevelopmental prob-
lems in later life. In turn, the animal models that simulate 
these deficiencies continue to inform us about epidemio-
logically plausible neurobiological pathways connecting 
maternal nutritional deficiencies with psychiatric disease.

Factors such as PUFAs, folate, iron, and vitamin D all 
have strong neurobiological plausibility because risk-
modifying factors for schizophrenia as they all have well-
described roles in fetal brain development, especially 
during early phases of gestation. Folate signaling is essen-
tial for many early neurodevelopmental processes, includ-
ing development and closure of the neural tube (Lucock & 
Daskalakis, 2000), and its disruption has been implicated 
in the etiology of neural tube defects and schizophre-
nia (van der Linden, Afman, Heil, & Blom, 2006; Susser, 
Brown, Klonowski, Allen, &  Lindenbaum, 1998). Vita-
mins A and D have key roles in early morphogenesis of 
the fetal central nervous system (CNS) via their actions as 
nuclear steroids in stimulating gene expression, promot-
ing cell differentiation, and proliferation (Maden, 2001).

Adequate levels of iron and PUFAs are also essential 
for normal brain development (Georgieff & Innis, 2005). 
Research on PUFAs has usually focused on omega-3 fatty 
acids, and docosahexaenoic acid (DHA) and eicosapentae-
noic acid (EPA) in particular. These fatty acids have a num-
ber of essential roles, including maintaining the structural 

integrity of neuronal membranes (Hibbeln, Ferguson, & 
Blasbalg, 2006). They may influence a range of other neural 
pathways, including those related to catecholamine neuro-
transmission (Hamazaki et al., 2005; Hibbeln et al., 1998), 
endogenous cannabinoid signaling (Lafourcade et al., 
2011), or oxidative stress (Mahadik, Evans, & Lal, 2001). 
Finally, iron deficiencies are encountered during periods of 
anemia and are known to affect placental function (Gam-
bling, Kennedy, & McArdle, 2011). Iron deficiencies appear 
to selectively affect developing dopaminergic structures 
(Beard et al., 2006) and myelination (Davis et al., 2003).

EPIDEMIOLOGY OF MATERNAL 
NUTRITIONAL RISK FACTORS FOR 

SCHIZOPHRENIA

Numerous epidemiological studies have attempted 
to unravel the relationship between diverse nutritional 
candidates and risk of schizophrenia. These studies gen-
erally fall into two groups: (1) cross-sectional studies 
comparing nutritional measures in adult schizophrenic 
patients with matched controls or (2) longitudinal stud-
ies which assess the impact of prenatal or early life 
nutritional deficiencies on the risk of developing schizo-
phrenia in later life.

PUFAs

A recent meta-analysis reviewed 18 cross-sectional 
studies that compared red blood cell fatty acids in 
individuals with schizophrenia with matched controls 
(Hoen et al., 2013). Patients exhibited lower concentra-
tions of two fatty acids—DHA and docosapentaenoic 
acid—compared with controls and this was independent 
of treatment with antipsychotic drugs. Unfortunately, 
this meta-analysis did not assess EPA, another omega-3 
fatty acid of relevance to schizophrenia. Some studies 
use postmortem tissue to examine fatty acid concentra-
tions in specific brain regions. For example, Hamazaki, 
Hamazaki, and Inadera (2013) reported that the ento-
rhinal cortex of patients with schizophrenia contained 
lower concentrations of omega-6 docosatetraenoic acid 
and DHA (trend only) compared with matched con-
trols. Nonanalytical epidemiological studies indicate 
that higher consumption of omega-6 and omega-3 fatty 
acids is associated with a lower risk of schizophrenia or 
psychotic-like experiences (Hedelin et al., 2010). Some 
research suggests that fatty acids are important in deal-
ing with oxidative stress. One study examined lipid per-
oxidation in a case–control study, examining untreated 
inpatients with first-episode psychosis. No differences 
were observed in lipid peroxidation, but those with 
schizophrenia had lower vitamin E concentrations than 
controls. The authors attributed this to the poorer diet of 
those with schizophrenia (McCreadie et al., 2000).
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No studies were identified that examined mater-
nal exposure to fatty acids and the later development 
of schizophrenia in offspring. This makes it difficult to 
draw conclusions about how low fatty acid concentra-
tions are related to schizophrenia. However, one study 
suggests that maternal PUFA levels may be important 
for healthy brain development (Helland, Smith, Saarem, 
Saugstad, & Drevon, 2003).

Homocysteine, Folate, and B Group Vitamins

Several adult case–control studies report elevated 
homocysteine levels and lower vitamin B12 levels in inpa-
tients with schizophrenia compared with controls (Adler 
Nevo et al., 2006; Bouaziz et al., 2010; Kale et al., 2010; 
Petronijevic et al., 2008). To date, one study has examined 
the role of maternal homocysteine levels using a large 
birth cohort; the Child Health and Development Study. 
From this cohort, 63 cases with schizophrenia or related 
disorders diagnosed in adulthood were identified and 
compared with 122 matched controls. Elevated levels of 
maternal homocysteine during the third trimester were 
associated with a more than twofold increase in the risk of 
schizophrenia in adulthood (Brown et al., 2007).

Iron

Two studies report that maternal anemia may contrib-
ute to increased schizophrenia risk in offspring. Using 
the Child Health and Development Study cohort, Insel, 
Schaefer, McKeague, Susser, and Brown (2008) report that 
individuals whose mother had hemoglobin concentra-
tions <100 g/L had a nearly fourfold increase in the risk of 
developing schizophrenia spectrum disorders (Insel et al., 
2008). Using a Danish birth cohort, Sorensen, Nielsen, 
Pedersen, and Mortensen (2011) reported that individu-
als whose mother had a diagnosis of anemia (hemoglobin 
<110 g/L) at any time during pregnancy had a 1.6-fold 
increase in the risk of developing schizophrenia.

Vitamin D

Several case-control studies in adults have now been 
published, indicating that patients with schizophrenia 
have lower vitamin D concentrations than matched 
controls (Berg et al., 2010; Crews et al., 2013; Jamilian, 
Bagherzadeh, Nazeri, & Hassanijirdehi, 2013). In a study 
of adolescents presenting to mental health services, 
it was reported that patients with vitamin D insuffi-
ciency (<50 nM 25-OHD3) were more likely to exhibit 
psychotic symptoms than those with normal vitamin D 
levels (Gracious, Finucane, Friedman-Campbell, Mess-
ing, & Parkhurst, 2012). In a longitudinal study of chil-
dren, lower concentrations of vitamin D at 9.8 years 
(range, 7.6–11.8) were associated with an elevated risk 

of psychotic experiences at 12.8 years (Tolppanen et al., 
2012). Similarly, an increased dietary intake of vitamin 
D has been associated with lower rates of self-reported 
psychotic-like experiences (Hedelin et al., 2010).

Importantly, several studies also suggest a relation-
ship between maternal vitamin D concentrations and 
subsequent risk of schizophrenia in offspring. A large 
study used a Danish birth cohort to examine neona-
tal vitamin D concentrations in 424 individuals with 
schizophrenia and 424 matched controls (McGrath et al., 
2010). Those with lower vitamin D concentrations had 
a twofold increased risk of schizophrenia when com-
pared with control individuals in the fourth quintile (25 
hydroxy vitamin D3 (25OHD3) concentrations between 
40.5 and 50.9 nmol/L). These findings were nonlinear; 
those with the highest concentrations of vitamin D (5th 
quintile) also exhibiting a slightly elevated risk of schizo-
phrenia (McGrath et al., 2010). A study using a Finnish 
birth cohort reported that vitamin D supplementation in 
early life reduced the risk of schizophrenia in later life, 
in males only (McGrath et al., 2004). However, this find-
ing has not been consistently replicated: a recent study 
using an English cohort reported no association between 
maternal vitamin D concentrations and psychotic expe-
riences at 18 years ( Sullivan, Wills, Lawlor, McGrath, & 
Zammit, 2013). However, this study was not powered 
to examine medium to small effect sizes, a fact readily 
acknowledged by these authors.

Retinol

One study has identified a potential effect of maternal 
retinol (vitamin A) levels on the risk of schizophrenia in 
offspring, again using the Child Health and Develop-
ment Study cohort (Bao et al., 2012). From this cohort, 
55 adults were identified as having schizophrenia or a 
related disorder as well as at least one available prena-
tal serum sample. Two matched controls were selected 
for each case. Low levels of maternal vitamin A during 
the second trimester were associated with a threefold 
increase in the risk of schizophrenia and related disorders 
in adulthood (Bao et al., 2012). No effect of third-trimes-
ter levels of vitamin A was observed. This study has not 
yet been replicated. Vitamin A is a major factor in neuron 
differentiation (Tafti & Ghyselinck, 2007). When admin-
istered to neonates, vitamins A and D have been shown 
to have long-term effects on catecholamine expression in 
adult brains (Tekes, Gyenge, Folyovich, & Csaba, 2009; 
Tekes, Gyenge, Hantos, & Csaba, 2009). Maternal vita-
min A deficiencies have also been shown to induce cog-
nitive deficits in offspring (Jiang et al., 2012; Mao et al., 
2006). Despite these data, no animal model of maternal 
vitamin A deficiency/insufficiency that we are aware of 
has examined brain structural or behavioral phenotypes 
of relevance to schizophrenia. Table 1 summarizes mater-
nal risk-factor epidemiology for schizophrenia.
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TABLE 1 Epidemiological Studies that have Examined Developmental Nutrient Deficiencies and Later risk of Schizophrenia

Citations
Key Nutritional 
Marker Cohort Sample Size

Timing of 
Nutritional 
Exposure

Outcome 
Assessed in 
Offspring Key Finding

McGrath, 
Eyles, Mowry, 
Yolken, Buka 
(2003)

Vitamin D (25OHD3) National 
Collaborative 
Perinatal Project 
(US)

26 Cases 51 
matched controls

Third trimester Diagnosis of 
schizophrenia or 
schizoaffective 
disorder in 
adulthood

No association 
between maternal 
vitamin D and 
schizophrenia

McGrath et al. 
(2004)

Vitamin D (25OHD) 
(supplementation)

Northern Finland 
1966 birth cohort

Total n = 9144 
(including 79 
cases)

First year of life Diagnosis of 
schizophrenia 
by age of 
31 years

Use of vitamin D 
supplements (regular 
or irregular) was 
associated with 
reduced risk of 
schizophrenia, in 
males only.

No association 
observed in females.

McGrath et al. 
(2010)

Vitamin D (25OHD) Danish population 
(record linkage 
between Danish 
Psychiatric 
Central Register, 
the Danish Civil 
Registration 
System, and 
Newborn 
Screening 
Biobank)

424 Cases 424 
matched controls

At birth Diagnosis of 
schizophrenia

Low levels of vitamin 
D (lower 3 quintiles) 
were associated with a 
two fold increase in the 
risk of schizophrenia 
(compared with the 
4th quintile reference 
group)

Those with high 
levels of vitamin D 
(highest quintile) also 
had increased risk of 
schizophrenia

Sullivan et al. 
(2013)

Vitamin D (25OHD) Avon Longitudinal 
Study of Parents 
and Children (UK)

Total n = 2047 
(including 177 
cases)

Any time during 
pregnancy (52% 
sampled during 
third trimester)

Psychotic 
experiences at 
18 years

No association 
between maternal 
vitamin D and 
psychotic experiences

Brown et al. 
(2007)

Homocysteine Prenatal 
Determinants of 
Schizophrenia 
cohort, derived 
from Child Health 
and Development 
Study (US)

63 Cases 122 
matched controls

Third trimester Diagnosis of 
schizophrenia 
and 
schizophrenia 
spectrum 
disorders

Elevated 
homocysteine levels 
were associated with 
a twofold increase in 
risk of schizophrenia

Glaser et al. 
(2010)

Folate 
(supplementation)

Avon Longitudinal 
Study of Parents 
and Children (UK)

Total n = 5344 
(including 592 
cases)

Any time during 
pregnancy

Psychotic-like 
symptoms at 
age 12

No association 
between markers 
of folate status and 
psychotic symptoms 
after correcting for 
multiple comparisons

Sorensen et al. 
(2011)

Iron (anemia) Danish population 
(record linkage 
between Danish 
Psychiatric 
Central Register, 
the Danish Civil 
Registration 
System, and 
Newborn 
Screening 
Biobank)

Total n = 1,115,752 
(including 3422 
cases)

Any time during 
pregnancy

Diagnosis of 
schizophrenia

Maternal anemia was 
associated with a 1.6-
fold increase in the 
risk of schizophrenia
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CONTROLLED TRIALS OF NUTRITIONAL 
SUPPLEMENTS FOR TREATMENT OF 

SCHIZOPHRENIA

If depletion of a specific nutrient increases the risk of 
schizophrenia, can restoration of normal nutrient levels 
(e.g., via supplementation) prevent schizophrenia or 
treat core symptoms of the disease? There are many clin-
ical studies addressing this question. Most are focused 
on treatment, rather than prevention of schizophrenia. In 
addition, many are assessing the effects of supplemen-
tation as an adjunct to antipsychotic treatment in those 
with an established diagnosis. A small number of trials 
examine broad nutritional interventions. For example, 
one trial reported no effects of individualized megavi-
tamin treatment on schizophrenia symptoms compared 
to placebo (Vaughan & McConaghy, 1999). Another trial 
currently in process (ClinicalTrials.gov:NCT01927276) 
is examining the impact of a gluten-free diet on mental 
health symptoms in gliadin-positive adults with schizo-
phrenia. These broad studies are rare; most published 
trials focus on specific nutritional candidates.

PUFAs

Several published studies have examined PUFAs as 
an adjunct treatment for schizophrenia. Interestingly, 
unlike the epidemiological studies where the fatty acid 
most often discussed is DHA, the clinical trials typically 
focus on EPA. Although a range of open-label studies 
suggest the potential efficacy of fatty acid treatment 
(Reddy et al., 2011), most controlled studies do not indi-
cate beneficial effects. The Cochrane review incorporates 

8 studies, comprising 517 participants. Most studies were 
small and assessed the effects of PUFA supplementation 
over 6–16 weeks. Although some studies reported small 
benefits in functioning or mental state, overall evidence 
supporting a role for fatty acids in improving core symp-
toms in schizophrenia is limited (Joy, Mumby-Croft, & 
Joy, 2006). A recent meta-analysis reviewed seven trials 
of EPA supplementation, totaling 335 participants, and 
reported no significant beneficial effects on psychotic 
symptoms (Fusar-Poli & Berger, 2012).

Interestingly, a recent study reported that adding 2 g 
of EPA to existing antipsychotic treatment in inpatients 
actually made psychotic symptoms worse (Bentsen, 
Osnes, Refsum, Solberg, & Bohmer, 2013). Adding EPA 
in combination with vitamins E and C ameliorated this 
negative effect, but did not generate any clinical bene-
fits compared with placebo. This finding reinforces the 
importance of not assuming the safety of nutritional 
supplements, and of ensuring that trials examine both 
efficacy and safety. Numerous other trials are currently 
examining fatty acids in schizophrenia (Table 2).

Despite the lack of beneficial effects reported in trials 
of adults with established schizophrenia, one notable trial 
suggests a potential benefit of fatty acids in preventing 
transition to psychosis in high-risk groups (Amminger 
et al., 2010). Adolescents and young adults at ultra-high 
risk of transition to psychotic disorder were random-
ized to 12 weeks of treatment with omega-3 fatty acids 
(1.2 g daily) or placebo. After being monitored for 1 year, 
those receiving omega-3 fatty acids had significantly 
lower rates of conversion to psychosis (4.9%), compared 
with placebo (27.5%) (number needed to treat = 6). Treat-
ment with fatty acids also generated improvements in 

Citations
Key Nutritional 
Marker Cohort Sample Size

Timing of 
Nutritional 
Exposure

Outcome 
Assessed in 
Offspring Key Finding

Insel et al. 
(2008)

Iron (anemia) Prenatal 
Determinants of 
Schizophrenia 
cohort, derived 
from Child Health 
and Development 
Study (US)

Total n = 6872 
(including 57 
cases)

Any time during 
pregnancy

Diagnosis of 
schizophrenia 
spectrum 
disorders

Maternal anemia 
was associated with 
4-fold increase in 
risk of schizophrenia 
spectrum disorders

Bao et al. (2012) Retinol Prenatal 
Determinants of 
Schizophrenia 
cohort, derived 
from Child Health 
and Development 
Study (US)

55 Cases 106 
matched controls

Second and third 
trimesters

Diagnosis of 
schizophrenia 
and 
schizophrenia 
spectrum 
disorders

Low maternal 
vitamin A in the 
second trimester 
was associated 
with more than 
threefold increased 
risk of schizophrenia 
disorders

No effect observed for 
maternal vitamin A in 
the third trimester

TABLE 1 Epidemiological Studies that have Examined Developmental Nutrient Deficiencies and Later risk of Schizophrenia—cont’d
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ratings of positive and negative symptoms compared 
with placebo. Although this study requires replication, it 
highlights the potential role for nutritional candidates in 
preventing the onset of schizophrenia, rather than treating 
the symptoms of an established disorder.

Folate and B Group Vitamins

Two trials have examined the impact of folate sup-
plementation. One small study reported that methyl 
folate (6 mg daily) generated improvements in global 
clinical ratings compared with placebo, in adults with 
schizophrenia who had low red-cell folate concentra-
tions (<200 pg/L) (Godfrey et al., 1990). In contrast, a 
more recent study in adults with stable schizophre-
nia reported no effect of folate supplementation (2 mg 
daily) on negative symptoms, compared with placebo  

(Hill et al., 2011). There has also been long-standing 
interest in B group vitamins as potential treatments for 
schizophrenia, especially vitamin B3 (nicotinic acid) 
(Petrie & Ban, 1985). However, early positive findings 
were not replicated in controlled trials (Petrie & Ban, 
1985), and more recent studies examining B group vita-
mins have used them in conjunction with folate. One of 
the largest and most recent of these studies investigated 
the effects of folate (2 mg daily) and vitamin B12 (400 μg 
daily) on adults with stable but persistent symptoms of 
schizophrenia (Roffman et al., 2013). Fourteen weeks of 
supplementation led to a significant reduction in nega-
tive symptoms compared with placebo, but only when 
the analysis accounted for genetic variants in enzymes 
that regulate folate activity (Roffman et al., 2013). 
Another study focused on adults with schizophrenia and 
elevated homocysteine levels (>15 μmol/L). Compared 

TABLE 2 Examples of currently open trials Listed in clinical trials registries that investigate Nutritional interventions for Symptoms 
of Schizophrenia

Intervention Scientific Title Status Identifier

Vitamin D Vitamin D Supplementation as Adjunct to Clozapine-
treated Chronic Schizophrenia Patients

Currently recruiting NCT01759485

Vitamin D A Pilot Study of Vitamin D Supplementation in Bronx 
Psychiatric Patients

Currently recruiting NCT01169142

Vitamin D The effect of vitamin D addition on treatment response 
in patients with schizophrenia in Zare Hospital

Current status is recruitment 
complete

IRCT201210163014N6

PUFAs Omega-3 Fatty Acids Efficacy in Reducing the Risk of 
Relapse in Schizophrenia: A Double-Blind, Placebo-
Controlled, Randomized Clinical Trial

Ongoing, but not currently 
recruiting

NCT02210962

PUFAs Detecting Which Patients With Schizophrenia Will 
Improve With Omega-3 Treatment

Currently recruiting NCT01786239

PUFAs Randomized Double-Blind Trial of Omega 3 Fatty Acid 
Versus Placebo in Individuals at Risk for Psychosis

Ongoing, but not currently 
recruiting

NCT01429454

PUFAs Efficacy of Omega-3 in the treatment of Schizophrenia Recruitment complete IRCT201202117373N2

Folate and B12 A Placebo-Controlled Trial of Folate with B12 in Patients 
with Schizophrenia with Residual Symptoms in 
Ethiopia

Currently recruiting NCT01724476

Folate A Placebo-Controlled Study of Physiologic Effects of 
l-methylfolate in Schizophrenia Patients

Study has been completed NCT01091506

Magnesium Threonate Effect of Magnesium Threonate (MgT) on Cognitive 
Enhancement in Schizophrenia

Currently recruiting NCT02237235

Sodium Benzoate An Adaptive, Phase IIb/III, Double-Blind, Randomized, 
Placebo-Controlled, Multi-Center Study of the Safety 
and Efficacy of NaBen® (Sodium Benzoate), A d-Amino 
acid Oxidase inhibitor, as an Add-on Treatment for 
Schizophrenia in Adolescents

Currently recruiting NCT01908192

Sarcosine (N-Methylglycine) Effect of Sarcosine on Symptomatology, Quality of 
Life, Oxidative Stress and Glutamatergic Parameters in 
Schizophrenia

Recruitment status unknown NCT01503359

Gluten free diet Randomized Controlled Trial of a Gluten Free Diet in 
Patients with Schizophrenia Who Are Gliadin-Positive

Currently recruiting NCT01927276
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with placebo, 12 weeks of treatment with folic acid (2 mg 
daily), vitamin B6 (25 mg daily), and vitamin B12 (400 μg 
daily) led to improvements in total Positive and Nega-
tive Syndrome Scale scores (but not separate positive 
and negative symptom scores) (Levine et al., 2006).

These collective findings suggest potential benefits of 
folate and B group supplementation in patients with pre-
existing low folate function. It is unclear whether these 
putative benefits are limited to only this patient group or 
whether they may be demonstrated in a broader range 
of schizophrenia subtypes. Ongoing trials (Table 2) will 
hopefully inform future approaches to treatment.

Vitamin D

Although many epidemiological studies exist that 
link vitamin D deficiencies with schizophrenia, no pub-
lished clinical trials have examined the potential for 
vitamin D to prevent or treat core symptoms of schizo-
phrenia. One trial in healthy volunteers reported that 
vitamin D supplementation had no effect on psychotic-
like experiences (Dean et al., 2011). Other studies have 
examined the role of vitamin D on treating side effects 
of antipsychotic treatment, such as metabolic syndrome 
(Thakurathi et al., 2013). Clinical trial registries list 
three current trials examining the effects of vitamin D 
supplementation on core symptoms of schizophrenia 
(Table 2). Other trials are examining the role of vita-
min D on other neurodevelopmental disorders, such as 
autism. One study is investigating whether vitamin D 
supplementation in mothers who already have a child 
with autism can reduce the risk of autism in a new sib-
ling (ClinicalTrials.gov: NCT01366885). This is a fertile 
field of research in which the evidence base is likely to 
grow.

Summary Thus Far

As presented here, there are many active trials 
recruiting to investigate the possibility of nutritional 
supplementation as a treatment for core symptoms of 
schizophrenia. There are also trials of other micronutri-
ents including the use of choline (Ross et al., 2013), gly-
cine (Heresco-Levy & Javitt, 2004; Woods et al., 2013), 
and vitamin C (Dakhale, Khanzode, Khanzode, & Saoji, 
2005), but the neurobiological basis for these trials is 
less established. In addition, many nutritional studies 
are targeting related issues such as adverse metabolic 
effects arising from the use of atypical antipsychotics. 
Although such trials are of critical interest to patients 
and caregivers, and we anxiously await their outcome, 
the suggestion that psychiatric disease progression 
could be ameliorated, or even prevented, in early symp-
tomatic individuals is revolutionary. Such a proposition 
would have been considered implausible 20 years ago. 

However, the weight of both clinical and basic experi-
mental data provides hope that nutritional supplemen-
tation may prove therapeutic for this disease.

There is one obvious limitation shared by all such 
interventions (including new antipsychotics) in the 
adult patient. They all are directed at mitigating psy-
chiatric symptoms in either adult patients after dis-
ease onset, or in ultra-high-risk individuals (those 
who have not been formally diagnosed, but show 
symptomatic vulnerability). A primary challenge of 
studying early intervention therapies is the lengthy 
delay between exposure to nutrient depletion in utero 
and the development of schizophrenia in early adult 
life. This makes it difficult to design feasible clini-
cal trials to assess the ability of supplementation to 
prevent disease onset. Current trials of maternal and 
early-life vitamin D supplementation may provide 
such evidence in the future. There are numerous tri-
als underway examining the role of maternal vitamin 
D supplementation in a range of maternal and child 
health outcomes (Dawodu et al., 2013;  Harvey et al., 
2012; Litonjua et al., 2014;  Oberhelman et al., 2013; 
Roth et al., 2013). These studies will prove a crucial 
resource in assessing long-term effects of gestational 
vitamin D supplementation on mental health out-
comes in adulthood.

Epidemiological and clinical research has highlighted 
a number of potential nutritional candidates that influ-
ence schizophrenia risk and progression. However, these 
studies are not able to tell us why a particular nutritional 
deficiency adversely affects the developing brain. Nor 
can they tell us how this leads to serious psychiatric con-
ditions. To understand the neurobiology behind early 
nutrient deficiencies and the effects on brain develop-
ment, we turn to animal models. By manipulating nutri-
ent depletion early in life, we can conduct longitudinal 
studies that explore the transition from early develop-
ment to adult disorders and identify targets for possible 
intervention.

MATERNAL NUTRITIONAL 
DEFICIENCIES AND SCHIZOPHRENIA-
RELEVANT PHENOTYPES IN ANIMAL 

MODELS

To understand the neurobiological link between 
nutritional deficiencies and schizophrenia risk, we need 
to model these specific nutritional factors in experimen-
tal animals. Although there are data on brain function 
for all of the aforementioned nutritional deficiencies 
in adult animals, in this section we will concentrate on 
studies that have modeled these nutritional deficiencies 
primarily in the maternal or early postweaning diet. We 
will omit our work on modeling developmental vitamin 
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D (DVD) deficiency here and deal with this in a subse-
quent section.

Animal Models of Maternal Protein Restriction

Maternal protein restriction has long been associated 
with adverse fetal outcomes. It is only more recently that 
this has been associated with an increased risk for psychi-
atric conditions like schizophrenia. There is an extensive 
array of animal studies in which rats undergo a variety of 
reduced dietary protein exposures. These studies consis-
tently show that prenatal protein deficiency has adverse 
effects on adult brain morphogenesis in offspring, most 
noticeably in the hippocampus (Cintra et al., 1997; 
 Cintra, Diaz-Cintra, Galvan, Kemper, &  Morgane, 1990; 
Debassio, Kemper, Galler, & Tonkiss, 1994; Debassio, 
Kemper, Tonkiss, & Galler, 1996; Diaz-Cintra et al., 1991; 
Diaz-Cintra, Garcia-Ruiz, Corkidi, & Cintra, 1994; Lister 
et al., 2005; Morgane, Mokler, & Galler, 2002). Given the 
sheer number of studies in agreement, this is a compel-
ling finding. It is also of no surprise that these structural 
changes are associated with changes in brain neurophys-
iology, such as altered long-term potentiation (Bronzino, 
Austin-LaFrance, Mokler, & Morgane, 1997).

Researchers have also begun to examine how mater-
nal protein deficiency could affect adult behaviors in 
offspring. Most studies examine the effects of providing 
approximately only 25% of the normal maternal protein 
intake throughout gestation. Female offspring from such 
a condition were shown to have prepulse inhibition (PPI) 
deficits in adulthood (Palmer, Printz, Butler, Dulawa,  
& Printz, 2004). PPI is a measure of sensory motor gat-
ing function that is frequently altered in patients with 
schizophrenia. PPI has been widely proposed as a useful 
endophenotype for this disease. There was also increased 
N-methyl-d-aspartic acid (NMDA) receptor density in 
the striatum of these animals (Palmer et al., 2004). In a 
later study from the same group, these authors again 
showed female-specific adult-onset phenotypes of rele-
vance to schizophrenia. In adulthood, females deprived 
of protein prenatally exhibited heightened sensitivity to 
dopamine (DA) agonists such as apomorphine (increased 
stereotypies) or the DA-releasing agent amphetamine 
(increased locomotion) compared with controls. They 
did not show any hyperlocomotor response to an NMDA 
antagonist, even though the finding of increased striatal 
NMDA receptor density in female offspring was repli-
cated. Alterations in pre- and postsynaptic dopaminer-
gic elements were also recorded in striatum from these 
females. No such changes were shown in prenatally 
protein-deficient males (Palmer et al., 2008). Prenatally 
protein-deprived animals also exhibited alterations in 
basal and stress-induced DA and serotonin release in the 
prefrontal and hippocampal areas (Chen, Turiak, Galler, 
& Volicer, 1995; Mokler, Torres, Galler, & Morgane, 2007). 

Other studies have shown that prenatal protein depri-
vation leads to enhanced sensitization to indirect DA 
agonists such as cocaine (Shultz, Galler, & Tonkiss, 1999) 
and NMDA receptor antagonists (Tonkiss, Almeida, & 
Galler, 1998), although this was again sex selective for 
females.

Maternal protein restriction experiments (50% restric-
tion) have also been conducted in mice. These animals 
were shown to have large increases in DA-related gene 
expression. This was most notable for tyrosine hydrox-
ylase (TH), the rate-limiting enzyme in DA synthesis. 
Importantly, this correlated with a large reduction in TH 
promoter methylation in brain stem dopaminergic cell 
bodies in the ventral tegmental area, consistent with the 
increased expression of the TH gene. Not surprisingly, 
these animals also had increased locomotor responses 
to DA-elevating agents, and altered reward processing 
(Vucetic et al., 2010). Such studies in mice also clearly 
indicate working and reference memory impairments 
(Ranade et al., 2008). Proteomic analysis of maternally 
protein-restricted adult rats has now also identified 
alterations in glutamatergic pathways in the frontal 
cortex, and cytoskeletal proteins involved in hormonal 
secretion and synaptic remodeling in the hypothalamus 
(Guest et al., 2012).

Animal Models of Maternal Iron Deficiency

It is well-established that when substantial gestational 
iron deficiency occurs (when brain iron concentrations 
are reduced by more than 50%), severe neurological out-
comes are observed both in humans (Connor & Menzies, 
1996; Hare, Ayton, Bush, & Lei, 2013; Insel et al., 2008; 
Lozoff et al., 2006; Sorensen et al., 2011) and in experi-
mental animal models (Gambling et al., 2002; Gambling 
et al., 2003; Morath & Mayer-Proschel, 2002). Less severe 
deficiency models have now been developed that mimic 
the levels of iron deficiency commonly observed in 
human gestational anemia. For instance, when iron lev-
els in the brain are reduced by no more than 10–20%, a 
more subtle phenotype is produced (Beard et al., 2006). 
Using such a model, postnatal brain concentrations of 
bioactive amines such as serotonin and DA were signifi-
cantly elevated, alongside elevations in their respective 
transporters and DA2 receptors. This is also correlated 
with early motor abnormalities. Maternal iron deficiency 
in mice also reduces hippocampal volume and increases 
errors in working and reference memory in offspring 
(Ranade et al., 2008).

More recently, studies have modeled the effect of 
maternal iron levels on the neurobiological response to 
other toxic events (such as maternal infection) during 
pregnancy. In the first of such studies, when the bacte-
rial toxin lipopolysaccharide (LPS) was administered 
to pregnant rats, those that were also deficient in iron 
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had increased inflammatory cytokine responses; how-
ever, the effects on pup behaviors were not additive 
(Harvey & Boksa, 2013). In a later and more thorough 
behavioral study of these dual exposures, the com-
bined effect of maternal iron deficiency with the bacte-
rial endotoxin treatment was not shown to be additive 
for the behaviors tested; however, PPI deficits were 
reported for the first time in the iron-deficient group 
(Harvey & Boksa, 2014).

Maternal or Early-Life Folate Deficiencies

Early studies investigating mice with gestational 
folate deficiency revealed that these offspring had 
increased anxiety-related behaviors in the elevated 
plus maze, but few other schizophrenia-related phe-
notypes ( Ferguson et al., 2005). Later studies exam-
ined the reduction during the development of an 
enzyme responsible for processing folate. This reduc-
tion resulted in mild spontaneous hyperlocomotion in 
adult males and impairments in novel-object recogni-
tion in both sexes (Levav-Rabkin, Blumkin, Galron, & 
Golan, 2011). Folate is an essential cofactor in the meth-
ylation of homocysteine. When hyperhomocysteinemia 
is induced in rats in the early postnatal period, this is 
sufficient to induce spatial working memory deficits 
in these animals as adults. Concurrent treatment with 
folate at this early developmental stage restores spatial 
working memory when adult animals were tested in a 
Morris water maze (Matte et al., 2007).

The effect of paternal folate deficiency on epigenetic 
reprogramming in sperm has been of particular interest 
recently. Male mice fed a folate-deficient diet through-
out life had altered rates of sperm methylation in genes 
important in development and in chronic disease, 
including schizophrenia. These mice also produced off-
spring with craniofacial and musculoskeletal malforma-
tions (Lambrot et al., 2013).

Omega-3 Fatty Acids Prevent Schizophrenia-
Like Phenotypes in Animal Models

Subchronic exposure to the psychomimetic agent 
ketamine in adolescent rats results in increased spon-
taneous locomotion, decreased social interaction, and 
working memory deficits in adult animals. This expo-
sure therefore reproduces the positive, negative, and 
cognitive symptom phenotypes seen in patients with 
schizophrenia. When omega-3 fatty acids were adminis-
tered to weanling rats for 15 days before subchronic ket-
amine treatment, all such behaviors were ameliorated. 
This suggests that omega-3 can act through a protective 
mechanism (Gama et al., 2012). The same group later 
investigated whether PPI deficits induced by the same 
subchronic ketamine regime could also be corrected by 

omega-3 supplementation in postweanling rats. The 
authors show that prior treatment with omega-3 fatty 
acids was protective not only against ketamine-induced 
PPI deficits, but also against ketamine-induced oxida-
tive damage in the brains of these animals (Zugno et al., 
2014). Omega-3 fatty acid dietary depletion has also 
been shown to lead to disturbed synaptic function, neu-
ritogenesis, and mitochondrial function in adult animals 
(English et al., 2013). This has not yet been assessed in 
developing brains.

Most recently, an interesting study has attempted to 
model the reduction in dietary exposure to omega-3s 
reported in humans during the past 40–50 years. This 
group investigated the effects of dietary omega-3 defi-
ciencies across two generations of rat breeding (Bondi 
et al., 2014). The study showed that dietary omega-3 defi-
ciency across consecutive generations of rats produces 
anxiety-like phenotypes and learning deficits in a num-
ber of paradigms. In most cases, these behavioral differ-
ences were only significant (or were more pronounced) 
in the second generation of deficient adolescents. This 
indicates again that omega-3 fatty acids are protective 
against the development of schizophrenia-related phe-
notypes, but also suggests that there is a developmental 
component to this risk. Importantly, this dietary defi-
ciency elevated levels of the TH enzyme in the dorsal 
striatum of adolescent, but not adult, animals. Increases 
in the synthesis and uptake of DA in the caudate nucleus 
(the equivalent region in humans) in young individu-
als at risk of developing schizophrenia may represent 
an early abnormality and a possible biomarker for the 
disorder (Howes, Bose, Turkheimer, Valli, Egerton, & 
Stahl, 2011; Howes, Bose, Turkheimer, Valli, Egerton, & 
Valmaggia, 2011).

Abnormalities in dopaminergic elements and altera-
tions in behaviors mediated by DA are a remarkably con-
sistent feature observed in the adult offspring of these 
maternal nutritional deficiency models. In the next sec-
tion we will concentrate on what we have learned dur-
ing the past 12 years from the DVD-deficiency model. In 
particular, we will outline the resultant molecular and 
behavioral phenotypes. These clearly show that this par-
ticular nutritional deficiency induces early developmen-
tal changes in DA neurons, corresponding to abnormal 
dopaminergic function in the adult brain.

THE DVD-DEFICIENCY ANIMAL MODEL 
OF SCHIZOPHRENIA

The effect of vitamin D on the developing brain has 
been examined in rats, largely via manipulation of 
the maternal diet. This effect in mice has largely been 
examined by genetically ablating the vitamin D recep-
tor (VDR) or altering enzymes involved in vitamin D 
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synthesis. Studies using these mutant mice do produce 
some phenotypes of interest to schizophrenia (Burne, 
McGrath, Eyles, & Mackay-Sim, 2005; Kalueff, Lou, 
Laaksi, & Tuohimaa, 2004). However, they also produce 
nontarget general health impairments such as increased 
fluid intake (Li et al., 2002), cardiac hypertrophy (Xiang 
et al., 2005), altered heart function (Tishkoff, Nibbelink, 
Holmberg, Dandu, & Simpson, 2008), impaired energy 
metabolism (Wong et al., 2009), and musculoskeletal 
changes (Ceglia, 2008). The use of inducible constructs 
for the VDR or vitamin D metabolic enzymes may be 
more useful. This would allow the expression of a more 
benign phenotype, while still allowing the investiga-
tor to study the effect of impaired vitamin D signal-
ing during critical developmental windows. However, 
there have been no reported studies to date that exam-
ine schizophrenia-like phenotypes using such mouse 
mutants. DVD deficiency has also been produced in 
wild-type mice of various backgrounds (de Abreu et al., 
2010; Harms, Eyles, McGrath, Mackay-Sim, & Burne, 
2008). Although the phenotypes in adult offspring from 
these models may be of relevance to psychiatric disease, 
they suffer from being less studied than the rat models. 
The findings are also heavily strain dependent. The phe-
notypes produced are also less relevant to schizophrenia 
than those shown in the DVD-deficient rat.

Creating a DVD-Deficient Rat

There is no fetal synthesis of vitamin D, so the devel-
oping embryo is totally reliant on maternal vitamin D 
stores. Therefore a maternal deficiency of this vitamin 
will be mirrored in the developing fetus. To create a DVD-
deficient rat we manipulate both the lighting and diet 
in female rats before breeding to ensure that the breed-
ing female has very low circulating levels of 25OHD3 
(between 0 and 4.5 nM) (Eyles, Burne, Alexander, Cui, & 
McGrath, 2011). In the current version of this model, the 
dam is returned to normal vitamin D levels within 12 h 
of the birth of her pups. This results in offspring with 
normalizing 25OHD3 levels by 14 days postpartum. This 
treatment has no other significant effect on other aspects 
of dam health, including weight gain, offspring weight, 
fecundity, ability to conceive, or any effect on calcium or 
phosphate levels. A description of how to reproduce this 
model in rats with a detailed troubleshooting section has 
now been published in detail (Eyles et al., 2011).

What Does DVD Deficiency Do to the 
Developing Brain?

Like other nuclear steroids, vitamin D is a potent 
differentiation agent in a variety of developing tissues  
(Darwish & DeLuca, 1993). However, until recently, its 
actions in the developing brain had never been studied. 

Vitamin D is part of a large family of ligands—includ-
ing testosterone, estrogen, corticosteroids, thyroid 
hormones, and vitamin A—that signal via nuclear recep-
tors. Given the well-known effects of other nuclear ste-
roids on the developing brain, it is likely that vitamin D 
may be similarly active. We have shown vitamin D to 
be a powerful differentiation agent in neurons (Brown, 
Bianco, McGrath, & Eyles, 2003; Cui, McGrath, Burne, 
 Mackay-Sim, & Eyles, 2007). Given the pro-differentiation 
and antiapoptotic properties of vitamin D, it is of no sur-
prise that DVD deficiency is associated with unimpeded 
proliferation across numerous regions of the embryonic 
rat brain (Eyles, Brown, Mackay-Sim, McGrath, & Feron, 
2003; Ko,  Burkert, McGrath, & Eyles, 2004). Accordingly, 
the onset of apoptosis in the developing brains of DVD-
deficient rats is delayed (Ko et al., 2004). These findings 
were uniform across the cortical, allocortical, and subcor-
tical regions of the developing brain. We also confirmed 
the corresponding changes in cell cycle and apoptotic 
gene expression in the same brain regions (Ko et al., 2004). 
When the anatomy of DVD-deficient embryonic brains 
was examined, it was found that the newborn offspring of 
DVD-deficient rats had larger brains, consistent with the 
increased cell proliferation and decreased cellular elimi-
nation observed (Eyles et al., 2003). When corrected for 
total brain volume, the neocortex was proportionally thin-
ner and the lateral ventricle volume larger.

Alterations in cell proliferation in brain tissue can 
also be assayed using neurosphere cultures. Culturing 
embryonic brain tissue under the correct conditions 
in vitro can lead to the formation of small spheres of pro-
liferating cells. Each sphere is indicative of a proliferating 
precursor cell. Neurosphere number is therefore an indi-
cator of proliferation status in brain tissue (Reynolds & 
Rietze, 2005). When neurosphere cultures were prepared 
from the subventricular zone of DVD-deficient neona-
tal brains, the number of neurospheres was shown to be 
increased (Cui et al., 2007), confirming that cell division 
is elevated in these brains at birth. The same study also 
revealed that adding 100 μM of 1,25-dihydroxy-vitamin 
D3, the active form of vitamin D) predictably decreased 
the neurosphere number in tissue from control animals.

Is DVD Deficiency a Useful Animal Model  
of Schizophrenia?

Early studies examined the behavioral phenotypes of 
adult animals that had been both conceived and reared 
under vitamin D–deficient conditions. These animals 
displayed motor, perception, memory, and sensory 
motor gating abnormalities (Altemus, Finger, Wolf, & 
Birge, 1987; Burne, Feron, et al., 2004). However, mus-
culoskeletal problems associated with hypocalcemia 
probably confounded these results; when calcium levels 
were returned to normal in a model of life-long vitamin 
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D deficiency, sensory motor gating deficits were nor-
malized (Burne, Becker, et al., 2004). This confound of 
hypocalcemia only appears to be a problem in animals 
deficient in vitamin D for their whole life. Animals 
reared under vitamin D–deficient conditions until wean-
ing still have normal calcium and vitamin D levels when 
tested as adults (Burne, Becker, et al., 2004).

The behavioral phenotype of adult DVD-deficient 
rats has been largely established by the efforts of two 
collaborating laboratories using Sprague–Dawley rats in 
Brisbane, Australia (Burne, Becker, et al., 2004), and Mag-
deburg, Germany (Becker, Eyles, McGrath, & Grecksch, 
2005). Although there are several differences between 
laboratories regarding animal husbandry, the major dif-
ference is that in the Magdeburg protocol, dams receive 
2 mM calcium in the drinking water. As previously noted, 
this is unnecessary in the Brisbane protocol because sera 
calcium levels are normal in vitamin D deficient dams, 
neonates and adult offspring (Burne, McGrath, Mackay-
Sim, & Eyles, 2006; O’Loan et al., 2007).

Phenotypes of Relevance to Positive Symptoms

Adult DVD-deficient rats show enhanced novelty-
induced locomotion for a range of tasks including the 
hole board and elevated plus maze (Burne, Becker, et al., 
2004; Kesby, Burne, McGrath, & Eyles, 2006). Increased 
novelty-induced behaviors strongly indicate enhanced 
subcortical DA activity (Hooks & Kalivas, 1995). Both 
novelty and stress (e.g., handling) resulted in an increased 
DA release in the prefrontal cortex (Feenstra, Botterblom, 
& van Uum, 1995). However, this novelty-induced hyper-
locomotion in DVD-deficient adults is abolished if the 
animal is briefly physically restrained (with or without 
injection) (Burne, O’Loan, McGrath, & Eyles, 2006; Kesby 
et al., 2006). Hypothalamic pituitary adrenal axis-medi-
ated stress responses are also normal in these animals 
(Eyles et al., 2006). Therefore, stress-mediated factors are 
likely to be less important in DVD-deficient adults.

Agents such as amphetamine have been shown to 
induce psychosis-like phenotypes in nonpsychotic indi-
viduals; schizophrenia patients show enhanced DA 
release and increased positive symptoms after exposure 
to low doses (Janowsky, El-Yousel, Davis, & Sekerke, 
1973; Laruelle, Abi-Dargham, Gil, Kegeles, & Innis, 
1999; Lieberman, Kane, & Alvir, 1987). Amphetamine-
induced behaviors in rodents are therefore considered 
to viably model the psychotic symptoms seen in human 
patients. Amphetamine induces DA release in the brain 
primarily because of its actions at the DA transporter 
(DAT) (Jones, Gainetdinov, Wightman, & Caron, 1998; 
Sulzer, Maidment, & Rayport, 1993; Wieczorek & Kruk, 
1994). Enhanced responsiveness to novelty is also asso-
ciated with an increased response to psychomimetics  
 (Chefer, Zakharova, & Shippenberg, 2003). Locomotion 

in the response to psychomimetic agents has been 
extensively assessed in DVD-deficient rats. Female 
DVD-deficient rats show an increased sensitivity to 
amphetamine-induced locomotion as adults but not as 
juveniles (Kesby et al., 2010). Male DVD-deficient rats do 
not show an enhanced response relative to controls after 
an acute dose of amphetamine; enhanced sensitivity to 
amphetamine appears to emerge only after repeated 
dosing (Kesby et al., 2010). Adult female DVD-deficient 
rats also have increased levels of DAT in the caudate 
putamen and an increased affinity for DAT ligands in 
the nucleus accumbens (Kesby et al., 2010). This sug-
gests that alterations in DAT function may mediate the 
enhanced response to amphetamine at least in female 
DVD-deficient offspring.

DVD-deficient rats are also selectively sensitive 
to postsynaptic DA blockade. One group has shown 
habituation deficits in DVD-deficient animals (Becker 
& Grecksch, 2006). When these DVD-deficient rats were 
treated with haloperidol, a widely used DA2 receptor 
blocker (and common antipsychotic), these habitua-
tion deficits were normalized. The effect of haloperidol 
in retarding locomotion was also shown to be greater 
in DVD-deficient animals. This became apparent once 
hyperlocomotion had first been induced using the 
NMDA antagonist MK-801 (Kesby et al., 2006). However, 
DA2 receptors do not appear to be altered in DVD-defi-
cient rats (Kesby et al., 2010). Therefore these behavioral 
responses are not due to a simple alteration in postsyn-
aptic DA receptors.

In healthy people, the symptoms induced by NMDA 
antagonists, such as phencyclidine, ketamine, and MK-801, 
are considered to mimic schizophrenia symptoms more 
closely than the symptoms induced by amphetamine (Krys-
tal et al., 1994; Lahti, Weiler, Tamara Michaelidis, Parwani, 
& Tamminga, 2001). As a result, models of schizophrenia 
proposing endogenous NMDA receptor hypofunction 
have been proposed (Olney & Farber, 1995). Consequently, 
NMDA antagonists have also become widely employed 
in animal models of this disease. DVD-deficient rats have 
been repeatedly shown to have an enhanced locomotor 
response to MK-801 compared with controls (Kesby et al., 
2006; Kesby, Eyles, Burne, & McGrath, 2011; O’Loan et al., 
2007). We have also shown that the later period of gestation 
appears to be critical for this hyperlocomotion response. 
Rats exposed to DVD deficiency during late gestation 
showed this behavior, whereas if the period of DVD defi-
ciency was restricted to early gestation, the effect was not 
apparent (O’Loan et al., 2007).

Phenotypes of Relevance to Impaired Cognition

DVD-deficient rats have also displayed learning 
and memory deficits. Latent inhibition refers to a nor-
mal learning phenomenon in which it takes longer to 
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establish salience to a previous familiar stimulus com-
pared with a novel stimulus. Acutely psychotic patients 
have impairments in latent inhibition (Gray, Feldon, 
Rawlins, Hemsley, & Smith, 1991; Lubow & Gewirtz, 
1995) and DA agonists have been shown to decrease 
latent inhibition in healthy adult males (Swerdlow et al., 
2003). DVD-deficient animals have disrupted latent inhi-
bition (Becker et al., 2005), suggesting that these animals 
have an impaired ability to attend to relevant stimuli.

DVD-deficient rats show increased impulsivity and 
a lack of inhibitory control when assessed on the five-
choice continuous performance task (Turner, Young, 
McGrath, Eyles, & Burne, 2013). The increased impul-
sivity in DVD-deficient rats can be attenuated with the 
atypical antipsychotic, clozapine. Impulsivity in healthy 
humans has been associated with the availability of 
the DAT (Costa et al., 2013) and in rats, DA receptors 
in the medial prefrontal cortex also appear to be criti-
cal (Pardey, Kumar, Goodchild, & Cornish, 2013). Thus, 
multiple dopaminergic elements could contribute to the 
cognitive deficits demonstrated by adult DVD-deficient 
rats.

Long-term potentiation (LTP) is a cellular correlate of 
learning and memory (Bliss & Gardner-Medwin, 1973). 
Vitamin D deficiency during adulthood reduces LTP 
in anaesthetized rats after tetanization, despite normal 
baseline hippocampal LTP (Salami, Talaei, Davari, & 
Taghizadeh, 2011). Using electrophysiological record-
ings from the hippocampus of freely moving rats, a 
subsequent study investigated LTP in DVD-deficient 
rats (Grecksch, Ruthrich, Hollt, & Becker, 2009). Para-
doxically, DVD-deficient rats have enhanced baseline 
LTP. However, the LTP response to low doses of anti-
psychotics was abnormal in these animals. When low 
doses of haloperidol and risperidone were given to 
control animals, enhanced hippocampal LTP was seen. 
In DVD-deficient animals, this effect was reversed. We 
conclude that vitamin D must regulate different neuro-
physiological targets throughout normal hippocampal 
development.

Brain Structural Phenotypes and Gene/Protein 
Expression of Relevance to Schizophrenia

One of the most robust findings in schizophre-
nia research is mildly enlarged lateral ventricles, as 
detected postmortem or by neuroimaging (Harrison & 
 Weinberger, 2005; Shenton, Dickey, Frumin, & McCarley, 
2001). The enlargement in lateral ventricles seen in the 
DVD-deficient neonate brains (Eyles et al., 2003) per-
sisted into adulthood. However, the timing of the rein-
troduction of vitamin D appears to be important. Lateral 
ventricles were enlarged in adult animals that had expe-
rienced a more prolonged vitamin D deficiency (i.e., 
until weaning). If vitamin D was reintroduced into the 

maternal diet from birth, this partially ameliorated the 
anatomical change (Feron et al., 2005).

Gene array and proteomics analysis have been con-
ducted in the prefrontal cortex and hippocampus of 
adult DVD-deficient rats. DVD deficiency was shown to 
significantly alter the expression of 74 genes and 36 pro-
teins, with such diverse functions as cytoskeleton main-
tenance, calcium homeostasis, synaptic plasticity and 
neurotransmission, oxidative phosphorylation, redox 
balance, protein transport, chaperoning, cell-cycle con-
trol, and posttranslational modifications (Almeras et al., 
2007; Eyles et al., 2007). A later study of protein expres-
sion in the nucleus accumbens of DVD-deficient rats 
showed that, although the degree of gene dysregulation 
was mild, there were significant alterations in several 
proteins involved in either calcium binding (calbindin, 
calretinin, and hippocalcin), or mitochondrial function 
(McGrath et al., 2008).

DVD Deficiency and Developing DA Systems

The VDR and the enzyme responsible for synthesiz-
ing the active form of the hormone, CYP27B1, are ubiq-
uitous in the DA-rich substantia nigra of the human 
brain (Eyles, Smith, Kinobe, Hewison, & McGrath, 2005). 
Additionally, 1,25-dihydroxy-vitamin D3 has been con-
sistently associated with the production of TH in various 
pathological scenarios (Chen, Lin, & Chiu, 2003;  Sanchez, 
Relova, Gallego, Ben-Batalla, &  Perez-Fernandez, 2009; 
Wang et al., 2001). Given the behavioral sensitivity of 
DVD-deficient adults to both DA agonists and antago-
nists, we have concentrated on how developing DA 
systems may have been altered by the absence of this 
steroid.

The VDR first appears in the developing midbrain 
of the rat on E12 (Veenstra et al., 1998). This represents 
the age when most DA neurons are being born (Gates, 
Torres, White, Fricker-Gates, & Dunnett, 2006). We have 
recently mapped the ontogeny of the VDR in the devel-
oping rat mesencephalon. We show a clear increase in 
the nuclear expression of this receptor in TH-positive 
neurons in the mesencephalon with increasing devel-
opmental age, and have also established this at the 
messenger RNA and protein level (Cui et al., 2013). In 
addition, we measured DA levels in DVD-deficient neo-
natal forebrains and showed that, although DA levels 
were normal, DA metabolism was altered. We found 
an increased ratio of 3,4-dihydroxyphenylacetic acid/
homovanillic acid, the two major DA metabolites (Kesby 
et al., 2009). This was accompanied by a reduction in 
catechol-o-methyl transferase (COMT), the enzyme that 
converts 3,4-dihydroxyphenylacetic acid to homovanil-
lic acid (Kesby et al., 2009).

Given our previous data indicating that DVD defi-
ciency delays brain maturational processes, we next 
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examined whether DVD deficiency may specifically 
delay the differentiation of DA systems. We harvested 
mesencephalon from vitamin D–deficient embryos at 
both the peak period for DA neuron cell birth, E12, 
and a relatively postmitotic stage, E15. We examined 
the expression of a limited number of key postmitotic 
specification factors crucial for the formation and mat-
uration of dopaminergic neurons (Smidt & Burbach, 
2007). When compared with controls, DVD-deficient 
embryonic brains had a reduction in two of these fac-
tors: Nurr 1 and p57kip2a (Cui, Pelekanos, Burne, 
McGrath, & Eyles, 2010). When either of these speci-
fication factors is abolished or reduced in mice via 
genetic manipulation, reductions in DA neuron num-
ber and abnormal DA neuron positioning are seen 
(Joseph et al., 2003; Kadkhodaei et al., 2009; Wallen 
et al., 2001). This remains an active research interest 
in our laboratory.

These findings provide strong evidence that DVD 
deficiency affects the early ontogeny of DA systems. 
Along with others, we are now engaged in trying to 
understand how such early changes in the formation of 
dopaminergic systems could lead to the behavioral phe-
notypes reported in developmental animal models of 
schizophrenia (Eyles, Feldon, & Meyer, 2012).

MATERNAL NUTRITIONAL 
DEFICIENCIES PRODUCE A 

CONVERGENT PHENOTYPE IN ADULT 
OFFSPRING

We have presented a summary of the epidemiologi-
cal studies indicating that a diverse range of maternal 
nutritional deficiencies during prenatal and/or perinatal 
stages of life can significantly increase the risk of schizo-
phrenia and related disorders in offspring. Moreover, 
we have summarized findings from the animal models 
developed to understand the neurobiology behind these 
maternal nutritional deficiencies. This complements the 
broader epidemiological literature implicating nonnu-
tritional risk-factors during pregnancy—such as obstet-
ric complications, maternal infection/inflammation, or 
maternal stress—in increasing the risk of later onset of 
schizophrenia in adult offspring (Brown, 2011). Animal 
models of maternal hypoxia, maternal immune activa-
tion (using either bacterial or viral components), and 
maternal restraint have been used to examine these non-
nutritional developmental epidemiological risk factors, 
respectively (Koenig, 2009). These models produce a 
constellation of outcomes that reflect phenotypes of both 
the positive symptoms and cognitive deficits observed 
in schizophrenia. Studying the negative symptoms 
of schizophrenia in animal models has proved more 
challenging.

Each developmental risk factor is likely to operate 
via a specific and independent series of physiological 
and cellular pathways in the fetal brain. However, each 
risk factor results in the same suite of phenotypes in the 
adult offspring that are relevant to schizophrenia. There-
fore an obvious question is: “Via what mechanism could 
such diverse exposures during brain development, con-
verge to produce these common phenotypes in the adult 
offspring?”

This conundrum has not escaped important figures 
in the field. It has been proposed that abnormalities in 
either maternal nutrition or maternal stress/infection/
hypoxia may all operate via downstream changes in 
inflammatory cytokine/stress hormone signaling (Meyer 
&  Feldon, 2010). This remains an attractive hypothesis 
and is worth testing. For instance, one can conceive of 
studies in which some combination of antiinflammatory 
factors and/or glucocorticoid antagonists could be used 
with the described maternal nutritional models to test 
this hypothesis. Or conversely, perhaps these candidate 
signaling pathways could be reexamined using genetic 
techniques. If certain schizophrenia-relevant phenotypes 
of the aforementioned maternal nutritional models were 
abolished by genetically altering inflammatory cytokine 
or corticosterone signaling, this would indicate a direct 
convergent link. This could be a particularly attractive 
approach if these studies used the techniques that alter 
genetic signaling during specific temporal stages of 
development. One caveat to this approach is that such 
genetic techniques are well-established in mice, whereas 
most maternal nutritional models have been generated 
in rats.

We can imagine future studies in which epidemio-
logically supported nutritional supplementation is 
used in some of the previously mentioned develop-
mental animal models of schizophrenia. Unfortunately, 
there is currently a lack of such “intervention” studies. 
This may change, given the recent clinical interest in 
the use of certain amino acids (which act as coagonists 
at the NMDA receptor) as adjuncts to existing antipsy-
chotic therapies (Heresco-Levy, Ermilov,  Lichtenberg, 
Bar, & Javitt, 2004; Woods et al., 2013). However, there 
are some supportive data using maternal inflammation 
models. The bacterial membrane LPS induces a robust 
inflammatory response in its host via the Toll-4 receptor. 
When preadministered to pregnant rodents given LPS, 
the anti-inflammatory cytokine interleukin-10 prevents 
white matter loss in offspring (Pang,  Rodts-Palenik, 
Cai, Bennett, & Rhodes, 2005;  Robertson, Care, & 
 Skinner, 2007; Robertson, Skinner, & Care, 2006). Simi-
larly, when maternal rats are exposed to LPS, a prior 
administration of the antiinflammatory and antioxi-
dant agent N-acetyl cysteine to the dams prevents hip-
pocampal damage and learning deficits in offspring 
(Lante et al., 2008).
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ARE ALTERATIONS IN THE ONTOGENY 
OF DEVELOPING DA SYSTEMS A 

CONVERGENT EARLY MECHANISM IN 
MODELS OF MATERNAL NUTRITIONAL 

DEFICIENCY?

A remarkably consistent and critically important 
feature of all animal models that reflect pre- and peri-
natal risk-factors for schizophrenia (both nutritional 
and nonnutritional) is that they all appear to produce 
adult offspring with a heightened behavioral sensitiv-
ity to psychomimetics such as amphetamine or cocaine. 
Amphetamine acts primarily through enhancing DA 
release, and cocaine acts by blocking DA reuptake. It is 
therefore likely that the diverse array of early life risk 
factors affects the developing DA system and the presyn-
aptic dopaminergic system in particular.

Prominent figures within schizophrenia research 
have recently suggested that we refocus our efforts 
onto changes in presynaptic DA activity (Simpson, 
 Kellendonk, & Kandel, 2010). There is substantial clinical 
support, based primarily on positron emission tomog-
raphy (PET) studies in patients, which clearly indicates 
that there is enhanced uptake of C11-labeled DOPA (and 
presumably synthesis of DA) in the striatum of patients 
with schizophrenia. This literature appears to be highly 
robust with more than 10 separate studies conducted to 
date and two meta-analyses showing a consistent eleva-
tion in DOPA uptake in patients (Fusar-Poli & Meyer-
Lindenberg, 2013; Howes et al., 2012).

Even more relevant to this discussion are recent PET 
studies in individuals at high risk of developing schizo-
phrenia. An emerging research effort is now being 
directed towards identifying asymptomatic individuals 
who are at “high risk” of progressing to the clinical dis-
order. Such assessments are largely based on groupings 
of behavioral symptoms that allow the research clini-
cian to enrich the population of people likely to prog-
ress to the eventual clinical disorder (Yung & Nelson, 
2011; Yung et al., 1998). To date, two PET studies have 
been conducted using these cohorts. Because these stud-
ies are difficult to conduct in such a labile population 
and are still in their in early stages, sample sizes remain 
small. However, the findings appear to indicate that 
baseline C11 DOPA uptake not only predicts the later 
onset of schizophrenia (Howes, Bose, Turkheimer, Valli, 
Egerton, & Valmaggia, 2011; Howes et al., 2009), but that 
in patients who do transition to the clinical condition, 
C11 DOPA uptake progressively increases (Howes, Bose, 
Turkheimer, Valli, Egerton, & Stahl, 2011). This suggests 
that DA uptake may represent a potential biomarker 
before clinical diagnosis. Given the correlation between 
the progression of the disease and the progressive 
increase in DA uptake, this may also represent a promis-
ing therapeutic target. One obvious and parsimonious 

candidate for any alteration in presynaptic DA signaling 
would be an alteration in the expression or function of 
DAT, however a recent meta-analysis of DAT in schizo-
phrenia firmly rules out any alteration in DAT expres-
sion (Howes et al., 2012).

These findings have galvanized both the basic and 
clinical schizophrenia research communities. The possi-
bility of altering the course of this disease was unthink-
able as little as 10 years ago. Unfortunately, PET studies 
are not suitable for use in routine screening tool in these 
populations, and a more practical biomarker needs to be 
found. However, with regards to the basic neurobiology 
of schizophrenia, these clinical findings strongly sug-
gest that presynaptic DA systems are altered well before 
diagnosable symptoms appear.

This clinical data aligns well with our work in both 
the DVD-deficiency model, and research from the labo-
ratory of Meyer and Feldon using the gestational day 9 
Maternal Immune Activation model with the polyino-
sine-polycytidylic RNA viral construct. Both models pro-
duce adult animals that display behavioral sensitivity to 
DA agonists, and both demonstrate changes in various 
aspects of DA transport or synthesis (Kesby et al., 2010; 
Meyer & Feldon, 2009). More importantly, both models 
show early alterations in factors involved in the differ-
entiation of DA neurons. Nurr1 is a nuclear transcrip-
tion factor essential for the specification of DA neurons 
(Wallen et al., 2001). When Nurr1 is genetically ablated, 
DA neurons are not made and the foetus is nonviable 
(Zetterstrom et al., 1997). In both DVD-deficiency and 
Maternal Immune Activation embryos, there are early 
initial reductions in the expression of Nurr1 at precisely 
the time when most DA neurons are born in the develop-
ing rat and mouse CNS (Cui et al., 2010). This normalizes 
somewhat in both models by birth; however, persistent 
alterations remain in the expression of TH and levels 
of DA (Kesby et al., 2009; Meyer, Engler, Weber, Sched-
lowski, & Feldon, 2008). Close consideration of the over-
lapping findings from these two diverse models has led 
us to suggest that alterations in the ontogeny of develop-
ing DA systems may represent an early convergent path 
in the development of schizophrenia (Eyles et al., 2012).

There are a limited number of studies that have 
explored changes in the developing DA system occur-
ring in maternal nutritional deficiency models relevant 
to schizophrenia. This is despite findings indicating that 
DA systems are universally altered in adult offspring 
from such models. A reexamination of the scant literature 
available indicates that nutritional deficiencies may also 
perturb the early ontogeny of developing DA systems.

When rat pups (postnatal day 14 (P14)) from a model 
of maternal undernutrition (50% food restriction dur-
ing the last week of pregnancy only) were examined, 
they were shown to have reduced DA1 receptor density 
across the hypothalamus and increased DA2 receptor 
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density in the arcuate nucleus. Unfortunately, pups were 
not studied at any earlier developmental ages, and nor 
was any other brain region examined. By adulthood, 
DA2 receptor abnormalities had normalized but DA1 
receptor densities had reversed, potentially indicating 
some persistent over-compensation from this early expo-
sure (Manuel-Apolinar, Rocha, Damasio, Tesoro-Cruz, & 
Zarate, 2014). In a previously cited model of maternal 
protein deficiency, early changes in potassium-evoked 
DA release from hippocampal slices was shown in P15 
rat pups. Again, pups were not studied at any earlier 
developmental age and no other brain region was exam-
ined. This early functional abnormality in presynaptic 
DA function persisted into adulthood (Chen et al., 1995).

There have also been reports of early abnormal pup 
behavior in models of maternal iron deficiency (Felt & 
Lozoff, 1996). However, we are aware of only one study 
to date that has examined early changes in DA com-
ponents in such models. DA content was dramatically 
increased in the brains of P10 rat pups from dams with 
moderate anemia (10–20% iron deficiency) (Beard et al., 
2006). This increase persisted into weaning but became 
less dramatic. There were also increases in DAT expres-
sion, and regional changes in DA2 receptors in the P10 
rat pups. These findings had normalized by weaning. 
These alterations correlated with very early sensorimo-
tor defects. At the first postnatal time point assessed 
(P6), pups from maternally iron-deficient dams had 
reductions in bar gripping and forelimb placement. 
These deficiencies persisted into weaning. The authors 
chose these behaviors specifically to examine the effect 
of maternal iron deficiency on basal ganglia dopaminer-
gic circuitry in offspring.

Several early studies have shown that dietary omega-3 
fatty acid deficiencies produce alterations in both brain 
DA content and DA receptor expression in adult animals, 
(Delion, Chalon, Guilloteau, Besnard, & Durand, 1996; 
Delion et al., 1994). To the best of our knowledge, the 
effect of dietary omega-3 deficiency on the developing 
DA system has not been examined. However, one study 
has shown that varying the fatty acid content of the 
maternal diet with different sources of oil supplements 
does affect levels of DA and 3,4-dihydroxyphenylacetic 
acid (a major DA metabolite) in the newborn brain (Innis 
& de La Presa Owens, 2001). This may be important in 
explaining the previously discussed elevation in TH 
enzyme expression in the dorsal striatum of adolescent 
animals bred from omega-3 deficient dams (Bondi et al., 
2014) (see Controlled Trials of Nutritional Supplements 
for Treatment of Schizophrenia Section). These ideas are 
summarized in Figure 1.

Finally the work of Boksa and colleagues is illuminat-
ing. Rather than investigating nutritional deficiency, this 
group examines animal models of maternal hypoxia. 
Their findings reveal that there are early developmental 

periods where intervention can prevent permanent 
abnormalities in DA signaling in adult offspring. This 
group investigated the role of early administration of 
adrenaline in a model of mild perinatal hypoxia. As pre-
viously mentioned, this model produces dopaminergic 
abnormalities in adult offspring. In particular, if the adult 
offspring are subjected to repeated mild isolation stress, 
then TH activity and DAT binding are enhanced, and 
locomotor sensitivity to amphetamine emerges. These 
phenotypes are not present in the absence of stress. A 
single perinatal injection of epinephrine to newborns 
subjected to perinatal hypoxia successfully prevented 
the onset of these phenotypes in adults (Boksa & Zhang, 
2008). These results confirm that abnormal levels of cat-
echolamines in neonates can induce subtle long-term 
changes in CNS function.

CONCLUSIONS

Animal models of complex disorders, such as schizo-
phrenia, were traditionally created to clarify causal 
agents or pathways relevant to a specific risk relation-
ship. For instance, this could be to clarify the actions of 
a particular gene or pathway in the developing brain. 
More recently, this genetic approach has been refined 
to assess the function of selective human-specific muta-
tions in genes linked with schizophrenia. This allows 
researchers to examine the action of a defective gene 
product on brain development or function. The recent 
work with the well-described BDNF (Val66Met) poly-
morphisms best illustrates this approach (Chen et al., 
2006). Historically, animal models based on disease-risk 
epidemiology were created to understand neurobiologi-
cal plausibility. One purpose of this article has been to 
alert the reader to the possibility that such models may 
also provide promising experimental leads into potential 
shared pathways between risk factors. These models also 
provide a preclinical environment in which preventative 
therapies can be trialed. Studies of potential convergent 
pathways may suggest even more robust targets for pre-
ventive therapies.

What have we learned from studying one particu-
lar maternal nutritional risk factor, DVD deficiency, in 
animals over the past 10–12 years? This model was cre-
ated more than a decade ago to establishing the “neuro-
biological plausibility” of this risk factor. At that time, 
there was an abundance of circumstantial evidence from 
naturalistic epidemiological studies implicating vitamin 
D deficiency as a risk factor for schizophrenia, but there 
was still no direct evidence. Since then, we have not 
only solidified this risk epidemiology, but have learnt 
a great deal more about how the absence of this vita-
min adversely affects the developing brain (Eyles et al., 
2013). Most importantly, we have shown that the absence 



15. MATERNAL NUTRITIONAL DEFICIENCIES AND SCHIZOPHRENIA258

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

of vitamin D produces very early changes in the ontog-
eny of dopaminergic systems. It was a case of Pasteur’s 
famous idiom of “chance favouring the prepared mind” 
when we recognized that very similar changes in the 
ontogeny of DA systems were occurring in the maternal 
immune activation model of Meyer and Feldon. This led 
us to hypothesize that perhaps other developmental risk 
factors for schizophrenia may also adversely affect the 
early ontogeny of DA neurons. We further hypothesized 
that such changes could represent a convergent pathway 
for the diverse developmental risk factors associated 
with schizophrenia (Eyles et al., 2012).

Despite a wealth of findings from animal models over 
the past decade implicating dopaminergic dysfunction 
in the adult offspring from maternal nutritional defi-
ciency, very little research has been focused on the effects 
on DA systems more proximal to the actual exposure. 
In the last section, we outlined the initial encouraging 
data supporting the hypothesis that alterations in the 

early ontogeny of DA systems may represent an early 
point of convergence in the study of schizophrenia etiol-
ogy. Obviously, far more work remains to be done. How-
ever, we consider that the rewards of this research could 
be substantial. Pharmaceutical companies have voted 
with their feet and have abandoned investment in new 
antipsychotic medications (Abbott, 2010). This is largely 
because of issues regarding the substantial heterogeneity 
in the presentation and course of illness.

That developing DA systems appear to be particularly 
vulnerable to a wide range of nutritional and nonnutri-
tional risk factors is critically important. We contend 
that it is vital for experimental research to explore the 
mechanism by which such diverse nutritional defi-
ciencies could alter early brain ontogeny. This research 
should also investigate how this mechanism results in 
the observed clinical presymptomatic alterations in DA 
uptake and synthesis before disease onset. Ultimately, 
this may represent a truly novel and revolutionary 

FIGURE 1 Animal models of maternal nutrient deficiency produce phenotypes of relevance to schizophrenia: Impairments in dopamine 
ontogeny be a convergent early mechanism. The five maternal nutrient deficiencies that have been most-studied in animals are: vitamin D, iron, 
protein, omega-3, and folate. On the left, the dopamine-related behavioral and neurochemical abnormalities in embryonic and early postnatal 
animals from these models are shown. These dopaminergic factors were measured during development, at ages ranging from embryonic day 12 
to P40 (postnatal day 40). For the iron, protein, omega-3, and folate animal models, no information about embryonic brain dopaminergic function 
is available. At the bottom of the figure are sagittal sections representing the various stages of rodent brain development. On the right are adult 
phenotypes relevant to schizophrenia produced by these maternal nutrient deficiencies. These are grouped into behavioral phenotypes, changes 
in neurochemistry, and changes in brain anatomy. Many phenotypes are shared by offspring from diverse maternal nutrition deficits. We propose 
that deficiencies in each maternal nutrient may converge via some as yet unknown dopaminergic mechanism in adolescent/early adult offspring 
to produce schizophrenia-relevant phenotypes in the adult animals. COMT, catechol-o-methyl transferase; DOPAC, dihydroxyphenylacetic acid; 
HVA, homovanillic acid; serotonin; DA, dopamine; TH, tyrosine hydroxylase; developmental vitamin D = ; iron = ; protein = ; omega-3 = 

; folate = .
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approach to developing therapeutic interventions. This 
proposal is made more clinically attractive in the light 
of the recent PET evidence, indicating that dopaminer-
gic abnormalities are present before disease onset in at 
high-risk individuals (Howes, Bose, Turkheimer, Valli, 
Egerton, & Valmaggia, 2011; Howes et al., 2009).

Dietary interventions represent low-risk, cost-effec-
tive prophylactic interventions that are easy to initiate. 
Moreover, understanding the molecular and cellular 
mechanisms of pathological insults during periods of 
vulnerability (such as during early brain development 
or adolescence) could prompt targeted interventions in 
at-risk populations. Health care policies in many coun-
tries are trending toward the importance of preventative 
interventions. Developing evidence-based approaches to 
augmentation of diets using vitamins, PUFAs, micronu-
trients, and increasing general adequate nutrition could 
lead to reduced rates of mental illness. Such an approach 
may contribute to diminishing the crippling burden that 
diseases such as schizophrenia place upon patients, their 
carers, and society.
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INTRODUCTION

Genetics play a major role in the etiology of schizo-
phrenia and, although this disorder is associated with 
more than 80% heritability (Sullivan, Kendler, & Neale, 
2003), it is not inherited in a classical Mendelian fashion 
whereby dominant recessive or gender-linked inheri-
tance patterns preside. As a result, two hypotheses exist 
to account for genetic contribution to etiology of schizo-
phrenia, the first considers a number of interacting sus-
ceptibility genes of small effect that increase disease 
risk (“common disease, common variant” hypothesis), 
whereas the second proposes that single rare gene muta-
tions of large effect accounts for pathophysiology in 
the majority of schizophrenia cases (“common disease, 
multiple variant” hypothesis), which is supported by 
the recent discovery of a relatively rare class of variants 
known as copy number variants that confer a high risk 
for schizophrenia (Doherty, O’Donovan, & Owen, 2012; 
Owen, Williams, & O’Donovan, 2009). It is proposed that 
the cumulative effects of multiple schizophrenia-associ-
ated gene loci abnormalities, whether they are inherited 
or occur as a result of spontaneous mutations, can, in the 
context of epigenetic or environmental factors, exceed a 
threshold where post-symptoms of the disorder become 
manifest (Escudero & Johnstone, 2014).

Advancements in molecular genetic technologies 
have uncovered convincing evidence to support the 
proposition that genetic heterogeneity plays a major 
part in the variability observed in clinical presentations 
of the disorder. Linkage analyses, which identify regions 
of the genome cotransmitted with schizophrenia in 
families with multiple affected members, have exposed 
a number of chromosomal regions that contain schizo-
phrenia-risk alleles, including the 8p21–22 and 22q11–
12 chromosomes (Owen, Williams, O’Donovan, 2004). 
Unfortunately, this approach is limited by the size and 

genetic architecture of the sample and is more suited to 
detecting candidate genes of large effect, which are less 
likely to be linked to the etiopathology of the disorder 
in the greater population than multiple genes of small 
effect. Genetic association approaches and the more 
recent contributions from genome-wide association 
studies (GWAS) have highlighted a number of disease-
related genes of relatively small effect that may have rel-
evance in the pathophysiology of schizophrenia (Ripke 
et al., 2013; Schizophrenia Working Group of the Psychi-
atric Genomics Consortium, 2014). Further examination 
of the putative roles of candidate genes is necessary to 
understand the specific involvement of genes identified 
by linkage and association studies in the pathogenesis 
of schizophrenia before any cumulative effects of gene–
gene or gene–environment interaction are considered. 
The generation and phenotypic assessment of mutant 
mouse models of identified risk genes allows direct 
associations to be made between these genes, specific 
pathological processes, and behavioral phenotypes and 
hence sheds light on genetic contributions to the patho-
physiology of schizophrenia. This “top-down” approach 
has significantly contributed to the steadily increasing 
pool of knowledge regarding the genetic etiology of 
schizophrenia (Desbonnet, O’Tuathaigh, & Waddington, 
2012; O’Tuathaigh, Kirby, Moran, & Waddington, 2010). 
In turn, the ability to perform detailed analyses of genes 
involved in the regulation of related and intersecting 
neuropathological endophenotypes of schizophrenia in 
mutant animal models has also uncovered novel candi-
date genes for the genetic study in humans (bottom-up 
approach). At present, several promising mutant mouse 
models are being used in the field of neuroscience. Many 
of these genetic models have been engineered as a result 
of initial findings in human linkage and association 
analyses (e.g., neuregulin1, disrupted-in-schizophrenia1, 
dysbindin genes). Others are based on the putative 
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involvement of specific genes in pathophysiological pro-
cesses in schizophrenia (e.g., COMT, dopamine recep-
tors, glutamate receptors).

ENDOPHENOTYPES

The heterogeneity of disease onset, course, and symp-
toms and the lack of consistent and quantifiable disease 
features in schizophrenia make it difficult to deconstruct 
the disorder into simpler forms that are reproducible 
in mouse models. Refining schizophrenia symptoms 
into separate, discernible subcategories that relate more 
closely to the underlying cause than the overt clinical 
features facilitates investigations into the etiopathology 
of the illness (Waddington et al., 2007). Endophenotypes 
are defined as measurable intermediate disease features 
that bridge the gap between the overt manifestations of 
schizophrenia and the underlying susceptibility genes 
(Gould & Gottesman, 2006). These variables are not 
always obvious to the naked eye and can be neurophysi-
ological, biochemical, endocrinological, neuroanatomi-
cal, cognitive, or neuropsychological in nature (Allen, 
Griss, Folley, Hawkins, & Pearlson, 2009). The use of 
endophenotypes has been particularly advantageous 
for the development of animal models of schizophrenia, 
being relatively closer to the genetic source of the illness, 
and therefore considerably less complex to model. It is 
assumed that although a single gene can affect multiple 
behavioral endpoints, the intermediate biological endo-
phenotypes are subject to fewer confounding influences, 
and as a result are “simpler” and more amenable to  
the scientific study.

CONSTITUTIVE, CONDITIONAL 
KNOCKOUTS, AND TRANSGENIC 

MODELS

Technological advances now allow for the construc-
tion of mutant mice with gene disruption, either by dele-
tion (i.e., knockout) or insertion/overexpression (i.e., 
transgenic/knock-in); phenotypic assessment of these 
mice has greatly contributed to our understanding of the 
role of candidate risk genes in normal biological func-
tions and in disease pathogenesis (O’Sullivan et al., 2006). 
However, each technique presents its own profile of 
advantages and disadvantage. Pleiotropy, which occurs 
when a single gene influences multiple phenotypic traits 
thereby potentially masking specific phenotypic effects 
associated with its deletion, often complicates the inter-
pretation of results in studies using conventional mod-
els. The development of transgenic approaches, which 
permits the insertion of specific genetic sequences in 
mice, presented novel opportunities to investigate the 

phenotypic consequences of gene overexpression and the 
insertion of human mutated genes in vivo (Bockamp et al., 
2002). As well as informing on the potential involvement 
of enhanced expression of certain risk genes in the patho-
genesis of schizophrenia, transgenic models have also 
successfully been used to reverse phenotypes in isolated  
conventional mouse knockouts. The development of 
spatially and temporally controlled gene deletions, 
generally known as conditional knockouts, has made a 
significant contribution to the validity of genetic knock-
out models for schizophrenia by minimizing some of 
the possible drawbacks including compensatory and 
redundancy mechanisms, embryonic lethality, pleiotropic 
factors, and the lack of clarity that comes from deletion 
of a gene that is expressed ubiquitously (Beglopoulos &  
Shen, 2004). Temporal control of gene expression 
requires the use of inducible Cre lines, involving Cre 
promoters that are responsive to specific compounds, so 
that the administration of these compounds at any point 
during development will trigger the inactivation of the 
target gene (O’Neal & Agah, 2007). Applying spatial  
and temporal restrictions to risk-gene expression in a 
single genetic model has provided unique opportunities 
to answers increasingly complex biological questions in 
this disorder.

NEUREGULIN 1

The neuregulins are a family of growth factors encoded 
by four genes (NRG 1–4). Since its initial identification 
in an Icelandic patient sample more than a decade ago 
(Stefansson et al., 2002), NRG1 remains one of the best 
characterized schizophrenia risk genes, not only because 
of extensive studies conducted in human postmortem 
brain tissue (Hashimoto et al., 2004; Law et al., 2006; 
Parlapani et al., 2010; Weickert, Tiwari, Schofield, Mowry, 
& Fullerton, 2012), cell lines (Brennand & Gage, 2012), 
and GWAS (Agim et al., 2013; Athanasiu et al., 2010; Shi 
et al., 2009; Sullivan et al., 2008), but also mutant mouse 
models have proven to be a valuable source of evidence 
linking NRG1 gene disruption and the pathobiology of 
schizophrenia (Allen et al., 2008; Bertram, 2008; Gogos, 
2007; Harrison & Law, 2006; Mei & Nave, 2014; Mei & 
Xiong, 2008; O’Tuathaigh, Desbonnet, & Waddington, 
2009; Waddington et al., 2007). In the brain, interac-
tions between NRG1 and membrane-associated tyrosine 
kinases (ErbBs) initiate an array of intracellular signal-
ing pathways that play important roles in neurodevel-
opment processes relevant to schizophrenia including 
neuronal migration, myelination, neuronal survival, and 
plasticity that affect various populations of neurons and  
a number of neurotransmitters in the brain such as GABA, 
dopamine, acetylcholine, and glutamate (Andersson  
et al., 2012; Buonanno, 2010; Harrison & Law, 2006; 
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Lundgaard et al., 2013; Mei & Xiong, 2008; O’Tuathaigh 
et al., 2009). These effects of NRG1 signaling are par-
ticularly evident in the frontal cortex and hippocam-
pus, brain areas that are associated with negative and 
cognitive symptoms in schizophrenia (Buonanno, 2010; 
Hashimoto et al., 2004; Mei & Xiong, 2008; Petryshen 
et al., 2005). Despite its obvious importance in the regu-
lation of neurotransmission and neuronal development, 
there is some ambiguity relating to whether pathology 
can be attributed to loss of function or selective gain of 
function of the NRG1 gene. For the most part, increases 
in the expression of NRG1 and its receptor ErbB4 have 
been demonstrated in postmortem analysis of brain tis-
sue of affected individuals (Hashimoto et al., 2004; Joshi, 
Fullerton, & Weickert, 2014; Law et al., 2006; Parlapani 
et al., 2010; Weickert et al., 2012), yet both mouse mod-
els with deficient expression of NRG1 (Boucher et al.,  
2007; Moy et al., 2009; O’Tuathaigh et al., 2006; Stefansson 
et al., 2002) and overexpression (Deakin et al., 2009, 2012; 
Luo, He, Hu, & Yan, 2014; Nawa, Sotoyama, Iwakura, 
Takei, & Namba, 2014; Yin et al., 2013), particularly in 
early postnatal life (Kato et al., 2011; Nawa et al., 2014), 
induce similar pathobiology and behavioral impair-
ments in these mice, suggesting a complex molecu-
lar basis for NRG1 involvement in the pathogenesis of 
schizophrenia.

To add further complexity to the task of modeling 
NRG1-associated pathophysiology in rodents, at least 30 
different known isoforms of NRG1 have been identified 
in humans, which in turn belong to six distinct families 
(types I–VI). Targeted mutations of these various iso-
forms have elucidated some of their specific functions.

NRG1 Transmembrane Domain Mutant

Because NRG1 is crucial to normal development of 
vital organs such as the heart and lungs, mutants with 
homozygous deletions die in mid-embryogenesis or 
shortly after birth. As a result, the vast majority of stud-
ies are conducted using heterozygous mutant animals. 
Most NRG1 proteins are synthesized with a transmem-
brane (TM) domain. Mice with a heterozygous deletion 
of the TM domain (generated from a C57BL/6 back-
ground strain) exhibit hyperactivity in anxiety- and 
exploration-related tasks (Boucher et al., 2007; van den 
Buuse et al., 2009; Karl et al., 2007; O’Tuathaigh et al., 
2006, 2008; Stefansson et al., 2002), an effect that is ame-
liorated with antipsychotic treatment (Stefansson et al., 
2002), deficits in prepulse inhibition (PPI) (Stefansson 
et al., 2002), a selective impairment in response to social 
novelty (O’Tuathaigh et al., 2007) and altered patterns 
of social interaction in dyadic encounters (O’Tuathaigh 
et al., 2007, 2008). Detailed, ethologically based assess-
ment reveals sex-specific effects on individual topog-
raphies of exploratory behavior and their subsequent 

habituation to the environment (O’Tuathaigh et al., 2006). 
Investigations into the potential neurological underpin-
nings of behavioral abnormalities have revealed defi-
cits in N-methyl-d-aspartate (NMDA) receptor channel 
modulation (Bjarnadottir et al., 2007), elevated levels 
of the serotonin 2A receptor and serotonin transporter 
(Dean et al., 2008), and an increase in c-Fos (a marker of 
neuronal activation) following exposure to the stress of 
behavioral testing (Boucher et al., 2007a) in schizophre-
nia-related brain regions of mutants when compared 
with wild-type mice. Interactions between this mutation 
and environmental impact have also been examined in 
recent years with interesting findings relating to effects 
of prenatal infection, adolescent psychosocial stress, 
acute restraint stress, and Δ9-tetrahydrocannabinol (the 
main psychoactive constituent of cannabis) on adult 
behavioral and neurochemical phenotypes (Boucher 
et al., 2007a, 2007; Chesworth et al., 2012; Chohan, 
Boucher, et al., 2014; Chohan, Nguyen, et al., 2014; Des-
bonnet et al., 2012; Long et al., 2013; O’Leary et al., 2014) 
and have contributed to the growing appreciation for 
the importance of gene × environment models among 
preclinical researchers.

NRG1 Isoform-Specific Mutant

As the heterozygous deletion of the NRG1 TM 
domain is likely to affect multiple isoforms contain-
ing this domain, it is not surprising that some over-
lap exists with regard to the phenotypic expression of 
this particular mutant and the more isoform-specific 
mutant mice. Phenotypic discrepancies between vari-
ous NRG1 isoform knockouts can be particularly infor-
mative with respect to the specific contributions of these 
gene products to schizophrenia endophenotyes. For 
example, the type III NRG1+/− knockout mice display 
more pronounced deficits in PPI than those exhibited 
by TM-NRG1+/− mice, but also demonstrate impair-
ments in working memory performance that were not 
identified in TM-NRG1+/− mutants, and are likely to 
be associated with the reduced dendritic spine density, 
enlarged lateral ventricles, and hypofunctionality of 
the medial prefrontal cortex and CA1 region of the hip-
pocampus observed in these mice (Chen et al., 2008a). 
Type III NRG1+/− mutants do not exhibit any signs of 
increased aggression as was described in TM-NRG1+/− 
mice, which suggests that TM-containing NRG1 iso-
forms other than type III are involved in the expression 
of this endophenotype. In addition, NRG1 type III has 
been implicated in the regulation of α7 nAChR expres-
sion on the surface of axons (Hancock, Canetta, Role, 
& Talmage, 2008), which is interesting considering that 
the administration of nicotine attenuates some working 
memory and sensorimotor deficits (George et al., 2006; 
Postma et al., 2006), and that it is not uncommon for 
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schizophrenia patients to self-medicate with nicotine 
(Kumari & Postma, 2005). What is intriguing is that in 
the type III NRG1+/− mutants (Chen et al., 2008), tar-
geted disruption of type I/type II NRG1 (NRG1 iso-
forms containing an immunoglobulin-like domain) in 
mice (Rimer, Barrett, Maldonado, Vock, & Gonzalez-
Lima, 2005), and NRG1 type II transgenic rats (Taylor, 
Markham, Taylor, Kanaskie, & Koenig, 2011) all fail to 
exhibit the hyperactivity, which is the characteristic of  
the TM-NRG1+/− knockouts. Immunoglobulin -NRG1+/− 
mutant mice and male NRG1 type II transgenic rats  
also perform normally in the PPI test and motor func-
tion tasks when tested in adulthood (Rimer et al., 2005; 
Taylor, Markham, et al., 2011). Whereas the mutant mice 
show signs of impaired latent inhibition (Rimer et al., 
2005), the transgenic rats exhibit deficits in visuospatial 
learning and memory (Taylor, Taylor, & Koenig, 2012). 
Overall, a detailed analysis of the genotype–phenotype 
relationships of the various isoform-specific mutant 
models is complicated by the diversity of behavioral 
tests adopted and the different species of animals used. 
A more comprehensive and consistent approach to phe-
notypic assessment is required to provide some much-
needed insight into the relative importance of specific 
isoforms to the pathogenesis of schizophrenia.

NRG1-Overexpressing Transgenic Mutants

As mentioned previously, mice overexpressing NRG1 
also exhibit a schizophrenia-like phenotype. A transgenic 
mouse line selectively overexpressing NRG1 type 1, an 
isoform that is reported to be increased in postmortem 
schizophrenia tissue, was generated with the intention of 
investigating the role of this isoform in a genetic model 
with greater construct validity (Deakin et al., 2009, 2012). 
These mice exhibit impaired working memory, reduced 
PPI, and altered frequency of gamma oscillations in the 
hippocampus, but certain phenotypes present in NRG1 
hypomorphs such as hyperactivity and decreased long-
term potentiation (LTP) were not observed in the type 1 
isoform overexpressing mice (Deakin et al., 2009, 2012). 
Separate lines of transgenic mice that express similar 
increases in the type 1 isoform were reported to have 
opposing effects on locomotor activity; increases in the 
full-length NRG1 isoform reducing locomotor activity 
(Kato et al., 2010), whereas overexpression of the Β-site 
APP-cleaving enzyme 1 (BACE-1)–cleaved secreted form 
to NRG1 induced hyperactivity (Luo et al., 2014), the lat-
ter being consistent with observations in NRG1 hypo-
morphs. Surprisingly, this overlap of the phenotypic 
outcome in NRG1 overexpressing mice and NRG1 hypo-
morphs also extends to effects on social and cognitive 
behaviors (Kato et al., 2010; Luo et al., 2014). Forebrain-
specific NRG1 type 1 overexpression induces schizo-
phrenia-like impairments in PPI, social behavior, spatial 

working memory, and reference memory in addition to 
hyperactivity and hypofunction of glutamate and GABA 
pathways in adult transgenic mice which are conducive 
with reports in NRG1-deficient mice (Yin et al., 2013). 
Interestingly, all of these effects on the phenotype were 
normalized when expression of the NRG1 transgene 
was switched off in adulthood, confirming that continu-
ous NRG1 abnormality is required for the behavioral 
and neurochemical deficits to endure (Yin et al., 2013). 
It is not clear why reduced and elevated expression of 
the same gene induces similar deficits in mice. A pos-
sible explanation is that a U-shaped relationship exists 
between NRG1 expression and pathophysiology in the 
brain during development, whereby normal function 
requires an intermediate level of NRG1 expression but 
abnormally low or high levels of NRG1 signaling trigger 
pathological mechanisms with overlapping effects on 
the adult phenotype.

ErbB and BACE1 Mutants

There are a number of proteins that influence NRG1 
signaling in the brain. These include the various ErbB 
receptors that bind NRG1, but also BACE-1, which is 
involved in proteolytic cleavage of NRG1 allowing bind-
ing of the N-terminal domain to ErbB receptors. Mutant 
mouse models of the genes encoding these proteins 
have provided valuable information about their respec-
tive roles in NRG1-mediated pathophysiology, and as a 
consequence also contribute to our knowledge of NRG1 
involvement in schizophrenia. Mutants with heterozy-
gous deletion of the ErbB4 receptor, but not ErbB2 or 
ErbB3, show hyperactivity in the open field environ-
ment (Gerlai, Pisacane, & Erickson, 2000), PPI deficits 
(Shamir et al., 2012) and reduced dendritic spine density 
in the prefrontal cortex (Cooper & Koleske, 2014). Condi-
tional ErbB4 knockout mice with selective loss of ErbB4 
in fast-spiking interneurons exhibit similar hyperactiv-
ity in novel environments, but also display abnormal 
emotional responses and impaired social and cognitive 
behaviors, implicating ErbB4 function in interneurons 
in NRG1-associated pathogenesis in schizophrenia (Del 
Pino et al., 2013). In contrast, a hypoactive phenotype 
has been described in mutants with loss of ErbB sig-
naling in oligodendrocytes (Roy et al., 2007). Mutants 
with knockout of BACE1 demonstrate hyperactivity 
with disruption to PPI and heightened responsivity to 
MK-801 (Savonenko et al., 2008). Conversely, transgenic 
mice overexpressing BACE1 and consequently possess-
ing increased NRG1 N-terminal fragments also exhibit 
a similar schizophrenia-like behavioral phenotype 
which is associated with decreased NMDA receptors 
(Luo et al., 2014). Similar to the overexpressing NRG1 
transgenic mice, the latter study provides further evi-
dence to suggest that the role of NRG1 signaling in the 
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pathophysiology of schizophrenia is not as clear as origi-
nally assumed.

DISRUPTED IN SCHIZOPHRENIA 1

The disrupted-in-schizophrenia 1 (DISC1) gene, 
located at the breakpoint of a balanced t(1;11) chromo-
somal translocation, was first discovered when a genetic 
linkage study conducted in a Scottish sample found this 
gene to segregate in a statistically significant manner 
with mental illnesses, including schizophrenia (Bradshaw 
& Porteous, 2012; Chubb, Bradshaw, Soares, Porteous, & 
Millar, 2008). This finding has subsequently been repli-
cated in a variety of ethnic groups worldwide (Hennah 
& Porteous, 2009; Hodgkinson et al., 2004; Porteous, Mil-
lar, Brandon, & Sawa, 2011; Qu et al., 2007). Although 
the precise functions of the DISC1 gene remain unclear, 
it is reported to be maximally expressed in the brain, par-
ticularly during fetal development, but is also expressed 
in the adult hippocampus. DISC1 is a scaffold protein 
and its main feature is its ability to interact with mul-
tiple cytoskeletal proteins, including phosphodiesterase 4B 
(Millar et al., 2005), which is a direct target for rolipram, 
a nonselective PDE4 inhibitor that possesses antipsy-
chotic and antidepressant properties (Menniti, Chappie, 
Humphrey, & Schmidt, 2007). Hence, DISC1 is involved 
in numerous divergent pathways that regulate neuro-
developmental processes including neurite outgrowth, 
cell migration, synapse formation, and cell signaling 
(Mackie, Millar, & Porteous, 2007). Clinical investiga-
tions have also shown that DISC1 is associated with 
neurocognitive deficits; specifically, spatial and working 
memory impairments and neuroimaging analyses have 
uncovered region-specific morphological alterations in 
schizophrenia-relevant brain areas such as the hippo-
campus and prefrontal cortex (Burdick et al., 2005; Callicott 
et al., 2005; Cannon et al., 2005; Hennah et al., 2007). 
Similar neurocognitive deficits have been reported in 
DISC1 mutant mice.

DISC1 Mutants

Several DISC1 transgenic mice currently exist with 
varying spatial expression of truncated DISC1 through-
out the whole mouse brain (Shen et al., 2008), and in the 
forebrain only (Hikida et al., 2007; Li et al., 2007; Pletnikov 
et al., 2008), but also with specific temporal expression 
during pre- and postnatal development (Ayhan et al., 
2011; Li et al., 2007). In terms of morphology, mice carry-
ing a mutation of the endogenous DISC1 gene demon-
strate alterations to the organization of newly formed 
and mature neurons in the hippocampus, dilated lateral 
ventricles, and deficits in short-term plasticity, which 
likely contribute to the working memory impairments 

reported in these mice (Koike et al., 2006; Kvajo et al., 
2008; Shen et al., 2008). Other neuroanatomical features 
exhibited by DISC1 transgenic mice include thinning 
of the cortical layers II/III, selective decrease of neural 
proliferation in the developing cortex, partial agenesis 
of the corpus callosum, reduced parvalbumin neurons 
in the hippocampus, and displaced parvalbumin cells 
within the frontal cortex (Shen et al., 2008). Behaviorally, 
DISC1 seems to have a significant effect on sensorimotor 
gating and attentional processes (Clapcote et al., 2007; 
Lipina, Zai, Hlousek, Roder, & Wong, 2013), specifically 
chemical mutagenesis of exon 2 of the DISC1 gene in 
the mouse results in reduced PPI and latent inhibition 
and an enhanced locomotor response to novelty, which 
are reversed with antipsychotic treatment (Clapcote 
et al., 2007; Shen et al., 2008). Transgenic mice express-
ing the dominant-negative form of DISC1 under the 
CaMKII promoter exhibited a similar hyperactivity to 
novelty exposure and also had enlarged lateral ventri-
cles at 6 weeks of age (Hikida et al., 2007). Interestingly, 
enlargement of the lateral ventricles was observed fol-
lowing both prenatal and separate postnatal alteration to 
DISC1 expression, whereas the emergence of additional 
behavioral phenotypes such as behavioral despair and 
social impairments only occurred following postnatal 
manipulation of the gene, suggesting temporal specific-
ity of DISC1 effects on neurodevelopment and behavior 
(Ayhan et al., 2011). Social deficits, cognitive impair-
ments, depressive-like behaviors, and lateral ventricle  
enlargement seem to be among the more consistent phe-
notypic observations in DISC1 mutants (Clapcote et al., 
2007; Hikida et al., 2007; Li et al., 2007; Shen et al., 2008), 
which is not surprising considering that these endophe-
notypes are common to a number of DISC1-associated 
psychiatric conditions, including schizophrenia and 
major depression (Chubb et al., 2008).

The effects of DISC1 gene mutation may also be sex-
dependent. Pletnikov et al. (2008), using an inducible 
transgenic mouse model restricted to forebrain expres-
sion of mutant DISC1, demonstrated that abnormali-
ties of DISC1 gene expression in the forebrain induce  
hyperactivity in the open field and a reduced propensity 
for social investigation, which was only evident in male 
mutant mice. In this study, female mutants exhibited 
impaired spatial memory but displayed no other schizo-
phrenia-associated phenotypic alterations (Pletnikov 
et al., 2008). Given the significant gender differences  
reported in schizophrenia with respect to the age of 
onset, response to treatment, and schizophrenia sub-
types, further exploration of the influence of gender on 
the phenotypic expression of susceptibility genes such as 
DISC1 is warranted.

Multiple transgenic mouse models of DISC1 are now 
available and have proven to be informative, not only in 
relation to DISC1 protein interactions and the potential 
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involvement of their downstream signaling pathways in 
the pathogenesis of schizophrenia, but also conditional 
mutant models allowing spatial and temporal control of 
DISC1 gene abnormalities have highlighted the impor-
tance of forebrain expression and the early postnatal 
period in DISC1-associated pathophysiology.

DYSBINDIN 1

Dystrobrevin-binding protein 1 (DTNBP1), also known 
as dysbindin, was identified as a gene associated with 
schizophrenia risk through linkage to chromosome 6p 
(Straub et al., 2002). It is located in synapses of brain 
areas commonly affected in schizophrenia, including 
the prefrontal cortex, striatum, and hippocampus (Talbot 
et al., 2004; Weickert, Rothmond, Hyde, Kleinman, & 
Straub, 2008; Weickert et al., 2004). Analyses of postmor-
tem brain tissue of those diagnosed with schizophre-
nia indicate a decreased expression of DTNBP1 in the 
hippocampus (Talbot et al., 2004; Weickert et al., 2008) 
and dorsolateral prefrontal cortex (Talbot et al., 2004; 
Weickert et al., 2004). Three DTNBP1 isoforms have 
been described and expression is primarily confined to 
neuronal synapses; dysbindin-1A is associated almost 
exclusively with postsynaptic densities, dysbindin-1B is 
associated with synaptic vesicles, and dysbindin-1C is 
partially found in synaptic vesicles but is mainly asso-
ciated with postsynaptic densities. The latter isoform, 
in particular, is reported to be reduced in the prefron-
tal cortex in schizophrenia sufferers, whereas there was 
no change in levels of the former two DTNBP1 isoforms 
(Tang, LeGros, et al., 2009). Consistent with its location 
at the synapse, DTNBP1 regulates synaptic release and 
neurotransmission of important neurotransmitters such 
as glutamate (Jentsch et al., 2009; Tang, Yang, et al., 2009). 
The modulatory role of dysbindin in glutamate neuro-
transmission is evident from primary cortical neuronal 
cultures where it was reported that reduced dysbindin 
can lower basal and stimulus-induced glutamate release, 
whereas overexpression of dysbindin elevates glutamate 
release (Numakawa et al., 2004).

Dysbindin “Sandy” Mouse

The “sandy” (sdy) mouse, a spontaneous mutation 
that arose in the DBA/2J strain, carries a spontane-
ously occurring deletion in the DTNBP1 (dysbindin) 
gene leading to reductions in the two major dysbindin-1 
isoforms expressed in mice (i.e., dysbindin-1A and dys-
bindin-1C). In agreement with data implicating gluta-
mate in DTNBP1-mediated pathophysiology, sdy mice 
display decreased excitability of glutamatergic neurons 
in the prefrontal cortex and decreased release of gluta-
mate, increased the NR2-mediated synaptic currents 

and enhanced LTP in the hippocampus (Chen et al., 
2008; Jentsch et al., 2009; Tang, Yang, et al., 2009), pro-
viding a link between these two proteins implicated in 
schizophrenia. Behavioral phenotyping of these mutants 
produced inconsistent findings with reports indicat-
ing no changes (Bhardwaj et al., 2009; Feng et al., 2008), 
decreased (Takao et al., 2008) or increased (Hattori et al., 
2008) spontaneous exploratory activity in an open field 
environment while also displaying abnormal locomo-
tor habituation and enhanced locomotor sensitization 
to amphetamine (Bhardwaj et al., 2009). Because of the 
specific localization of DTNBP1 in prefrontal cortex and 
hippocampus, brain regions associated with cognition in 
humans and rodents, it is not surprising that cognitive 
behaviors are among the more consistently affected phe-
notypes in DTNBP1 mutant mice (Bhardwaj et al., 2009; 
Papaleo et al., 2012). For example, these mice exhibit 
impaired working memory in an operant delayed non-
match-to-position task (Jentsch et al., 2009). However, 
varying reports on locomotor activity in this mutant has 
also complicated interpretation of findings from cogni-
tive tests that firmly rely on motor activity. Moreover, 
because of the presence of other abnormal behavioral 
phenotypes in DBA/2J mice, including coordination def-
icits along with significant memory, genetic, and dopa-
minergic alterations, any effects of DTNBP1 mutation 
were confounded when studied on the DBA/2J genetic 
background (Talbot, 2009). To remove these effects, the 
dysbindin mutation was transferred to a more amenable 
background strain, the C57BL/6J genetic background.

Dysbindin Mutant

In behavioral tasks, dysbindin mutant mice on a 
C57BL/6J genetic background (dys−/−) mice display 
hyperactivity in an open field (Cox et al., 2009; Papaleo 
et al., 2012), spatial memory deficits in the Morris water 
maze (Cox et al., 2009), working memory impairments in a 
discrete paired-trial T-maze task (Papaleo et al., 2012), and 
in a delayed nonmatch-to-position operant task (Karls-
godt et al., 2011) and increased compulsive and impul-
sive behaviors (Carr, Jenkins, Weinberger, & Papaleo,  
2013). It is likely that many of the observed cognitive 
impairments are attributable to changes in dopamine 
and glutamate neurotransmission in these mutant mice 
(Papaleo & Weinberger, 2011; Papaleo et al., 2012). Cul-
tured neurons from dys−/− mice express increased dopa-
mine D2 receptors on their cell surface (Ji et al., 2009), and 
despite increased baseline activity of layer II/III pyrami-
dal neurons from the prefrontal cortex, D2 stimulation in 
these mutants reduces pyramidal neuron activity com-
pared with wild-type mice, suggesting that D2-mediated 
alterations in the excitability of fast-spiking GABAergic 
interneurons is affected (Ji et al., 2009; Papaleo et al., 
2012). In accordance with cell culture experiments and 
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findings in sdy mice linking altered glutamate neuro-
transmission with DTNBP1 mutation (Chen et al., 2008; 
Jentsch et al., 2009; Numakawa et al., 2004), dys−/− mice 
exhibit reduced NMDA-evoked currents and reduced 
NMDA receptor 1 (NR1) messenger RNA expression in 
the prefrontal cortex (Karlsgodt et al., 2011).

Dysbindin-Overexpressing Transgenic Mutant

Similar to NRG1, DTNBP1 gain-of-function stud-
ies have also been conducted with the development 
of transgenic mice that express the human DTNBP1 
gene. To gain further insight into the role of DTNBP1 in 
schizophrenia, these transgenic mice were extensively 
screened for behavioral aberrations and sensitivity to 
psychotomimetic drugs (Shintani et al., 2014). Behav-
ioral screening revealed only a marginal change in limb 
grasping and no effect of the mutation on sensorimotor 
gating performance, nonspatial memory, or locomotor 
activity. Locomotor responses to acutely administered 
methamphetamine were slightly enhanced, suggesting 
that overexpression of the gene may increase vulnerabil-
ity to psychostimulants. These initial data indicate that 
overexpression of DTNBP1 has very subtle effects on the 
mouse phenotype. A more comprehensive behavioral 
assessment, with the inclusion of tests to evaluate effects 
on multidimensional cognitive function, is required to 
judge the heuristic value of this particular transgenic 
mouse and its validity as a model DTNBP dysfunction 
in schizophrenia.

Taken together, findings from the various DTNBP1 
mutant models largely implicate reduced DTNBP1 func-
tion in behavioral and neurobiological effects associated 
with the development of cognitive abnormalities found 
in schizophrenia. Data from these studies indicate that 
this gene is an important modulator of glutamate and 
dopamine neurotransmission, particularly in prefrontal 
cortex and hippocampus, brain areas that are crucial to 
control cognitive functions. In general, studies suggest 
that DTNBP1 mutant models represent a valuable and 
useful means of examining the pathophysiology of cog-
nitive endophenotypes, a symptom domain that as yet 
remains refractory to current treatment strategies in this 
disorder.

22q11.2 CHROMOSOME  
MICRODELETION

Misalignment of low-copy variants that flank the 
22q11.2 region resulting in nonallelic homologous 
recombination gives rise to microdeletions of this 
chromosomal region, which harbors approximately 
45 genes including proline dehydrogenase (PRODH), 
zinc finger, DHHC-type containing 8 (ZDHHC8), and 

Catechol-O-methyltransferase (COMT). Schizophre-
nia develops in 20–25% of individuals with this genetic 
microdeletion and is thus considered to be one of the 
main schizophrenia susceptibility loci in humans (Philip 
& Bassett, 2011). The phenotypic expression of 22q11.2 
deletion can be quite variable and include specific con-
genital heart defects, thymic hypoplasia, hypocalcemia, 
velopharyngeal defects, neurodevelopmental delays, 
cognitive deficits, and/or behavioral abnormalities, 
coupled with facial dysmorphologies (Karayiorgou 
& Gogos, 2004). These symptoms are also commonly 
known as DiGeorge syndrome and velocardiofacial 
syndrome (Scambler, 2000). Of those with the 22q11.2 
microdeletion that are subsequently diagnosed with 
schizophrenia, profound neurodevelopmental, cogni-
tive, and psychiatric symptoms are more prevalent and 
are often accompanied by the hallmark neuroanatomi-
cal features of classical schizophrenia (Chow, Zipursky, 
Mikulis, & Bassett, 2002; Drew et al., 2011).

Many of the genes affected in this deletion syndrome 
are expressed in humans and mice; hence mutant mouse 
models of 22q11.2 microdeletion have been, and continue 
to be, informative tools for investigation of potential 
molecular links between affected genes and phenotypic 
features (Paylor & Lindsay, 2006). Knock-out mice of 
the individual genes involved in this syndrome as well 
as mutants with complete long-range genetic deletions 
involving multiple genes have been engineered; the 
latter mouse lines, capturing more complex gene–gene 
interaction factors and redundancy mechanisms, and 
consequently, more accurately model the syndrome itself 
rather than simply informing on associations between 
single risk genes and pathology. Mouse models carrying 
chromosomal deficiencies spanning a segment syntenic 
to the 22q11.2 deletion syndrome include the Df(16)A+/− 
model (Stark et al., 2008) and the LgDel/+ model (Mer-
scher et al., 2001). Phenotypic assessment of these mutant 
mice has revealed increased anxiety, deficits in PPI, and 
impaired working memory when compared with wild-
types (Long et al., 2006; Sigurdsson, Stark, Karayiorgou, 
Gogos, & Gordon, 2010; Stark et al., 2008), which have 
been attributed to impaired functional connectivity 
between the hippocampus and prefrontal cortex (Sig-
urdsson et al., 2010) and altered neuronal morphology 
in the hippocampus (Mukai et al., 2008). High-resolution 
magnetic resonance imaging analysis of Df(16)A(+/−) 
mice indicates that this mouse model also recapitulates 
most of the hallmark neuroanatomical changes observed 
in human 22q11.2 deletion carriers (Ellegood et al., 2014).

Df1/+ transgenic mice are characterized by hemizy-
gous deletion of 18 genes in the 22q11-related region 
and have specific deficits in learning, memory, and sen-
sorimotor gating processes, and display enhanced loco-
motor responses to psychostimulants that resemble key 
features of 22q11 syndrome and schizophrenia (Kimoto 
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et al., 2012; Paylor et al., 2001). Whether the behavioral 
phenotype in patients is caused by heterozygous loss of 
a single gene or multiple genes is unclear. Mice with sin-
gle mutations of genes within the 22q11 region provide 
vital clues as to the extent and nature of the contribu-
tions of each gene to the overall phenotype. For example, 
similar sensorimotor gating deficits have been reported 
in PRODH (Gogos et al., 1999) and to a lesser extent in 
ZDHHC8 null mutants (Mukai et al., 2004), but not in 
heterozygotes, whereas Tbx1 and Gnb1l are the only ones 
that cause PPI impairments in the heterozygous state 
(Long et al., 2006; Paylor et al., 2006), suggesting that the 
latter two genes are major contributors to the psychiatric 
phenotype of patients with 22q11 deletion syndrome.

Interestingly, selective overexpression of COMT in 
the prefrontal cortex of Df1−/+ and associated increases 
in GABA release in the prefrontal cortex rescue the 
observed schizophrenia-like phenotypes in these mice 
(Kimoto et al., 2012), suggesting that COMT might be 
involved in the behavioral pathogenesis and conse-
quently may also have a role to play in future treatments 
for psychiatric symptoms of 22q11 deletion syndrome.

GENETIC MUTANT MODELS RELATED 
TO PUTATIVE PATHOPHYSIOLOGY

The Dopamine Hypothesis

The dopamine hypothesis of schizophrenia postulates 
that hyperactivity of dopamine D2 receptor neurotrans-
mission in subcortical and limbic brain regions contrib-
utes to positive symptoms of schizophrenia, whereas 
negative and cognitive symptoms of the disorder can be 
attributed to hypofunctionality of dopamine D1 recep-
tor neurotransmission in the prefrontal cortex (Toda & 
Abi-Dargham, 2007). In support of this, studies have 
shown an increased density of the dopamine D2 recep-
tor in postmortem brain tissue of schizophrenia sufferers 
(Seeman et al., 2000). It is also reported that upregulation 
of D2 receptors in the caudate nucleus of patients with 
schizophrenia directly correlates with poorer perfor-
mance in cognitive tasks involving corticostriatal path-
ways (Hirvonen et al., 2004). That dopamine-releasing 
drugs, such as amphetamine, possess psychotomimetic 
properties in addition to the D2-antagonist property 
common to many of the currently prescribed antipsy-
chotic treatments, giving credence to the dopamine 
hypothesis of schizophrenia.

Catechol-O-Methyltransferase Mutants

COMT is an enzyme that facilitates the degradation 
of active dopamine in the synapse and is expressed in 
the pyramidal neurons of the prefrontal cortex and 

hippocampus (Papaleo et al., 2008). Deletion of chromo-
some 22q11, which contains the COMT gene, has been 
linked with elevated psychosis and schizophrenia-like 
neurocognitive and behavioral symptoms (Bearden 
et al., 2004). Reintroduction of COMT with consequent 
overexpression of the enzyme in the prefrontal cortex of 
mice with 22q11.2 deletion syndrome, involving hemi-
zygous deletion of 18 genes in the 22q11-related region 
(Df1/+ mice), rescues the schizophrenia-like phenotype 
in this model; specifically, it normalized the enhanced 
sensitivity of Df1/+ mice to MK801 but also attenuated 
the abnormal response to GABAA receptor agonists, 
suggesting that the effects of COMT overexpression 
might be through the regulation of GABAergic system 
(Kimoto et al., 2012).

A functional polymorphism of the COMT gene, 
involving the allelic substitution of valine (Val) for 
methionine (Met), results in a fourfold reduction of 
COMT enzymatic activity; the enzymatic activity of 
the Val allele is ∼40% higher than that of the Met allele 
in postmortem human prefrontal cortex tissue (Chen 
et al., 2004). Family-based genetic association studies 
in schizophrenic patients and investigations in trans-
genic mice expressing varying degrees of the Val/Met 
polymorphism (Val/Val homozygotes, Val/Met het-
erozygotes, Met/Met homozygotes) have produced 
sufficient data to indicate that there is a direct relation-
ship between the level of expression of the Val geno-
type and deficits in executive function and cognitive 
performance, with the homozygous Val/Val genotype 
exhibiting the most severe impairments (Egan et al., 
2001; Papaleo et al., 2008; Tunbridge et al., 2006). Stud-
ies using mutant mice that express either upregulation 
or downregulation of COMT enzyme have revealed 
a number of schizophrenia-relevant effects as a result 
of altered COMT expression. Mice overexpressing a 
human COMT-Val polymorphism (characterized by an 
increase in COMT activity), exhibited significant defi-
cits in attention behavior, an attenuated sensitivity to 
stress and pain, and impaired working and recognition 
memory, the latter of which was ameliorated following 
amphetamine treatment, confirming the involvement 
of dopamine in cognition (Papaleo et al., 2008). On the 
other hand, COMT knockouts display an improvement 
in spatial and working memory (Babovic et al., 2008; 
Papaleo et al., 2008), a finding that is consistent with 
clinical studies showing an association between the 
Met allele (characterized by reduced COMT-mediated 
degradation of dopamine) and enhanced prefrontal 
cortex-mediated cognition. However, COMT inactiva-
tion, using both genetic and pharmacological methods, 
confers greater vulnerability to the effects of adolescent 
cannabinoid exposure on PPI in mice (O’Tuathaigh 
et al., 2012), extending previous reports of similar 
gene × environment effects in COMT knockouts on 
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neurotransmitter function in the brain (Behan et al., 
2012). Distinct behavioral differences between het-
erozygous and homozygous COMT knockouts have 
also been reported in which exploratory behavior and 
habituation to novelty were altered in the heterozy-
gous group specifically with no effect on homozygous 
mutants (Babovic et al., 2007). Sex differences were also 
observed; spatial and working memory performances 
were enhanced in male COMT knockouts despite the 
absence of any effect on cognition in females (Babovic 
et al., 2008). Overall, these mutant data demonstrate 
that chronic increase or decrease in COMT enzymatic 
activity markedly impacts cognition, particularly work-
ing memory and attentional performance.

D2 Receptor Mutant Model

In light of the fact that many of the known anti-
psychotic drugs target the D2 receptor, it follows that 
mutant mouse models with altered expression of these 
receptors provide insight into the putative involvement 
of D2-signaling in psychotic illness.

To test a possible causal relationship between increased 
striatal D2 receptor density and cognitive endopheno-
types, Kellendonk et al. (2006) developed conditional 
transgenic mice that overexpressed the D2 receptor in the 
striatum in a location-specific and temporally controlled 
manner. They reported an impaired prefrontal cortex-
mediated working memory and a reduced behavioral  
flexibility in the T-maze that persisted after the trans-
gene was switched off, indicating that these phenotypic 
changes occur as a result of secondary compensatory 
mechanisms and are not solely due to the direct effects 
of D2 receptor overexpression. Interestingly, D2 overex-
pression also induced an altered dopamine turnover and 
D1 receptor activation in the prefrontal cortex, which 
may account for the observed cognitive deficits in these 
transgenic mice. D2 receptor knockout mice also pro-
vide a means of assessing the importance of D2 recep-
tor in antipsychotic treatments. For example, they have 
been used to show that D2 receptors are not essential to 
the mechanism by which antipsychotic drugs attenuate 
amphetamine disruption of learning in the latent inhibi-
tion test (Bay-Richter et al., 2013).

GLUTAMATE HYPOTHESIS OF 
SCHIZOPHRENIA

It has been proposed that the dopamine endopheno-
type emerges as a result of a general synaptic discon-
nectivity between cortical and subcortical brain areas 
involving abnormalities of glutamatergic function (Laru-
elle et al., 2003). There is a substantive body of evidence 
for hypoglutamatergic function in schizophrenia. For 

example, NMDA receptor antagonists have been shown 
to possess psychotomimetic properties in healthy sub-
jects (Adler et al., 1999; Coyle, 2006; Kegeles et al., 2000), 
while also exacerbating psychotic symptoms in patients 
with schizophrenia (Malhotra et al., 1997). NMDA recep-
tor deficits have been reported in postmortem brains of 
schizophrenia sufferers (Stone et al., 2008) and brains of 
living patients as measured using single-photon emis-
sion computed tomography (Pilowsky et al., 2006). Mag-
netic resonance spectroscopy also demonstrated reduced 
in vivo levels of glutamate in the medial frontal region 
of patients with schizophrenia as compared with healthy 
individuals (Marsman et al., 2013).

Metabotropic Glutamate Receptor 2/3

The finding that the metabotropic glutamate receptor 
2/3 (mGlu2/3) metabotropic glutamate receptor ago-
nist, LY404039, improves clinical symptoms in schizo-
phrenia (Patil et al., 2007) has stimulated a greater 
interest in the putative interactions between mGlu2/3 
receptors and dopamine D2 receptors. A study using 
mGlu2 and mGlu3 receptor knockout mice has dem-
onstrated that the proportion of D2 receptors in the 
striata is elevated by 220% and that there is a 67-fold 
and 17-fold increase in the sensitivity to a D2 agonist, 
respectively, in these mutants (Seeman, Battaglia, Corti, 
Corsi, & Bruno, 2009), supporting the proposition that 
an interaction exists between these neurotransmit-
ter systems in the brain. Behavioral phenotyping of 
mGluR2−/− knockout mice revealed hyperactivity in a 
novel environment and an increase in locomotor sensiti-
zation and a conditioned place preference in association  
with repeated cocaine administration (Morishima et al., 
2005). This was paralleled by increased in vivo levels of 
dopamine and an altered pattern of glutamate release 
in the nucleus accumbens, indicating that mGluR2 con-
tributes to behavioral and neurochemical responses 
underpinning addiction to cocaine in mice (Morishima 
et al., 2005). mGluR3−/− mice demonstrated similar 
hyperactivity in a novel environment but also cognitive 
deficits in the T-maze and contextual fear conditioning 
test (Fujioka et al., 2014), which were accompanied by 
enhanced sensitivity to MK-801 in the Y-maze test (Lain-
iola, Procaccini, & Linden, 2014). Double knockout mice 
lacking both mGlu2 and mGlu3 (mGlu2/3−/−) have also 
been generated. These mice exhibit a subtle behavioral 
phenotype, being hypoactive under basal conditions 
and in response to amphetamine, present with a spatial 
memory deficit that depends on the arousal properties 
of the task (Lyon et al., 2011), but demonstrate signifi-
cant decreases in dopamine in the striatum and nucleus 
accumbens (Lane et al., 2013), providing further evi-
dence that group II metabotropic glutamate receptors 
influence dopamine neurotransmission.



16. MOUSE MODELS OF SCHIZOPHRENIA: RISK GENES276

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Metabotropic Glutamate Receptor 5

The group 1 metabotropic glutamate receptor 5 
(mGluR5) has been implicated in the neuropathology of 
various disorders including autism, Fragile X syndrome, 
attention deficit/hyperactive disorder, and schizophre-
nia. mGluR5 is expressed in the olfactory bulb, cortex, 
striatum, and hippocampus in the rodent brain where it 
is present in glutamatergic neurons, GABAergic inhibi-
tory neurons, and glia (Shigemoto et al., 1993). Mice 
lacking the mGluR5 receptor are hyperactive in novel 
environments (Bird et al., 2010; Gray et al., 2009), defec-
tive in the PPI test (Gray et al., 2009; Kinney et al., 2003), 
and exhibit decreased anxiety (Olsen, Childs, Stanwood, 
& Winder, 2010) and impaired learning (Lu et al., 1997). 
mGluR5 knockouts also have enhanced sensitivity to 
the effects of the NMDA antagonist MK-801, which are 
reversed by chronic administration of clozapine (Gray 
et al., 2009) and a diminished sensitivity to the locomo-
tor activating effects of cocaine, despite showing similar 
cocaine-induced increases in nucleus accumbens dopa-
mine levels (Chiamulera et al., 2001). However, specific 
ablation of mGluR5 in cortical glutamatergic neurons 
increased novelty induced locomotor activity but had 
no effect on sensorimotor gating, anxiety, motor coordi-
nation/learning, social interactions, or fear condition-
ing behaviors (Jew et al., 2013); these data suggest that 
mGluR5 signaling in glutamatergic neurons of the cortex 
modulates locomotor activity, whereas altered subcorti-
cal expression may be implicated in the emergence of 
other behavioral endophenotypes.

NMDA Receptor 1 Mutant Model

Support for the involvement of glutamatergic-NMDA 
neurotransmission in schizophrenia is provided by the 
finding that a 90% reduction in NR1 expression in mice 
induces behavioral abnormalities in adulthood, includ-
ing increased motor activity, stereotypy, and deficits in 
social and sexual interactions that match those reported 
in pharmacologically induced animal models of schizo-
phrenia (Mohn, Gainetdinov, Caron, & Koller, 1999). 
Interestingly, each of these behavioral abnormalities has 
been shown to have a unique developmental trajectory 
which also differs between NR1-deficient males and 
females (Milenkovic, Mielnik, & Ramsey, 2014); spe-
cifically, deficits in working memory and social behav-
ior emerged earlier in development and with greater  
severity in males than in females, whereas in both sexes 
executive function was most affected in periadoles-
cent mice while the capacity for problem solving in the 
puzzle box deteriorated as the mutant mice approached 
adulthood. Behavioral deficits in NR1-deficient mice 
were ameliorated by treatment with antipsychotics halo-
peridol and clozapine, treatments that directly target 

dopaminergic neuronal transmission and not glutamate, 
indicating that these neurotransmitter systems interact 
at some level while contributing to the schizophrenia-
like phenotype in these mutants (Mohn et al., 1999). 
Recent studies have also identified aspects of the NR1-
deficient mouse phenotype that resemble core symp-
toms of autism spectrum disorders including decreased 
social interactions, altered ultrasonic vocalizations, and 
increased repetitive behaviors (Gandal et al., 2012). 
Selective reduction in the NMDA R1 subunit in para-
valbumin-positive interneurons resulted in an autism-
like phenotype (Saunders et al., 2013), highlighting the 
potential importance of NMDA receptor activation of 
GABAergic interneurons in endophenotypes common 
to schizophrenia and autism such as social impairments.

d-Amino Acid Oxidase

The NMDA endogenous coagonist d-serine is metab-
olized by d-amino acid oxidase (DAO), an enzyme that 
is widely distributed in the central nervous system of 
humans and mice (Sasabe, Suzuki, Imanishi, & Aiso, 
2014) but is most abundant in the hindbrain (Yamanaka 
et al., 2012). Recent meta-analyses have confirmed the 
association between DAO and schizophrenia (Allen 
et al., 2008; Shi, Gershon, & Liu, 2008). Single-nucleotide 
polymorphisms within the G72 (also known as d-amino 
acid oxidase activator) and DAO locus have been associ-
ated with schizophrenia susceptibility (Chumakov et al., 
2002; Labrie, Wong, & Roder, 2012). Consistent with the 
NMDA receptor hypofunction hypothesis in schizo-
phrenia, an increase in DAO enzyme activity and gene 
expression has been reported in postmortem brain tissue 
of patients with schizophrenia (Bendikov et al., 2007).

Mice lacking DAO (DAO−/−) exhibit increased occu-
pancy of the NMDA receptor–associated glycine site, 
with a consequent increase in NMDA receptor signal-
ing but also display a reduced behavioral sensitivity to 
acute administration of the NMDA antagonists MK-801 
(Hashimoto, Yoshikawa, Niwa, & Konno, 2005) and 
phencyclidine (Almond et al., 2006). Behavioral analy-
ses of these mutant mice revealed reduced exploration 
in a novel environment relative to their wild-type coun-
terparts (Almond et al., 2006; Zhang et al., 2011), altered 
anxiety (Labrie, Clapcote, & Roder, 2009; Zhang et al., 
2011), enhanced extinction of contextual fear memory 
and reversal learning abilities (Labrie, Duffy, et al., 
2009), and both enhanced PPI responses (Zhang et al., 
2011) and no effects in this test (Almond et al., 2006). 
However, DAO−/− mice displayed enhanced sensitivity 
to the PPI-disruptive effect induced by the competitive 
NMDA antagonist, SDZ 220-581 (Zhang et al., 2011), and 
a significant attenuation of the cumulative stereotypy 
score induced by MK-801 compared to DAO+/+ mice 
(Hashimoto et al., 2005). Increased burst-firing of ventral 
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tegmental area dopaminergic neurons in vivo has been 
reported in DAO−/− mice (Schweimer et al., 2014), 
which could be attributed to enhanced NMDA activity 
on dopaminergic neurons, or alternatively, reduced fir-
ing of nearby GABAergic neurons because GABAergic 
neurons in the VTA receive glutamatergic inputs that 
express NMDA receptors. Interestingly, sodium benzo-
ate, the prototypical DAO inhibitor, has proven to be 
effective in ameliorating neurocognitive symptoms in a 
randomized clinical trial (Lane et al., 2013) and has led 
to greater interest in the development of DAO inhibi-
tors for the treatment of schizophrenia (Sacchi, Rosini,  
Pollegioni, & Molla, 2013).

METHODOLOGICAL CHALLENGES AND 
LIMITATIONS OF GENETIC MOUSE 

MODELS

The use of rodents as models of human psychiatric 
disorders will inevitably prompt vigorous debate con-
cerning the validity and translational value of these 
models. Whether gene function, neuronal circuitry, and 
the neurochemical underpinnings of disease features 
are conserved across the species is an important consid-
eration in the development of any animal model. The 
assumption that genotype–phenotype relationships are 
shared in rodents and humans requires that the impli-
cated gene affects analogous phenotypes in both species. 
Certain aspects of behavior and disease, particularly 
those that have their foundations in more primitive 
functions, can always be applied to animal constructs 
with greater ease than symptoms associated more com-
plex processes involving brain areas that have evolved 
in humans but not to the same extent in rodents. From 
an evolutionary perspective, behaviors such as explo-
ration, sociability, cognition, and aggression as well as 
biological processes involved in adaptation to variable 
and unpredictable environments, are features that are 
equally essential to survival and reproduction in rodents 
and humans, hence the genetic determinants of these 
traits are also likely to be conserved across the species.

Many of these behavioral domains are relevant to 
behavioral endophenotypes in schizophrenia (reviewed by 
Arguello & Gogos, 2006). Finding suitable phenotypic cor-
relates of the positive symptoms of schizophrenia in genetic 
rodent models has been challenging (Kirby, Waddington, & 
O’Tuathaigh, 2010; O’Tuathaigh, Desbonnet, Moran, Kirby, 
& Waddington, 2011). Schizophrenia is a uniquely human 
disease and the identification of appropriate behavioral 
equivalents for paranoid delusions and auditory and visual 
hallucinations in mice is difficult, but some parameters 
such as hyperactivity in response to novelty and hyper-
sensitivity to psychostimulants have been accepted as suit-
able counterparts in these models (Featherstone, Kapur, & 

Fletcher, 2007). An aspect of the conceptual framework of 
genetic models that is often neglected in animal studies 
is the consideration of a rodents’ natural environment 
and the appropriate use of ethological testing methods 
and interventions. Assessment of a particular aspect 
of behavior in a “naturalistic” setting (taking into con-
sideration feeding habits, social structure, and hazards 
associated with the animal’s natural habitat) provides a 
more accurate means of identifying links between gene 
mutations and behavioral phenotypes in mice, and is 
more likely to expose deficits that would not necessar-
ily be apparent using more traditional behavioral testing 
methods (Gerlai & Clayton, 1999; Tecott & Nestler, 2004; 
Wimer & Wimer, 1985).

It is now evident that a variety of genetic, epigenetic, 
and methodological factors complicate both the expres-
sion and assessment of mutant phenotypes; these include 
embryonic lethality, mouse genetic background, com-
pensatory and redundancy processes, pleiotropy, and the 
potential epigenetic effects of environmental variables. 
For a number of schizophrenia risk genes, notably those 
implicated in early development of the brain and heart 
such as NRG1, embryonic lethality can occur making 
it impossible to study the adult phenotype in homozy-
gous knockouts. In these cases, phenotypic assessment 
of heterozygotes has been invaluable, and perhaps in 
some scenarios more accurately reflects the genetic 
abnormality in clinical situations that rarely involve 
complete deletions of the risk gene in question. Genetic 
and phenotypic variations between inbred mouse strains 
are also important factors to consider in the construc-
tion of genetic models of disease. Phenotypic differences 
between and within mouse strains are well-characterized 
(Gerlai et al., 1999; Waddington et al., 2005) and may 
confound interpretations of any phenotype derived from 
a mutant mice on different genetic backgrounds (Crusio, 
2004; Gerlai, 1999; Phillips, Hen, & Crabbe, 1999), as has 
been reported for the sandy mouse where confound-
ing variables presented by mutations in DBA/2J mice 
affecting brain function resulted in the transfer of the 
DTNBP1 mutation onto a C57BL/6J genetic background 
(Talbot, 2009). In contrast to current efforts exploiting the 
mouse as a model organism based on isolated and tran-
sient crosses, recent efforts to develop the Collaborative 
Cross experimental model provide a large, common set 
of genetically defined mice that more accurately reflects 
the genetic structure of human populations and there-
fore may represent a better genetic framework to model 
human disease processes and study genetic disorders in 
mice (Churchill et al., 2004).

Because genetic mutations occur upstream from 
neurophysiological phenomena in schizophrenia, they 
are inevitably subject to environmental influences 
(Caspi et al., 2005; van Os et al., 2014) and compensa-
tory/adaptive genetic effects (Zhang, 2012) initiated 
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by homeostatic processes during development. This 
genetic buffering effect, a phenomenon known as epis-
tasis, usually involves alterations in the expression of 
other genes and hence introduces confounding factors 
that obscure any attempt to demarcate precise contribu-
tions made by a single gene to schizophrenia endophe-
notypes. Despite the unwanted complexity presented 
by epistatic processes in mutant models, they also add 
another dimension to these models with the potential 
to inform on relevant pathological processes involving 
gene–gene interactions in schizophrenia. Variable pen-
etrance of susceptibility genes, both within and across 
populations, may be modeled and better understood 
by studying gene–gene interactions in knockout mice. 
Furthermore, because most schizophrenia risk genes are 
implicated in neurodevelopmental processes, it is likely 
that the mutation is present throughout the develop-
ment and therefore analogous compensatory and redun-
dancy processes present in the knockout mouse are also 
present in humans.

CONCLUSIONS

The use of transgenic lines that are both spatially local-
ized and inducible at different stages across the lifespan 
of the mouse has circumvented many of the limitations 
of genetic models in schizophrenia. However, despite the 
merits of conventional and conditional genetic models, 
the fact remains that none of the candidate risk genes can 
account for a large proportion of disease cases. Hence, it 
is unlikely that examination of mouse models with sin-
gle-gene mutations will lead to major breakthroughs in 
our understanding of the pathogenesis of schizophrenia 
and as yet no effective therapeutic strategy has emerged 
from these preclinical genetic studies. However, these 
challenges and limitations should not negate the value 
of genetic mouse models in schizophrenia research. 
Replicating gene mutations of identified human suscep-
tibility genes of schizophrenia in rodents, despite obvi-
ous limitations, provides a useful means of examining 
genotype–phenotype relationships to disentangle the 
neurobiology of this complex disease, and consequently, 
will always have a place as an investigative tool to study 
specific genetic, and gene-environment contributions to 
the pathophysiology of schizophrenia.
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Many rodent models of schizophrenia have been 
developed. Some models were developed on the prem-
ise that drugs that induce or ameliorate schizophrenic 
symptoms should provide mechanistic insights of the 
disorder (i.e., predictive validity). Indeed, these mod-
els were useful for probing potential mechanisms of 
the disorder and screening of potential antipsychotic 
drugs.

Rodent models are of renewed and increased interest, 
as robust, reliable genetic factors are identified. Some 
genetic variants confer extraordinary high levels of risk 
for schizophrenia and many other neuropsychiatric 
disorders. These genetic factors are being exploited to 
develop mouse models with construct validity.

In this chapter, we describe these genetic variants and 
how this knowledge is capitalized on to improve our 
understanding of neuropsychiatric disorders. Knowl-
edge gained from these mouse studies, to date, has 
already forced us to rethink categorization of mental 
disorders. With genetic mouse models, we deconstruct 
mental disorders into genetically tractable elements and, 
hopefully, will then be able to reconstruct disorders from 
a mechanistic perspective.

COMMON AND RARE GENETIC 
VARIANTS

In recent years, there has been a concerted large-scale 
effort to identify genetic correlates of neuropsychiatric 
disorders. Many genetic variants have been identified, 
each of which is seen in a large percentage of individu-
als with schizophrenia (Ripke et al., 2013; Schizophrenia 
Working Group of the Psychiatric Genomics Consortium, 
2014; Stefansson et al., 2009) and autism spectrum dis-
orders (ASD) cases (Anney et al., 2010, 2012; Klei et al., 
2012; Wang et al., 2009; Weiss, Arking, Daly, & Chakra-
varti, 2009). These “common variants” are thought to col-
lectively confer considerable risk for mental diseases (Klei 
et al., 2012). However, the impact of each common variant 
on diseases is weak and may differ among individuals.

“Rare” genetic variants, each representing less than 
1% of disease cases, have also been identified. Copy 
number variants (CNVs) belong to this category and 
are characterized by deletions or duplications of kilo- to 
mega-base chromosomal segments. Deletion at human 
chromosome 22q11.2 is one of the most extensively stud-
ied rare CNVs since its association with schizophrenia  
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was established in 1992 (Driscoll, Budarf, & Emanuel, 
1992; Driscoll, Spinner, et al., 1992; Scambler et al., 1992; 
Shprintzen, Goldberg, Golding-Kushner, & Marion, 1992). 
Up to 30% and 27% of 22q11.2 deletion carriers are diag-
nosed with schizophrenia and ASDs, respectively; this 
CNV is also associated with high rates of attention deficit 
hyperactivity disorder (ADHD) (up to 37%), anxiety dis-
orders (up to 36%), and major depressive disorder (up to 
16%) (Schneider et al., 2014). About half of 22q11.2 dele-
tion carriers have intelligence quotients (IQs) lower than 
70 and are diagnosed with mild to  borderline intellectual 
disability(ID) (Butcher et al., 2012; De Smedt et al., 2007; 
Niklasson, Rasmussen,  Oskarsdottir, & Gillberg, 2009). 
Further, 22q11.2 duplication is consistently associated 
with developmental delays in cognitive, socioemotional, 
and motor function, and carriers are often diagnosed, at 
high rates, with ASDs, mild to borderline ID and ADHD 
(Alberti et al., 2007; Brunet et al., 2006; van  Campenhout 
et al., 2012; Courtens, Schramme, & Laridon, 2008;  
Descartes et al., 2008; Edelmann et al., 1999; Ensenauer 
et al., 2003;  Hassed, Hopcus- Niccum, Zhang, Li, & 
 Mulvihill, 2004; Hiroi et al., 2013; de La  Rochebrochard 
et al., 2006; Lo-Castro et al., 2009;  Mukaddes &  Herguner, 
2007; Ou et al., 2008; Portnoi, 2009;  Portnoi et al., 
2005; Ramelli et al., 2008;  Wentzel, Fernstrom, Ohrner, 
Anneren, & Thuresson, 2008). Although some groups 
previously suggested caution about the diagnosis of 
ASDs in individuals with 22q11.2 hemizygosity, over-
whelming evidence now indicates that deletion of the  
22q11.2 locus is a robust risk factor for ASDs as well 
as schizophrenia (Hiroi, Hiramoto, Harper, Suzuki, & 
Boku, 2012; Hiroi et al., 2013).

A recent estimate based on the study of 19,084 schizo-
phrenic patients conclusively established the rate of 
22q11.2 deletion in this population between 0.2% and 
0.3% (Rees, Walters, et al., 2014). Duplications at 22q11.2 
have also been identified as a rare variant among indi-
viduals with ASDs, intellectual disability, and devel-
opmental delay (Bucan et al., 2009; Cai et al., 2008; 
Christian et al., 2008; Guilmatre et al., 2009; Itsara et al., 
2010; Malhotra & Sebat, 2012; Marshall et al., 2008; Pinto 
et al., 2010; Sanders et al., 2011; Sebat et al., 2007; Szat-
mari et al., 2007).

Since 2007, many other rare CNVs have been discov-
ered and found to be robustly and reproducibly asso-
ciated with not only schizophrenia and ASDs but also 
ID, developmental delay, congenital malformations, 
bipolar disorder, and recurrent depression (Malhotra &  
Sebat, 2012), with some odds ratios estimated to be 
higher than 10. However, these odds ratios (ORs) are 
probably inflated because individuals with any neuro-
psychiatric disorder are excluded from controls (Kirov 
et al., 2013) and most CNV carriers have some neuro-
psychiatric disorders (Malhotra & Sebat, 2012). In fact, 
the penetrance of any mental disorder, including schizo-
phrenia, ID, ASDs, and developmental delay, is close 
to complete in most CNVs (Kirov et al., 2013). Accord-
ingly, no 22q11.2 CNV, for example, is included in the 
so-defined control, which in turn makes the OR of this 
CNV for schizophrenia infinite.

Kirov and colleagues corrected this bias and provided 
a more realistic risk estimate of various CNVs for schizo-
phrenia and developmental delay (DD)/congenital mal-
formations (CM)/ASDs (see Figure 1). Among them, 3q29 

FIGURE 1 Risk for copy number variant (CNV) carriers of developing disorders. Some representative high-risk cases of rare variants (<1%) 
are shown. For developmental delay (DD)/congenital malformation (CM)/autism spectrum disorders (ASDs), only those cases with frequencies  
at 0.25% or higher are shown. Penetrance estimates for schizophrenia (SCZ) (A) and DD/CM/ASDs (B) are based on a modified formula  
(Kirov et al., 2013). Frequency indicates an estimated frequency of each CNV in a disease population.
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deletion and 22q11.2 deletion confer extraordinarily high 
penetrance rates for schizophrenia; others confer consid-
erable risk, including 16p11.2 duplication, 7q11.23 dupli-
cation, 1q21.1 deletion, and 15q13.3 deletion. CNVs with 
high penetrance rates for DD/CM/ASDs include 22q11.2 
deletion, 15q11-13 duplication, 15q13.3 deletion, 1q21.1 
deletion, 16p11.2 deletion, 16p11.2 duplication, 22q11.2 
duplication, 15q11.2 deletion, and 16p13.11 duplication 
(Kirov et al., 2013; Malhotra & Sebat, 2012; Rees et al., 2013; 
Szatkiewicz et al., 2014). Although 7q11.23 deletion is listed 
as having high penetrance, it is associated with develop-
mental delays, but not ASDs (Malhotra & Sebat, 2012).

Interestingly, some rare CNVs are not disease spe-
cific even among carriers of the same CNV size. For 
instance, both schizophrenia and ASDs occur at high 
rates among carriers of 22q11.2 deletion, 16p11.2 dupli-
cation, 1q21.1 deletion, 15q11-13 duplication, 15q13.3 
deletion, 16p13.11 duplication, and 15q11.2 deletion; 
others are specific to either disorder (e.g., 7q11.23 dele-
tion, 3q29 deletion, 1q21.1 duplication, 17q12 deletion, 
22q11.2 duplication). The nonspecific impact of genetic 
variants for disorders might not be unique to rare 
CNVs. Some common variants contribute to suscepti-
bility to multiple psychiatric disorders (Cross-Disorder 
Group of the Psychiatric Genomics Consortium, 2013;  
Ruderfer et al., 2014; Steinberg et al., 2014). Emerging 
evidence does not support the assumption that there 
are genetic variants that contribute so selectively to any 
single neuropsychiatric disorder. The remaining ques-
tion is why a CNV generates so many diverse clinical 
diagnoses and why clinical diagnoses nevertheless differ 
among individual CNV carriers.

NEED FOR DIMENSIONAL SCALES OF 
NEUROPSYCHIATRIC DISORDERS

Neuropsychiatric disorders are defined by clinical 
diagnostic scales and diagnosis is done when symptoms 
thought to represent the essential, core feature(s) of a 
given psychiatric disorder are concurrently present. For 
example, the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM) successfully established diagnostic 
reliability using standardized criteria.

Schizophrenia is a clinically defined disorder by a set 
of specific diagnostic criteria. Psychopathological fea-
tures of this diagnosis include positive symptoms, nega-
tive symptoms, and lowered levels of social functioning 
and self-care. The positive symptoms include delusions 
and hallucinations, and the negative symptoms include 
dimensions of drive and volition, manifesting as lack 
of motivation, reduction in spontaneous speech, and 
social withdrawal. The impaired neurocognitive func-
tioning is characterized by lower scores than healthy 
subjects in attention, speed of processing, working and 

long-term memory, executive function, and social cog-
nition (Fioravanti, Carlone, Vitale, Cinti, & Clare, 2005).

This constellation of disease-associated features is used 
to provide a categorical classification of schizophrenia. 
However, none of the symptomatic features is specific to 
schizophrenia. The cardinal symptoms of this disorder 
are delusions and hallucinations, but these are also seen 
in patients with bipolar disorder. Mild forms of delu-
sions and hallucinations transiently appear in as much as 
8% of healthy people (Van Os, Linscott, Myin-Germeys, 
 Delespaul, & Krabbendam, 2009). The neurocognitive 
symptoms only quantitatively deviate from the norm, 
and are not an all-or-none feature or specific to schizo-
phrenia; defective social cognition is seen in patients with 
ASDs, ADHD, and developmental language disorders 
(Korkmaz, 2011) as well as those with schizophrenia 
(Sprong, Schothorst, Vos, Hox, & van Engeland, 2007). 
Defective cognition, such as working memory, is seen in 
patients with schizophrenia (Piskulic, Olver, Norman, &  
Maruff, 2007). However, adolescents and adults with 
ASDs also perform poorly on working memory tasks, 
compared with age and IQ-matched controls, although 
negative results exist among children with ASDs in spe-
cific working memory tasks that do not include high 
memory load and temporal span (Bennett & Heaton, 
2012; Luna, Doll, Hegedus, Minshew, & Sweeney, 2007; 
O’Hearn, Asato, Ordaz, & Luna, 2008; Pennington & 
Ozonoff, 1996; Russo et al., 2007). Working memory 
deficits are also associated with ADHD ( Martinussen, 
Hayden, Hogg-Johnson, & Tannock, 2005). There is little 
evidence that these symptomatic elements are mecha-
nistically related as a unit in the way they are perceived 
as construct elements of a disorder by clinical diag-
nosis. Therefore, a realistic and practical approach at 
this point is to separately identify mechanisms under-
lying each of the symptomatic elements or symptom 
dimensions.

In addition to inclusion criteria, an exclusion crite-
rion of the DSM-V is inconsistent with CNV-associated 
psychiatric disorders. According to the DSM-V, schizo-
phrenia-like symptoms are excluded from the diagnosis 
of schizophrenia if there is evidence from the history, 
physical examination, or laboratory findings that the 
disturbance is the direct physiological consequence of a 
general medical condition. For example, if a CNV or any 
resulting physical abnormalities are defined as “medi-
cal conditions,” then by definition, any schizophrenic 
symptoms in these patients cannot be diagnosed as 
schizophrenia. However, it is difficult to prove that psy-
chosis is the direct physiological consequence of physi-
cal abnormalities or associated stress. Almost all CNVs 
listed previously (see Figure 1) are associated with poor 
growth, craniofacial anomalies, cardiovascular abnor-
malities, or weak muscle tone (Girirajan et al., 2012). It is 
questionable to assume that diagnosis of schizophrenia 
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should be limited to ‘pure’ schizophrenia without medi-
cal conditions.

It does not necessarily follow that a classification 
has a mechanistic basis simply because categorical clas-
sification is useful for clinical diagnosis and guidance 
for treatment of mental disorders. Clearly dimensional 
measures more akin to symptomatic elements should 
be focused.

DIMENSIONAL BEHAVIORAL  
MEASURES IN MICE

Many behavioral measures currently in use for 
assessment of mouse models of neuropsychiatric disor-
ders were developed by psychologists and behavioral 
neuroscientists who were interested in specific psy-
chological and behavioral properties in rodents. These 
tasks are dimensional and quantitative in nature. Vari-
ous behavioral tasks are available to evaluate percep-
tion, cognitive, social, affective, emotional, and motor 
processes.

Prepulse Inhibition

Prepulse inhibition (PPI) is a phenomenon in which 
a weak acoustic auditory stimulus inhibits a startle 
response induced by the subsequent presentation of a 
loud sound. This is consistently seen in both humans 
and rodents. Defective PPI is seen not only in schizo-
phrenic patients but also in individuals with schizotypal 
personality disorder, obsessive compulsive disorder, 
Tourette syndrome, Huntington disorder, bipolar disor-
der, seizures, Lewy body dementia, and ADHD (Geyer, 
2006). PPI deficits are not consistently seen in individ-
uals with ASDs but a subtle deficit appears only at a 
high PPI under a specific parameter (Belmonte et al., 
2004; McAlonan et al., 2002; Ornitz, Lane, Sugiyama, &  
deTraversay, 1993; Perry, Minassian, Lopez, Maron, &  
Lincoln, 2007; Yuhas et al., 2010). Although often 
equated with a schizophrenia model, PPI deficits have 
no specificity.

Reciprocal Social Interaction

Defective social motivation and cognition are seen 
in patients with schizophrenia and ASDs (Penn, Corrigan, 
Bentall, Racenstein, & Newman, 1997; Sigman, 1998). 
Children with ADHD also have difficulties in social 
interaction for a different reason; their impulsive, self- 
centered nature often has a negative impact on their  
social interaction (Walcott & Landau, 2004). Such nuanced 
differences in the nature of social interaction deficits  
in humans cannot be clearly parceled out in rodent 
tasks.

There are two widely used methods to evaluate social 
behaviors in rodents. The naturalistic cage setup pro-
vides the most detailed insights into reciprocal social 
interactions (Silverman, Yang, Lord, & Crawley, 2010). 
This test evaluates the reciprocal nature of social inter-
action and allows evaluation of ethological details. In 
this task, two mice are placed into a home cage setting. 
Neither mouse has previously resided in the cage, so 
there is no “resident’ mouse and aggressive behavior is 
minimized.

The other technique, known as the three-chamber 
“sociability” test, is also widely used because of its auto-
mated nature. In this task, a stimulus mouse is confined in  
a small cage or a compartment placed in one of the three 
chambers, and a test mouse’s approach to the cage or 
compartment is measured. Several technical issues have 
arisen. First, the actual time spent near the caged stimulus 
mouse is highly variable across cohorts meaning that such  
quantitative measures cannot be compared (Crawley, 
2014). Second, scores of sociability tests in the three- 
chamber apparatus do not correlate well with those of 
genuine reciprocal social interaction seen in the naturalistic 
test setup (Fairless et al., 2013; Spencer et al., 2011,  Spencer, 
Alekseyenko, Serysheva, Yuva-Paylor, & Paylor, 2005). 
Thus, the naturalistic cage setup is desirable for evaluation 
of genuine reciprocal nature of social interaction.

Working Memory, Executive Functions,  
and Flexibility

Working memory is the cognitive capacity to temporar-
ily hold incoming information to decide the next course 
of action based on that memory. This memory capacity is 
impaired in patients with schizophrenia (Piskulic et al., 
2007) and ADHD (Martinussen et al., 2005; Westerberg, 
Hirvikoski, Forssberg, & Klingberg, 2004), and in ado-
lescents and adults with ASDs (Bennett & Heaton, 2012; 
Pennington & Ozonoff, 1996; Russo et al., 2007).

Spontaneous alternation in the T- or Y-maze is a widely 
used task to measure working memory and memory-
based repetitive behavioral tendencies (Lalonde, 2002). 
This task uses a mouse’s natural behavioral tendency to 
alternate behavior based on memory. To alternate behav-
ior, animals need to remember which of the two goal arms 
they just visited at a previous trial and alternate their visit 
at the next trial. One advantage of this task is that it does 
not need prior training that includes processes other than 
working memory. One interpretative caveat of this task is 
that repeated visits to the same arm could reflect a work-
ing memory deficit, repetitive behavioral tendency, or 
both; these elements cannot be easily dissociated.

Rewarded alternation and attentional set-shifting are 
also used to evaluate working memory and an overall 
executive function, respectively. Cognitive inflexibil-
ity is noted in patients with schizophrenia and ASDs. 
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Reversal learning has been used to evaluate the degree of 
cognitive flexibility in various memory tasks, including 
attentional set shifting, Morris water maze, T-maze, and 
discriminative operant learning (Brigman,  Graybeal, & 
Holmes, 2010). If a previously acquired behavior cannot 
be easily modified upon a change in contingency, this is 
taken as lack of flexibility.

One technical issue with these tasks is that they 
require prior training that does not require working 
memory, executive function, or reversal. If a mutant 
mouse is altered in its motivation for food or general 
learning, subsequent performance in the target func-
tion would be indirectly affected and the phenotype 
cannot be attributed to deficits in the target function 
alone. Another interpretative caution for working mem-
ory is that mice might show deficits only when a delay 
between trials is imposed to increase working memory 
load. Unless delays are imposed, lack of a phenotype in 
this task should not been taken to suggest that working 
memory is not affected.

There are other rodent memory tasks, but their rel-
evance to neuropsychiatric disorders is less clear. Execu-
tive function and working memory are far more affected 
in ASDs; individuals with ASDs are not impaired in cued 
recall, recognition, and new learning ability (Bennetto, 
Pennington, & Rogers, 1996). Schizophrenic patients also 
show varying degrees of impairments in different mem-
ory tasks (Heinrichs & Zakzanis, 1998); these individuals 
are more impaired in recall than recognition (Aleman, 
Hijman, de Haan, & Kahn, 1999). Working memory and 
executive functions are consistently lower in schizo-
phrenic patients (Schaefer, Giangrande, Weinberger, & 
Dickinson, 2013; Wilk et al., 2005), but other memory 
forms (e.g., reference memory) might not genuinely be 
affected (Doughty & Done, 2009).

Anxiety-Like Behaviors

Anxiety is a highly prevalent comorbidity of schizo-
phrenia. Although anxiety itself is not a symptomatic 

element of ASDs, it is also a highly comorbid trait of 
ASDs (van Steensel, Bogels, & de Bruin, 2013; van 
Steensel, Bogels, & Perrin, 2011). The elevated plus maze 
is a widely used standard task to evaluate anxiety-like 
behavior. Thigmotaxis in an inescapable open field is 
also a well-accepted measure of anxiety-related behavior.

Although the elevated plus maze and thigmotaxis 
both measure the level of anxiety, stress levels are con-
sidered much lower when mice have a choice to escape 
from an open arm to a closed arm in the elevated plus 
maze than when they do not in the inescapable open 
field (Misslin, Herzog, Koch, & Ropartz, 1982; Zhu, Lee, 
Agatsuma, & Hiroi, 2007). There are many other mouse 
tasks that rely on ethologically different aspects of anx-
iety-related behavior and involve varying degrees of 
stress. They include marble burying (Nicolas, Kolb, & 
Prinssen, 2006; Njung’e & Handley, 1991) and novelty-
suppressed feeding (Dulawa & Hen, 2005).

When more than one anxiety task is used, a lack of 
consistent phenotypes in different anxiety tasks should 
not be taken to indicate weak effects or lack of corrobo-
ration. Stress levels differ in anxiety tasks with varying 
degrees of choices (Misslin et al., 1982). As each task 
includes a nonidentical mixture of behavioral elements, 
inconsistent phenotypes across those tasks could reveal 
the more nuanced nature of anxiety phenotypes. Evi-
dence indicates that anxiety-like behaviors seen in dif-
ferent anxiety tasks have distinct genetic underpinnings 
(Takahashi, Nishi, Ishii, Shiroishi, & Koide, 2008). Phe-
notypic inconsistency among the various anxiety tasks 
could be exploited to explore the contribution of specific 
gene mutations to a select element of anxiety.

A phenotype often appears as a shift on a dimension; 
a behavioral phenotype is not a categorical inability of 
a given capacity (see Figure 2) (Hiroi et al., 2013). The 
way the average shifts also differs among behavioral 
phenotypes. In most cases, the data distribution shifts 
with varying degrees of overlap with control mice (see 
PPI and vocalization data). In other cases (see recipro-
cal social interaction), mutant data are distributed lower 

FIGURE 2 Quantitative shifts in the data structure of various dimensional phenotypes caused by Tbx1 heterozygosity. Black circles represent 
wild-type mice and open circles represent heterozygous mice. (A) Prepulse inhibition, (B) ultrasonic neonatal vocal calls, and (C) reciprocal social 
interaction. Adapted from our previous publication (Hiroi et al., 2013).
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than the lowest wild-type data. This again emphasizes 
the importance of a quantitative analysis of dimensional 
phenotypes.

VALIDITY OF MOUSE MODELS

Three criteria have been used to evaluate the validity 
of a rodent model. One is face validity, that is, what is 
modeled in rodents should look similar to what is seen in 
humans. Deficits in PPI are certainly similar in humans 
and mice. However, phenomenological similarities do 
not guarantee a shared mechanistic basis. Rodents and 
humans tend to use ethologically dominant sensory 
organs to achieve the same functions. For example, olfac-
tory cues are dominant in social interaction in rodents, 
but visual and auditory cues are dominant in humans. 
Similarity should be evaluated considering this interpre-
tative constraint.

A second criterion is predictive validity in that the 
effects of a drug on a rodent model should predict the 
effects of that drug on humans. Models that satisfy this 
criterion have been used to explore mechanistic bases of 
psychiatric disorders. For example, rodent studies have 
used drugs that induce symptoms of a neuropsychiat-
ric disorder or drugs that attenuate disease symptoms 
in humans. This criterion also has interpretative caveats. 
First, drugs have many side effects that are not relevant 
to the symptoms of a disorder. For example, although 
antipsychotic drugs suppress positive symptoms (e.g., 
hallucination), they also induce motor side effects. Sec-
ond, in most cases, drugs do not achieve specificity 
and thus do not reveal a disease-specific process. Anti-
psychotic drugs have been used to test the relevance of 
rodent behavior to schizophrenia. Clozapine, olanzap-
ine, and risperidone reduce symptomatic severity of 
schizophrenia and have been tested to see if they attenu-
ate a certain behavioral phenotype in rodent models. 
Many of these antipsychotic drugs are also used to sup-
press some symptomatic elements of ASDs (McDougle, 
Stigler, Erickson, & Posey, 2008), obsessive compulsive 
disorders, and bipolar disorder. Ketamine and phen-
cyclidine, which induce both positive and negative  
symptoms of schizophrenia in humans, have been used 
to evaluate if a behavioral phenotype is exacerbated by 
these drugs in rodents. However, because ketamine has a 
rapid antidepressant effect as well (Abdallah, Sanacora, 
Duman, & Krystal, 2014), it is not clear if any behavior 
induced by ketamine is relevant to positive symptoms 
of schizophrenia or antidepressant effects. Neverthe-
less, rodent models that satisfy this criterion are likely to 
reveal mechanistic substrates of symptomatic elements 
that cut across disease classification.

The last criterion is construct validity, that is, a 
share etiology. Many CNVs can be reliably modeled in 

mice, because genes encoded in CNVs are often well- 
conserved in the murine chromosomes. Mouse models 
of CNVs satisfy construct validity in that the human 
copy number variation can be faithfully recapitulated.

GENETIC MOUSE MODELS OF CNVs

There are published mouse models of several CNVs. 
They include paternal and maternal 15q11-13 duplica-
tion, 15q13.3 deletion, 16p11.2 deletion and duplication, 
and 22q11.2 duplication and deletion (see Table 1). Some 
of these CNV models recapitulate dimensional features 
of human CNVs. A mouse model of paternal 15q11-13 
duplication exhibits low levels of sociability and flexibil-
ity and a heightened anxiety-like trait (Nakatani et al., 
2009; Tamada et al., 2010). Mouse models of 15q13.3 
hemizygous deletion show increased aggression and 
poor spatial memory performance (Fejgin et al., 2013). 
Mouse models of 22q11.2 hemizygosity exhibits lower 
levels of PPI, working memory and reversal learning, 
and a high level of anxiety (see Table 1).

Segmental overexpression and deletion in genetic 
mouse models is a highly effective approach for iden-
tification of small segments that are critical for behav-
ioral dimensions. Using this approach, we identified 
specific small segments critical for distinct behavioral 
phenotypes. Overexpression of a 200-kb segment, 
termed a 200-kb critical region, of human 22q11.2, 
which includes TBX1, GP1BB, SEPT5, and GNB1L  
(Figure 3, see 200-kb Tg model; see also Table 1) caused 
social behavioral deficits and spontaneous exacerba-
tion of repetitive hyperactivity, the latter of which was 
attenuated by chronic treatment with the antipsychotic 
drug clozapine (Hiroi et al., 2005).

Overexpression of an adjacent 190-kb region (TXNRD2, 
COMT, and ARVCF) selectively prevents developmen-
tal maturation of working memory capacity from 1 to 
2 months of age (Figure 3, see 190-kb Tg model; see also 
Table 1); this copy number variant had no effect on PPI, 
social interactions, or anxiety-like behaviors (Suzuki, 
Harper, Hiramoto, Funke, et al., 2009). Complementing 
our observations, Stark and colleagues demonstrated that 
overexpression of segments outside these two segments 
had no effect on PPI (see Figure 3, Tg-2, and Table 1) or par-
adoxically increased PPI (see Figure 3, Tg-1, and Table 1)  
(Stark et al., 2009).

Paylor and colleagues compared the impact of vari-
ous, partially overlapping hemizygous deletions of 
murine chromosome 16, the ortholog of human 22q11.2 
(see Figure 3, Df(16)1/+ to Df(16)5/+) (Paylor et al., 
2006). Their data showed that PPI was reduced in mice 
with large, partially overlapping deletions as long as 
the deletion included the 200-kb critical region (see blue 
frame, Df(16)1/+, Df(16)3/+, Df(16)4/+); hemizygous 
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TABLE 1 phenotypes of CNV mouse models

CNV Designation
ES or Zygote Cell 
Background Additional Background PPI WM RL SI Ax LA References

15q11-13 dup patDp/+ 129S7/SvEvBrd-
Hprt<b-m2>

129S6/SvEvTac or 
C57BL/6J

– – ↓ ↓ ↑ – Nakatani et al. 
(2009)

matDp/+ – – – – – –

15q11-13 dup patDp/+ 129S7/SvEvBrd-
Hprt<b-m2>

C57BL/6J, congenic > 10 
backcrosses

– – ↑ ↓ Tamada et al. 
(2010)

15q13.3 del Df(h15q13)/+ C57BL/6NTac C57BL/6NTac, co-isogenic – – – ↓ Fejgin et al. (2013)

16p11.2 del df/+ 129S7/SvEvBrd-
Hprt<b-m2>

F2 C57BL/6N – ↑ Horev et al. (2011)

16p11.2 dup df/+ – ↓

16p11.2 del 16p11+/− 129/Ola, 129S1/SvImJ CD1; C57BL/6N, at least 
5–7 backcrosses

– – – ↑ Portmann et al. 
(2014)

22q11.2 dup 200-kb Tg High copy FVB FVB, co-isogenic ↓ ↑ Hiroi et al. (2005)

Low copy FVB C57BL/6J; N4 FVB ↓ ↑

22q11.2 dup 190  kb Tg FVB C57BL/6J, congenic 10 
backcrosses

– ↓ – – ↓ Suzuki, Harper, 
Hiramoto, Funke, 
et al. (2009)

22q11.2 dup Tg-1 FVB/N FVB/N × SW × C57BL/6J, 
N2 backcross

↑ – – Stark et al. (2009)

Tg-2 – – ↓

Tg-3

22q11.2 del 129S6/SvEvTac 129S6/SvEvTac co-isogenic 
or NIH Black Swiss

↑ – – Kimber et al. (1999)

22q11.2 del Df(16)1/+ 129S7/SvEvBrd-
Hprt<b-m2>

129S5/SvEvBrd; 
C57BL/6c−/c−, 4–5 
backcrosses

↓ – – Paylor et al. (2001)

22q11.2 del Df(16)1/+ 129S7/SvEvBrd-
Hprt<b-m2>

129S5/SvEvBrd; 
C57BL/6c−/c−, 5–6 
backcrosses

↓ Paylor et al. (2006)

Df(16)2/+ –

Df(16)3/+ ↓

Df(16)4/+ ↓

Df(16)5/+ –

22q11.2 del Lgdel/+ 129/Sv, C57BL/6J, SJL; 
129S6/SvEvTac; FVB/N

C57BL/6; 129Sv; CD1; 
C57BL/6J, >5 backcrosses

↓ – – Long et al. (2006)

22q11.2 del Df(16)A+/- 129S7/SvEvBrd-
Hprt<b-m2>

C57BL/6J, 3 backcrosses ↓ ↓ ↑ ↑ Stark et al. (2008)

22q11.2 del Df(16)A+/- 129S7/SvEvBrd-
Hprt<b-m2>

C57BL/6J, congenic – Sigurdsson et al. 
(2010)

22q11.2 del Lgdel/+ 129/Sv, C57BL/6J, SJL; 
129S6/SvEvTac; FVB/N

C57BL/6; 129Sv; CD1; 
C57BL/6J, >25 backcrosses

↓ Meechan et al. (2013)

Del, deletion; dup, duplication; F#, generation of intercrossed line; N#, generation of backcrossed line; red arrow, effects consistent with human phenotypes; black arrow, effects inconsistent with phenotypes or 
not reported in humans; black bar, nonsignificant genetic effects on phenotypes.
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FIGURE 3 Mouse models of 22q11.2 CNVs. Regions of which copy number variants induce behavioral phenotypes consistent (red) and incon-
sistent (black) with human variant carriers are indicated. Blue frame shows a 200-kb critical region of which overexpression induces defective 
social behaviors and clozapine-responsive compulsive hyperactivity and outside of which hemizygous deletions do not induce prepulse inhibi-
tion deficits. 1, Hiroi et al. (2005); 2, Suzuki, Harper, Hiramoto, Funke, et al. (2009); 3, Stark, Burt, Gogos, and Karayiorgou (2009); 4, Kimber et al. 
(1999); 5, Paylor et al. (2001) and Paylor et al. (2006); 6, Long et al. (2006); 7, Stark et al. (2008). Adapted and updated from Hiroi et al. (2013).

deletions placed outside the 200-kb region had no effect 
on PPI (Figure 3; see Df(16)2/+ and Df(16)5/+). Further, 
Kimber and colleagues showed that hemizygous dele-
tion from Zfp520-ps to Slc25a1 increases PPI, a trend 
opposite to what is seen in 22q11.2 hemizygous deletion 
patients (Sobin, Kiley-Brabeck, & Karayiorgou, 2005).

Taken together, these studies identified the 200-kb 
critical region and the adjacent190-kb region as causative 
for distinct sets of nonidentical behavioral phenotypes 
relevant to developmental neuropsychiatric disorders.

A similar approach was taken to narrow down spe-
cific genes responsible for intellectual disability and 
developmental delays associated with 7q11.23 hemizy-
gous deletion. Deletion of the entire mouse ortholog of 
7q11.23 from Gtf2i to Fkbp6 impairs motor coordination 
and spatial memory and increases startle to an acoustic 
stimulus and social behavior, reminiscent of hyperso-
ciality in 7q11.23 deletion patients (Segura-Puimedon 
et al., 2014). Li and colleagues separately deleted the 
proximal (from Gtf2i to Link1) and distal (from Link1 to 
Trim50) segments of murine 7q11.23 ortholog and dem-
onstrated that the proximal deletion selectively induced 
increased reciprocal social interaction, acoustic startle 
response to pain and impaired PPI (Li et al., 2009). In 
contrast, mice with the distal deletion exhibited defi-
cits in contextual and cued fear conditioning. Anxiety-
related behaviors were affected by both proximal and 
distal deletions. The unequal effects of segmental dele-
tions suggest that individual 7q11.23 genes have distinct 

phenotypic targets, much in the same manner of 22q11.2 
genes (Hiroi et al., 2013).

TECHNICAL ISSUES IN THE USE  
OF GENETIC MOUSE MODELS

Many technical issues have arisen in characterizing 
behavioral phenotypes of mouse models of CNVs or 
single gene knock-out or transgenic mice.

Indirect Effects

Note that behavioral deficits could result from sec-
ondary effects. Fuchs and colleagues recently reported 
that mice with a large hemizygous deletion of the murine 
22q11.2 ortholog (i.e., Df(16)1/+) have a hearing impair-
ment and suggested that PPI deficits seen in this mouse 
might reflect inability to reliably detect the subtle sound 
of a prepulse stimulus (Fuchs et al., 2013). Approxi-
mately 41% of 22q11.2 deletion patients (Dyce et al., 
2002; Persson, Friman, Oskarsdottir, & Jonsson, 2012) 
have hearing impairment. Deletion of Tbx1 alone, which 
is included in all large 22q11.2 hemizygous mouse mod-
els with PPI deficits and the 200-kb 22q11.2 Tg mouse, 
results in a hearing impairment (Liao et al., 2004). On the 
other hand, the absence of PPI deficits in small hemizy-
gous mouse models (Df(16)2/+ and Df(16)5/+) and the 
190-kb duplication mouse model still reliably rules out 
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the functional contribution of genes encoded in these 
segments to PPI deficits and by exclusion still suggests 
the potential importance of the 200-kb critical region for 
PPI and other behavioral phenotypes (see Figure 3). In 
this regard, lack of phenotypic effect is as important as 
the presence of a phenotype in narrowing down a critical 
segment.

Genetic Background

A phenotype might be induced by unequal genetic 
backgrounds between mutant and wild-type littermates, 
in addition to or instead of the mutation. This interpre-
tative issue is not unique to CNV models; it also affects 
single gene mutant mice. This issue arises when gene 
manipulation and breeding are performed in two differ-
ent inbred mouse lines. Genetic manipulation is intro-
duced into embryonic stem (ES) cells, and most widely 
used ES cells have their origin in various 129 inbred sub-
strains. In this case, the genome of ES cells carries alleles 
specific to 129 inbred mouse lines. This mouse is then 
crossed to good breeders such as C57BL/6J or C57BL/6N 
inbred lines. When such breeding is performed, alleles in 
the genetic background of 129 substrains and C57BL/6 
lines are mixed through recombination at F2 and onward, 
but they are not mixed evenly between wild-type mice 
and mutant mice. Alleles present near the targeted seg-
ment (or gene) do not easily go through recombination 
because of their very proximity and remain together on 
the chromosomal copy; the same chromosomal region 
of a wild-type copy is largely composed of alleles of a 
breeder mouse. Thus, whereas a hemizygous mouse 
carries one chromosomal copy with more 129-derived 
alleles and one wild-type copy with mostly breeder 
alleles (e.g., C57BL/6J), a wild-type littermate carries 
two chromosomal copies with mostly breeder alleles 
(e.g., C57BL/6J). In other words, mutant mice differ from 
their wild-type littermates not only in the targeted chro-
mosomal segment or gene but also in the alleles linked to 
that region. Because different inbred mouse lines widely 
differ in behavior (Crusio, 2004; Gerlai, 2001; Marshall 
et al., 2013; Wolfer, Crusio, & Lipp, 2002), electrophysi-
ological properties of neurons (Nguyen, Abel, Kandel, & 
Bourtchouladze, 2000; Nguyen, Duffy, & Young, 2000), 
and anatomical and neuronal development (Cominski, 
Turchin, Hsu, Ansonoff, & Pintar, 2012; Marshall et al., 
2013; Rosen & Williams, 2001; Wahlsten, Metten, & 
Crabbe, 2003; Yoo et al., 2010), any phenotypic difference 
between wild-type and mutant (e.g., CNV, knock-out) 
mice could potentially reflect the impact of the allelic  
difference—as well as or instead of a CNV or the tar-
geted gene. When initial behavioral characterization is 
conducted in mice with a mixed genetic background, 
this interpretative limitation should be taken into con-
sideration (see Table 1).

One solution to this problem is to backcross such a 
mutant mouse to a breeder mouse (e.g., C57BL/6J or N) 
for 10 or more generations to achieve a higher degree 
of homogeneity (i.e., certified congenic mouse) in the 
genetic background between wild-type and mutant 
mice (Silver, 1995). The number of 129-Sv alleles from 
ES cells decreases at each backcrossing generation and 
is replaced by alleles of the breeder. On average, the 
amount of alleles from ES cells estimated to be retained 
is 321, 20 and 5  Mb at four, eight, and 10 generations of 
backcrossing, respectively (Bolivar, Cook, & Flaherty, 
2001; Flaherty & Bolivar, 2007). However, this estimate 
is largely driven by genomic regions unlinked to the 
deleted gene. Alleles of genes located in the proximity 
of the targeted gene (i.e., linked genes) are not read-
ily replaced by those of the breeder, and 82-, 46.7-, and 
37.5-Mb alleles are estimated to be derived from ES 
cells at four, eight, and 10 generations of backcrossing, 
respectively (Bolivar et al., 2001; Crusio, 2004; Flaherty 
& Bolivar, 2007; Wolfer et al., 2002). Phenotypic data of 
noncongenic mice suffer from interpretative ambiguity.

Another solution is to generate a CNV copy using 
ES cells derived from C57BL/6N mice or FVB mice and 
breed with the same inbred mouse line to generate a co-
isogenic mouse (Fejgin et al., 2013; Hiroi et al., 2005). This 
is the best currently available approach to rule out the 
impact of unequal genetic backgrounds between mutant 
and wild-type littermates.

Apparent Absence of Phenotypes

Available noncongenic mouse models of 16p11.2 
hemizygous deletion and duplication show no detect-
able phenotypic features of working memory, “sociabil-
ity,” or anxiety (Horev et al., 2011; Portmann et al., 2014) 
(see Table 1). Even in congenic or co-isogenic mouse 
models, there are notable cases of apparent lack of phe-
notypes (Table 1). A congenic mouse model of large 
22q11.2 deletion (Df(16)A/+) is not impaired in spa-
tial working memory (Sigurdsson, Stark, Karayiorgou, 
Gogos, & Gordon, 2010). A co-isogenic mouse model of 
15q13.3 deletion is apparently normal in PPI, working 
memory, or anxiety-like behaviors (Fejgin et al., 2013). 
Further, a congenic mouse model of paternal 15q11-13 
duplication is indistinguishable from wild-type mice in 
PPI and working memory (Tamada et al., 2010).

There are many possible factors that contribute to 
the weak or absent phenotypes. First, it remains unclear 
if hemizygosity is a biologically equivalent event in 
humans and mice. We reported that Sept5, which is 
hemizygous in 22q11.2 hemizygous CNV cases, induce 
social interaction deficits when both copies were deleted 
(i.e., homozygosity) but not when one copy was deleted 
(i.e., heterozygosity) in mice (Suzuki, Harper, Hiramoto, 
Sawamura, et al., 2009). A gene dose alteration might 
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be better tolerated in mice than in humans because of 
robustness of biological systems in mice. Accordingly, 
it would be predicted that homozygous deletion of 
a chromosomal segment would more readily induce 
phenotypes.

Another possibility is that some alleles in genetic 
background might modify phenotypic expression. 
We demonstrated that a 22q11.2 gene deletion causes 
varying degrees of social interaction deficits under 
different genetic backgrounds (Hiroi et al., 2012, 
2013; Suzuki, Harper, Hiramoto, Sawamura,et al., 
2009). Similarly, mouse models of fragile X syndrome 
(Spencer et al., 2011), Nlgn3 mutants (Jaramillo, Liu, 
Pettersen, Birnbaum, & Powell, 2014), and Shank3 
mutation (Drapeau, Dorr, Elder, & Buxbaum, 2014) 
result in varying degrees of ASD-related behavioral 
phenotypes on different genetic backgrounds.

Behavioral tasks could also be a factor for apparent 
lack of phenotypes. Some rodent behavioral tasks might 
not sufficiently tax a given capacity. For example, over-
expression of a 22q11.2 segment, including TXNRD2, 
COMT, and ARVCF, induces working memory deficit 
only when long delay is imposed between a probe trial 
and a test trial to tax working memory in rewarded alter-
nation (Suzuki, Harper, Hiramoto, Funke, et al., 2009). 
To evaluate working memory capacity, the task needs 
to be maximally taxed. Moreover, some tasks might not 
measure an intended behavioral trait. The sociability test 
in a three chamber does not measure genuine reciprocal 
social interaction. In fact, phenotypes seen in the socia-
bility test and in a naturalistic test for reciprocal social 
interaction are often inconsistent (Spencer et al., 2011; 
Fairless et al., 2012).

The nature of data distribution is another possibil-
ity. Not all CNV carriers exhibit any given neuropsy-
chiatric disorder in humans (see Figure 1); incomplete 
penetrance and variable expressivity are noted. We 
previously pointed out that a behavioral phenotype in 
mutant mice often does not appear as a categorical phe-
notype and instead appears as an average shift by one 
to two standard deviations in mutant compared with 
wild-type littermates (see Figure 2) (Hiroi et al., 2013). 
Moreover, only a subpopulation of CNV-carrying mice 
might exhibit a detectable phenotype, and a statistically 
detectable group effect is difficult to achieve. A detailed 
distribution of raw data and the degree of variance 
should be examined. This point underlines the neces-
sity of quantitative, rather than categorical, classifica-
tion of mouse phenotypes and human diagnosis.

Finally, a laboratory environment might have a unique 
impact on phenotypes. Even when the same mutant 
mouse line is tested under conditions where many envi-
ronmental variables are rigorously equated, behavioral 
phenotypes could still differ across laboratories (Crabbe, 
Wahlsten, & Dudek, 1999). Extraneous variables include 

housing and breeding conditions and how often mice 
are disturbed per day by how many animal caretakers 
and laboratory personnel.

DECONSTRUCTING CNV MOUSE 
MODELS OF NEUROPSYCHIATRIC 

DISORDERS

To understand the precise genotype–phenotype rela-
tionship of a CNV, individual genes that are genuinely 
responsible for behavioral dimensions relevant to neuro-
psychiatric disorders must be identified. One approach 
is to identify deletion and duplication cases smaller than 
commonly found ones and use their phenotypes to iden-
tify critical segments within a CNV. For example, although 
most 22q11.2 deletions are 3.0 Mb in size and there are 
nested 1.5 deletion cases, there are also much smaller 
deletions and duplications. However, there are not many 
such cases and they are also found in control samples 
(http://projects.tcag.ca/variation/?source=hg18). Thus 
far, this approach has not been successful in definitively 
identifying critical specific genes.

Private mutations of single CNV-encoded genes can 
provide valuable information. For example, within 
22q11.2, there are several individual cases of TBX1 
mutations that are associated with ASDs: an inser-
tional mutation in exon 9 of TBX1 (Gong et al., 2001); 
a frameshift mutation in TBX1 (Paylor et al., 2006); and 
another frameshift mutation in exon 9 (Ogata et al., 
2014). Moreover, homozygous deletion that affects 
SEPT5 and GP1BB has been identified in one child. 
This child showed developmental problems in motor 
coordination, language and speech development with 
severe attentional, perceptional, and socioemotional 
deficits (Bartsch et al., 2011). As mutations of GP1BB are 
associated with prolonged bleeding (i.e., Bernard–Sou-
lier syndrome) with no psychiatric diagnosis, SEPT5 
remains a possible contributory gene for the behavioral 
phenotypes in this individual. However, each of these 
ASD-associated mutations often represents a single 
subject case and variants of other genes are also present 
in these individuals (Ogata et al., 2014). Thus definitive 
identification of causative genes is difficult.

Another approach is to associate single-nucleotide 
polymorphisms in specific CNV-encoded genes in 
individuals with neuropsychiatric disorders but with-
out CNVs. Although weak association is reported with 
multiple 22q11.2 genes, recent large-scale genome-wide 
association studies do not replicate any of the single-
nucleotide polymorphisms in schizophrenia (Schizo-
phrenia Working Group of the Psychiatric Genomics 
Consortium, 2014; Shi et al., 2011; Stefansson et al., 2009) 
or ASD samples (Anney et al., 2012; Wang et al., 2009; 
Weiss et al., 2009). This might be partly due to weak 

http://projects.tcag.ca/variation/?source=hg18
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impacts of single-nucleotide polymorphisms on gene 
functions. Such impacts might not be sufficient to mimic 
the impact of half-copy of hemizygous cases.

Although choosing target genes based on their con-
ceivable biological relevance and creating a single gene 
deletion mouse have been a common practice, there is no 
biological process known to be irrelevant to psychiatric 
disorders. Moreover, the brain functions of many CNV-
encoded genes are so poorly understood that choosing 
a target gene based on presumed biological relevance 
could hinder the real progress in discovering the gen-
uinely contributory genes. Thus, this is a less efficient 
initial strategy in CNV cases in which many genes are 
encoded. Once a small chromosomal segment is identi-
fied within a CNV using segmental deletion and overex-
pression mice, or if a CNV includes less than 10 genes, 
the strategy becomes highly effective in identifying the 
contribution of specific encoded genes to phenotypes.

The impacts of many single 22q11.2 gene deletions on 
various behavioral phenotypes have been examined (see 
Figure 4). Heterozygosity of Tbx1 or Gnb1l, both of which 
are encoded in the 200-kb region, results in profoundly 
reduced PPI. Consistent with data from partially overlap-
ping hemizygous mice (see Figure 3), single genes located 
in a segment with no PPI deficit (i.e., Df(16)2/+, Tg-1, and 
Tg-2; see Table 1) have no effect (e.g., Gsc2, Rtn4r, Comt) or 
very weak effects on PPI at only one or two prepulse lev-
els (e.g., Zdhhc8, Dgcr8). Working memory is affected in 
Dgcr8 and Tbx1. Social interaction is defective in Tbx1 het-
erozygous mice and Sept5 homozygous mice, but not in 
Comt heterozygous and homozygous mice. Anxiety-like 

traits are potentiated in mice with gene dose reduction of 
Zdhhc8, Comt, and Tbx1, but not by Gsc2, Prodh, Rtn4r, or 
Dgcr8.

In light of extensive studies conducted for single 
22q11.2 genes by many groups including ours, we pre-
viously proposed several hypothetical gene-phenotype 
mechanisms based on this CNV (Hiroi et al., 2013). Here 
we reevaluate whether these mechanisms are applicable 
to other CNVs.

Noncontiguous Gene Effect

We hypothesized that whereas the contiguous seg-
ment of a chromosome is deleted or duplicated in CNVs, 
encoded genes critical for a phenotype are noncontigu-
ously distributed (Hiroi et al., 2013). Some large hemizy-
gous 22q11.2 deletions do not impair PPI (see Figure 3; 
Df(16)2/+ and Df(16)5/+) (Paylor et al., 2006) and over-
expression of a segment of 22q11.2 duplication, including 
Zdhhc8, Ranbp1, Trmt2a, Tango2, Arvcf. Comt, and Txnrd2 
has no impact on PPI (Stark et al., 2009; Suzuki, Harper, 
Hiramoto, Funke, et al., 2009). Single 22q11.2 deletion 
models also support this hypothesis. Contributory genes 
are noncontiguously distributed within 22q11.2 CNV.

Similarly, deletion of different segments within 7q11.23 
results in nonidentical behavioral phenotypes. Among 
genes encoded in 7q11.23, homozygous Gtf2ird1 dele-
tion results in increased anxiety-like behaviors (Schneider  
et al., 2012) but homozygous eif4h deletion does not 
(Capossela et al., 2012).

If behavioral symptoms are collectively viewed as a 
whole, each of all encoded genes might have some con-
tribution to some behavioral phenotypes. However, a 
mutation of some genes (e.g., GP1BB) alone located at 
22q11.2 results in no apparent psychiatric diagnosis in 
Bernard–Soulier syndrome. From a dimensional stand-
point, it is difficult to understand the available data of 
CNVs in terms of a contiguous gene effect.

Mass Action

We hypothesized that the dose of each gene has an 
optimal range on a linear or nonlinear function for a 
given phenotype and the ultimate phenotype of a CNV 
is the net result of mass action of these genes (Hiroi et al., 
2013).

Each CNV is associated with similar or different sets 
of diagnoses. In some cases, duplication and deletion 
induce similar, but nonidentical effects. Whereas 22q11.2 
hemizygous deletion is associated with high rates of 
schizophrenia, ASDs, ADHD, and ID, duplication is 
associated with ASDs and ID, but not with schizophrenia 
(Hiroi et al., 2013; Malhotra & Sebat, 2012; Rees, Kirov, 
et al., 2014). CNVs linearly alter a certain phenotype; 
duplication of 7q11.23 is associated with hyposociability 

FIGURE 4 Effects of single 22q11.2 gene deletions on various 
behavioral phenotypes. Phenotypes consistent with (red) and opposite 
to (gray) 22q11.2 deletion and absent (black) are shown. Blank squares 
indicate phenotypes not tested or reported. Anx, anxiety-like behav-
iors; PPI, prepulse inhibition; SI, social behaviors; WM, working mem-
ory. 1, Long et al. (2006); 2, Gogos et al. (1999) and Paterlini et al. (2005); 
3, Gogos et al. (1999) and Paterlini et al. (2005); 4, Mukai et al. (2004); 5, 
Stark et al. (2008), Ouchi et al. (2013), and Chun et al. (2014); 6, Gogos 
et al. (1998), Papaleo et al. (2008), Babovic et al. (2008), O’Tuathaigh 
et al. (2010), Brennand et al. (2015, 2011), and O’Tuathaigh et al. (2012); 
7, Paylor et al. (2006); 8, Long et al. (2006), Paylor et al. (2006), and 
Hiramoto et al. (2011); 9, Paylor et al. (2006), Suzuki, Harper, Hiramoto, 
Sawamura, et al. (2009), and Harper et al. (2012). Adapted and updated 
from Hiroi et al. (2013).
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and ASDs, but its deletion is associated with hyperso-
ciability (Jarvinen-Pasley et al., 2008; Malhotra & Sebat, 
2012). On the other hand, there are cases in which dele-
tion and duplication are associated with the same sets of 
disorders (Malhotra & Sebat, 2012).

These effects of CNVs are likely to reflect the mass 
action of many encoded single genes. When genotype–
phenotype relation is viewed from the standpoint of 
behavioral phenotypes, many genes contribute to each 
phenotype, but their effects are not linear. Although 
22q11.2 hemizygous patients have reduced PPI and 
working memory deficits, homozygous deletion of Sept5 
potentiates PPI (Suzuki, Harper, Hiramoto, Sawamura, 
et al., 2009) and Comt deletion improves working mem-
ory (Papaleo et al., 2008). In other words, some genes 
encoded in a CNV have an effect on a phenotype oppo-
site to that of the CNV.

Pleiotropy

We hypothesized that many CNV-encoded genes 
have pleiotropic actions: each of the contributory 
genes has more than one phenotypic target (Hiroi 
et al., 2013). Single genes could have many phenotypic 
targets, as in the case with Tbx1, Dgcr8, and Zdhhc8 
of 22q11.2 CNV (see Figure 4). Heterozygous Gtf2i 
of 7q11.23 CNV results in impaired social interaction 
and response to novelty, but not working memory or 
anxiety (Sakurai et al., 2011). Among deleted genes 
encoded in 15q13.3 CNV, mice deficient for cholinergic 
receptor neuronal alpha 7 subunit (Chrna7) have been 
extensively examined. Chrna7 homozygous mice are 
impaired in attentional processing (Hoyle, Genn, Fer-
nandes, & Stolerman, 2006; Young et al., 2004, 2007), 
working memory (Young et al., 2007), impulsivity 
(Keller, Keller, Bowers, & Wehner, 2005), choice accu-
racy in spatial discrimination learning (Levin et al., 
2009), and show decreased anxiety-like thigmotaxis; 
they are normal in contextual and cue fear condition-
ing, spatial learning in the Morris water maze, PPI, 
anxiety, locomotor activity, and motor coordination, 
and startle response to a noxious stimulus ( Paylor 
et al., 1998).

Although there are no mouse models with overdose 
of individual genes encoded in the paternal 15q11-13 
duplication, some encoded genes have been deleted and 
their behavioral phenotypes are characterized. Homo-
zygosity of GABRβ3 induces hyperactivity and repeti-
tive, stereotypical behavior as well as impaired learning 
in passive avoidance, contextual fear conditioning, and 
motor coordination (DeLorey et al., 1998; Homanics 
et al., 1997). Deletion of small nucleolar RNA heightens 
anxiety and impairs motor learning but has no effect on 
working memory (Ding et al., 2008). GABRβ3 heterozy-
gous mice are hypersensitive to pain and tactile stimuli, 

but exhibited an increase in PPI and decreased repetitive 
behavior, compared to wild-type mice (DeLorey et al., 
2011).

Taken together, we submit that existing data are con-
sistent with a series of hypothetical mechanisms of CNV-
associated behavioral dimensions (Hiroi et al., 2013).

BRIDGING BEHAVIORAL DIMENSIONS 
TO NEUROBIOLOGICAL PHENOTYPES

The ultimate goal of mouse model studies is to 
gain insights into the molecular and neuronal mecha-
nisms of neuropsychiatric disorders. A corollary of  
the noncontiguous gene effect hypothesis is that even 
if certain neuronal phenotypes are seen in the brain of 
CNV mouse models with behavioral phenotypes, it is 
not clear if such a neuronal phenotype represents the 
genuine mechanism of specific behavioral phenotypes. 
Some genes encoded in a CNV could have no func-
tional role in a given behavioral phenotype, but never-
theless induce a certain neuronal phenotype. Thanks to 
extensive phenotypic characterization, this point is best 
illustrated with mouse models of 22q11.2 CNVs. For 
example, mice with deletion for a small nested 22q11.2 
ortholog region from Dgcr14 to Txnrd2 (Df(16)2/+; see 
Figure 3) exhibit enhanced long-term potentiation at 
excitatory hippocampal synapses but are normal in 
hippocampal-dependent spatial memory (Earls et al., 
2012) and PPI (Paylor et al., 2006).

At the single-gene level, there are many cases of 
dissociation between behavioral and neuronal phe-
notypes. Rtn4r is implicated in axonal growth and 
plasticity (Shao et al., 2005; Stephany et al., 2014), but 
its deletion has no detectable effect on PPI, working 
memory, or anxiety (Hsu et al., 2007). Proline degra-
dation (Prodh) is critical for dopaminergic neurotrans-
mission and synaptic plasticity, but its deficiency in a 
congenic mouse does not impair PPI or working mem-
ory (Paterlini et al., 2005). Deficiency of Comt, which 
degrades catecholamines, has no detectable effect 
on PPI or social interaction and, inconsistent with 
22q11.2 hemizygous patients, increases working mem-
ory (Babovic et al., 2008; Brennand et al., 2015, 2011; 
Gogos et al., 1998; Papaleo et al., 2008; O’Tuathaigh 
et al., 2010, 2012).

These dissociation cases elegantly demonstrate that a 
neuronal phenotype seen in a CNV mouse model does 
not necessarily underlie the neuronal mechanism of a 
specific behavioral phenotype. Even if a certain neuronal 
phenotype is not correlated with one behavioral pheno-
type, other behavioral phenotypes might be. Because the 
phenotypic targets of genes differ, an extensive pheno-
typic characterization is needed to identify a behavioral 
correlate of a neuronal phenotype.
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RECONSTRUCTING DIMENSIONAL 
PHENOTYPES OF CNVs

Analyses of single gene mouse models depict how each 
behavioral dimension changes in response to a gene dose 
alteration. One such case is illustrated with a Tbx1 hetero-
zygous mouse model of 22q11.2 deletion (see Figure 5). 
An emerging quantitative profile is that some dimensions 
deviate from the one standard deviation range from the 
average of wild-type mice and others remain within this 
range. Each of the genes encoded in 22q11.2 CNV or any 
other CNV is likely to have its own quantitative profile. 
Each profile does not necessarily mimic all or even most 
symptomatic elements of any disorder. Even if a single 
gene alteration affects only one particular behavioral 
dimension, this gene still contributes to the final phe-
notype of a CNV. For example, Sept5 deletion and Comt 
overexpression selectively contribute to dimensional 
alteration in social interaction and working memory, 
respectively, but have no detectable effect on other behav-
ioral phenotypes (Harper et al., 2012; Papaleo et al., 2008; 
Suzuki, Harper, Hiramoto, Funke, et al., 2009; Suzuki, 
Harper, Hiramoto, Sawamura, et al., 2009). Although they 
cannot be claimed to model ASDs or schizophrenia, these 
two genes nevertheless are contributory to symptomatic 
elements of ASDs and schizophrenia.

The ultimate behavioral phenotype of a CNV is likely 
to reflect the net sum of (1) additive, synergetic, even 
opposing forces of each CNV-encoded gene; (2) modula-
tory impacts of alleles in the genetic background; and  
(3) nongenetic factors such prenatal insults and postnatal 
environments (Hiroi et al., 2013). Instead of attempting 
to interpret a mouse model as ASD-like, schizophrenia-
like or any disorder-like, it might be a better strategy to 
accept the profile of behavioral phenotypes as a quan-
titative dimensional pattern. This seems to be the best, 
currently achievable reconstruction of CNV-associated 
or even idiopathic neuropsychiatric disorders. Treat-
ments are likely to change some dimensions, not neces-
sarily the whole constellation of dimensional elements. 
Detailed analyses of many CNV mouse models will 
improve our understanding of neuronal and molecular 
mechanisms of behavioral profiles.

In summary, there is a tendency to impose a categorical 
label on seemingly random objects or events. Stellar con-
stellations are a case in point. Stellar constellations do not 
exist in reality; they exist in our mind. They were invented 
simply as a means to easily memorize and recognize a set 
of stars to navigate at night. These categorical labels make it 
easier to grasp seemingly chaotic reality. Clinical diagnostic 
categories provide diagnostic reliability and serve to guide 
clinicians in decisions regarding treatment options. With a 
little more help from mouse studies, we hope to develop 
dimensional measures of new, mechanism-based clinical 
diagnoses.
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INTRODUCTION

Schizophrenia is a pervasive psychiatric disorder with 
a usual onset of between 18 and 30 years of age. However, 
it is now generally regarded to have a strong neurode-
velopmental component (see Chapters 1 and 2) and pre-
morbid symptoms can be identified (at least at a group 
level) from very early on in development (Jones,  Rodgers,  
Murray, & Marmot, 1994; Walker & Lewine, 1990). 
Schizophrenia occurs in roughly 1% of the population 
and patients can suffer from a large variety of symptoms. 
Traditionally, these symptoms were subdivided into two 
sets of symptoms: (1) positive symptoms, representing fea-
tures that were not present in the healthy population, 
but were present in schizophrenia patients; and (2) nega-
tive symptoms, representing features normally present in 
healthy volunteers, but significantly reduced or absent 
in patients with schizophrenia. Hallucinations and delu-
sions are the prototypical positive symptoms, whereas 
apathy, social withdrawal, and anhedonia are among the 
most prominent negative symptoms (Andreasen, Flaum, 
Swayze,  Tyrrell, & Arndt, 1990; Andreasen & Olsen, 
1982). Although several scales were developed to assess 
(changes in) these symptoms, the one most widely used 
now is the Positive and Negative Syndrome Symptoms 
Scale. This scale, developed in 1987, consists of 30 items 
(Kay,  Fiszbein, & Opler, 1987), originally thought to reflect 
positive (7 items) and negative (7 items), symptoms as 
well as general psychopathology (14 items). Subsequently, 
a more detailed evaluation of the items within the Positive 
and Negative Syndrome Symptoms Scale has suggested 
that a more homogeneous subdivision can be achieved 
with five different symptom categories (Kawasaki et al., 
1994; Van der Gaag, Cuijpers, et al., 2006; Van der Gaag, 

Hoffman, et al., 2006; Wallwork, Fortgang, Hashimoto, 
Weinberger, & Dickinson, 2012). A recent reanalysis using 
confirmatory factor analysis on samples from the United 
States, Brazil, and China supported this five factor model 
while at the same time reducing the total items to 20. 
These five factors are labeled as: (1) positive; (2) negative; 
(3) disorganized; (4) excited; and (5) depressed (Stefanov-
ics, Elkis, Liu, Zhang, & Rosenheck, 2014).

In addition to these five symptoms, patients with 
schizophrenia suffer from cognitive deficits. Although 
cognitive symptoms are not part of the diagnosis of 
schizophrenia, they are nonetheless prominently pres-
ent in virtually all patients with schizophrenia (Marder & 
Fenton, 2004; Marder, Fenton, Youens, & Tamminga, 2004; 
Nuechterlein et al., 2004). Patients with schizophrenia 
seem to have a global deficit in cognition, scoring below 
average in virtually all cognitive domains, and appear 
particularly deficient in executive functioning, attention, 
and verbal and working memory (Heinrichs &  Zakzanis, 
1998; Mesholam-Gately, Giuliano, Goff, Faraone, & 
Seidman, 2009). Moreover, cognitive deficits are found 
in drug-naive patients (Fatouros-Bergman,  Cervenka, 
 Flyckt, Edman, & Farde, 2014). Interestingly, cognitive 
deficits did not change substantially over a 10-year period 
in a recent longitudinal study (Dickerson et al., 2014). It is, 
however, important to note that this study investigated 
middle-aged patients with a mean duration of illness 
of 22 years. It might well be that cognitive functioning 
declines within the first years after disease onset.

Antipsychotic drugs are the first choice for the treatment 
of schizophrenia, although nonpharmacological treatment 
options (such as cognitive behavioral therapy) are also 
available and have been found effective in pharmacother-
apy resistant patients (Burns, Erickson, & Brenner, 2014). 
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The effectiveness of antipsychotic drugs has been the sub-
ject of many meta-analyses and review papers and will 
not be discussed here in great detail (for details see, e.g., 
 Ellenbroek, 2012; Ellenbroek & Cesura, 2015). Antipsychot-
ics are routinely classified as classical and atypical anti-
psychotics, or, alternatively, first- and second-generation 
antipsychotics. Classical and atypical antipsychotics refer 
to the presence or (virtual) absence of extrapyramidal side 
effects (e.g., tremor, dystonia, dyskinesia). Although this 
distinction has been used extensively in the past, more 
recent studies have suggested that the extent to which anti-
psychotics induce extrapyramidal side effects is strongly 
dependent on the dose (Nord & Farde, 2011) and repre-
sents a more quantitative than qualitative difference (with 
the possible exception of clozapine). For that reason, most 
researchers now prefer the term first- and second-genera-
tion antipsychotics, with all the drugs introduced after 1989 
(when clozapine was reintroduced) commonly referred to 
as second generation. Some authors have suggested that 
aripiprazole, as a partial agonist, may represent a third gen-
eration of antipsychotics (Mailman & Murthy, 2010). How-
ever, so far no other partial agonists have been registered 
and several others such as bifeprunox and SDZ-MAR-327 
failed in clinical trials. We therefore feel it is too early to 
place aripiprazole in a category of its own, also because the 
therapeutic properties do not seem to differ substantially 
from other second-generation drugs.

Although the large multicenter studies on schizophre-
nia treatment options that have been published have 
different primary and secondary outcome parameters, 
differ in patient population, and include different anti-
psychotic treatment options (Agius, Davis, Gilhooley, 
Chapman, & Zaman, 2010), the overall conclusions of 
these studies are remarkably similar (Jones et al., 2006; 
Kahn et al., 2008; Lieberman et al., 2005; McEvoy et al., 
2007):
  

 1.  There are no major clinical differences between 
different antipsychotics. Although subtle differences 
between individual antipsychotics definitely exist 
(Samara, Cao, Helfer, Davis, & Leucht, 2014), the 
similarities are much more prominent. In line with 
this, a recent reevaluation of several large studies 
using structured equation modeling showed that 
all antipsychotics worked via one common factor 
(Marques et al., 2014), most likely blockade of the 
dopamine D2 receptor.

 2.  Antipsychotics effectively reduce positive, but 
not negative or cognitive deficits. For instance, in 
the Clinical Antipsychotic Trials of Intervention 
Effectiveness study, antipsychotics reduced positive 
symptoms by about 35% in a 12-month treatment 
period, whereas the improvement in negative and 
cognitive symptoms was less than 15% (Keefe et al., 
2007; Lieberman et al., 2005; McEvoy et al., 2006). 

This, again, is in general agreement with most meta-
analyses that show that the effects of antipsychotics 
on negative and cognitive symptoms are much more 
modest than on the positive symptoms.

 3.  Therapy compliance is very low, with 65–75% 
of the patients refusing medication within the 
first 12 months of treatment. This lack of therapy 
compliance is particularly troublesome because this 
will almost inevitably lead to psychotic relapse. For 
example, in a recent study, it was shown that only 
10% of patients on long-acting risperidone relapsed 
within 2 years (Emsley et al., 2008). However, after 
patients stopped taking the medication 79% relapsed 
within 12 months and 94% within 24 months (Emsley, 
Oosthuizen, Koen, Niehaus, & Martinez, 2012). 
Although the reasons for discontinuing medication 
were not always clear in these multicenter trials, a 
combination of lack of effect, and severity of side 
effects were certainly prominent factors.

  

These data clearly indicate that improved therapeutic 
options for the treatment of schizophrenia are urgently 
needed. However, so far the development of drugs for 
mental disorders including schizophrenia has not met 
with great success. Indeed, together with drugs for onco-
logical conditions, drugs for treating brain disorders 
have the lowest chance of achieving market approval 
(Kola & Landis, 2004), mainly because of their failure 
in clinical phases II and III (Arrowsmith & Miller, 2013). 
Good (or bad) examples are the recent failures of drugs 
working on the glutamatergic system, including the 
mGlu2-positive allosteric modulator AZD8529 (Cook 
et al., 2014) and the inhibitor of the glycine 1 transporter 
bitopertin (Bugarski-Kirola, Wang, Abi-Saab, & Blattler, 
2014; Kingwell, 2014). As emphasized by Cook and his 
colleagues, AZD8529 was found active in seven preclini-
cal models that are currently used for detecting antipsy-
chotic activity but was ineffective in clinical trials (Cook 
et al., 2014), highlighting the fundamental problem of 
translatability from animal research to clinical practice.

ANIMAL MODELS FOR SCHIZOPHRENIA

As mentioned previously, the poor success rate of 
drug development in general and for mental disorders 
in particular occurs predominantly in phases II and III 
( Pammolli, Magazzini, & Riccaboni, 2011). A detailed 
analysis of this failure (as far as this has been published) 
shows that, whereas in the past especially pharmacoki-
netic factors were the cause of failure, this has now shifted 
to problems with efficacy (Kola & Landis, 2004). In line 
with this, a recent analysis of phases II and III failures in 
2011 and 2012 found lack of efficacy to be the cause of 56% 
of all the failed trials (Arrowsmith & Miller, 2013). Given 
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that predictions of efficacy are generally made on the basis 
of efficacy in animal models, this clearly indicates that the 
current generation of animal models is far from optimal. 
It would be beyond the scope of this review to evaluate 
the current generation of animal models, and made of the 
novel ones are discussed throughout this volume. Suffice 
it to say, that the classical models often fall into the class of 
the traditional screening models, or models with predic-
tive validity (Matthysse, 1986; Willner, 1984).

Predictive validity in this respect refers to the accu-
racy with which therapeutic effects in humans can be 
predicted on the basis of the results in animals. In other 
words, can antipsychotic drugs reverse schizophrenia-
relevant symptoms or endophenotypes (the latter is 
generally defined as biological, behavioral, or cognitive 
markers that are found in individuals with schizophre-
nia, mostly with a clear genetic basis) in animal models 
for the disorder (Takao, Yamasaki, & Miyakawa, 2007). 
As discussed at length elsewhere (Ellenbroek, 2010; 
Ellenbroek & Cools, 1990), such models are generally 
based on comparison of new drugs with known thera-
peutic agents (so-called gold standards). Therefore, such 
models tend to produce more of the same rather than 
leading to actual breakthroughs (Ellenbroek, 1993, 2010).

Fortunately, in the past two decades, a flurry of novel 
animal models aspiring construct validity have been pro-
posed. Construct validity refers to how well the model 
mimics the etiology of the underlying disease. In addition 
to predictive and construct validity, animal models are usu-
ally also evaluated for face validity, referring to how accu-
rate signs and symptoms (in the broadest sense, thus also 
including biomarkers and/or endophenotypes) are being 
displayed in the animal (i.e., phenomenological similari-
ties between disorder in question and the animal model, 
Takao et al., 2007). These novel models are often based on 
genetic and or environmental risk factors, with a strong 
focus on the neurodevelopmental aspects of schizophre-
nia (Burrows, McOmish, & Hannan, 2011; Hida, Mouri, 
& Noda, 2013; Jones,  Watson, & Fone, 2011; Yee & Singer, 
2013). In this respect, it is important to realize that such 
models are generally based on hypothesized etiologies of 
schizophrenia, because schizophrenia still remains largely 
an enigma. Moreover, although sets of criteria for the vari-
ous validities have been developed in the past (Ellenbroek, 
1993; Matthysse, 1981, 1986;  Powell & Miyakawa, 2006; 
Willner, 1984), most of the novel animal models for schizo-
phrenia have yet to be fully evaluated against these.

In the remainder of this chapter, we will specifically 
focus on genetic rat models. In contrast to the abundance 
of genetic mice models, relatively few genetic rat mod-
els are currently available. This is primarily because of 
the (at least until recently) limited genetic toolbox avail-
able for rats. Especially, the absence of pluripotent or 
omnipotent stem cells (readily available in some strains 
of mice such as the S129V since the early 1990s) has 

prevented the development of transgenic rats based on 
homologous recombination. However, the situation has 
dramatically changed in the past decade and several 
novel techniques are now available for genetic manipu-
lation of rats (Blair, Wray, & Smith, 2011; Cui et al., 2011; 
Jacob, Lazar, Dwinell, Moreno, & Geurts, 2010; Kitada 
et al., 2007; Smits et al., 2006). Therefore, before discuss-
ing selected genetic schizophrenia rat models in more 
detail, we will first describe several of the techniques 
now available for developing genetic rat models.

GENETIC MODELING IN RATS

The production of genetically engineered rat models 
has only recently evolved. The first engineered mutant 
rat models were described in 2003 (von Horsten et al., 
2003; Zan et al., 2003), more than a decade after the 
first genetically engineered mouse models had been 
established (Capecchi, 2001; Koller et al., 1989; Thomas 
& Capecchi, 1987, 1990; Thompson, Clarke, Pow, 
Hooper, & Melton, 1989; Zijlstra, Li, Sajjadi, Subramani, 
& Jaenisch, 1989). Before this milestone development, 
genetic rat models were based on selective breeding 
(e.g., Bignami, 1965; Brush, Froehlich, & Sakellaris, 
1979; Cools, Brachten, Heeren, Willemen, & Ellenbroek, 
1990; Liebsch, Montkowski, Holsboer, & Landgraf, 
1998; Schaefer, Brackett, Gunn, & Wilson, 1978; Schaefer,  
Brackett, Wilson, & Gunn, 1978) and “spontaneous 
sequence alterations” (i.e., genetic drifting) only (e.g., 
Swerdlow et al., 2001; Thompson et al., 1991; Watanabe, 
Kojima, & Fujimoto, 1987). This was partially because of 
our limited understanding of rat reproductive physiol-
ogy and the sensitivity and fragility of fertilized rat eggs 
in vitro. These factors delayed the development of reli-
able and reproducible techniques for the development of 
transgenic rats.

Another major hurdle in establishing genetic engineer-
ing techniques for rats was the lack of germline compe-
tent embryonic stem (ES) cells. Scientists have overcome 
this hurdle only in the recent past by capturing authentic 
ES cells from rat blastocysts (Buehr et al., 2008; Kanatsu-
Shinohara et al., 2011; Li et al., 2008). Embryoid body 
and monolayer differentiation confirmed that these cells 
retained their differentiation potential post targeting and 
selection (Meek et al., 2010). Rat ES cells can now be used 
for the state-of-the-art genetic engineering of conditional 
gene replacement knock-in as well as loss of function 
mutation (i.e., knock-out) rat models for an ever increasing 
number of genetic loci, for which targeting vectors have 
been designed. The completion of the genome sequence of 
the Brown Norway rat in 2004 (Gibbs et al., 2004) is highly 
relevant to this technological breakthrough. Importantly, 
ES cells also allow the functional evaluation of pluripo-
tent ES cell-derived tissue repair and generation.
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FORWARD GENETIC RAT MODELS

The traditional genetic rat models are based on the 
principle of forward genetics, that is, they start with a 
specific phenotype (usually but not always a behavior) 
and then move forward to identify the gene or genes 
involved in this specific phenotype (see Figure 1). Using 
the forward genetics principle, several approaches have 
been described in the literature.

Selective Breeding

Selective breeding (or artificial selection) is a pro-
cess in which rats are bred for a particular trait or 
phenotype. This technique has long been established 
in experimental medical research with first reports of 
selective breeding lines published early in the last cen-
tury (Tryon, 1930). Based on the knowledge, that strong 
heritable variations in behaviors exist not only across 
rat strains (e.g., regarding pharmacologically induced 
sensorimotor gating deficits (Swerdlow, Platten, et al., 
2003; Swerdlow et al., 2004; Swerdlow, Shoemaker, et al., 
2003;  Swerdlow, Varty, & Geyer, 1998)), but can also be 
found among individuals within one strain, research-
ers have carried out breeding regimes to develop rats 
for the occurrence/absence of particular behaviors such 
as avoidance behavior (Roman high/low avoidance 
rats (Bignami, 1965; Brush et al., 1979)), hypertension 
(spontaneously hypertensive rats (Schaefer, Brackett,  
Gunn, & Wilson, 1978; Schaefer, Brackett, Wilson, & 

Gunn, 1978)), anxiety (Liebsch et al., 1998), and emo-
tionality (as measured by defecation in the open field: 
Maudsley reactive/nonreactive (Blizard & Adams, 
2002)). Furthermore, breeding regimes have been used 
to select for pharmacological sensitivity to, for example, 
cholinergic agonists (Flinders Sensitive Line: reviewed 
in  Overstreet & Wegener, 2013) or apomorphine (apo-
morphine susceptible/unsusceptible rats (Cools et al., 
1990; Cools et al., 1993; Ellenbroek, Geyer, & Cools, 
1995)).

To give an example, Bignami and coworkers defined 
selection criteria for low/high rates of conditioned 
avoidance response acquisition in Wistar rats and 
selected breeding animals out of those two test groups 
for five generations. Inbreeding was avoided whenever 
possible to maintain heterozygosity. Analysis at the end 
of the breeding regime confirmed that rats from the high 
avoidance group were consistently better in acquiring 
conditioned avoidance responses than animals from both 
the low avoidance group as well as an unselected control 
rat group. Cross-fostering experiments confirmed the 
robustness of the effect because the differences between 
the two strains were maintained (Bignami, 1965). Since 
this first publication, other groups have generated simi-
lar avoidance models using other rat strains (e.g., Long-
Evans rats) and selectively bred these animals for more 
than 20 generations (Brush et al., 1979).

In relation to schizophrenia, it is important to note 
that these strains are usually bred for one specific char-
acteristic, while schizophrenia (as discussed previ-
ously) is a highly complex disorder with many different 
symptoms, none of which is pathognomonic for the 
disorders. Although this suggests that selection strate-
gies as outlined previously may not be useful for com-
plex disorders, there is evidence for the contrary. For 
instance the Finders Sensitive and Resistance rats were 
originally bred for their difference in the sensitivity to 
acetylcholinesterase inhibitors. However, they are now 
most well-known as an animal model for depression, 
recapturing a wide range of symptoms and biomark-
ers (Overstreet & Wegener, 2013). Likewise, spontane-
ous hypertensive rats (originally selected for their high 
blood pressure) were shown to show a large number of 
characteristics also seen in patients with attention defi-
cit hyperactive disorder (Sagvolden et al., 1992).

In an alternative approach, different strains are com-
pared to identify meaningful differences in behavior. 
For example, Glowa and colleagues studied acoustic 
basal startle responses in a large number of different rat 
strains (Glowa, Geyer, Gold, & Sternberg, 1992; Glowa & 
 Hansen, 1994). Likewise, we investigated the stereotyped 
gnawing response to the dopamine receptor agonist 
apomorphine in several different strains (Ellenbroek & 
Cools, 2002). Again, as with the within-strain approach, 
strain differences in a single behavioral parameter may 

FIGURE 1 The two genetic approaches in animal research. For-
ward genetics starts at the level of the behaviour and moves forward to 
the underlying genes. Reverse genetics starts with the genes and move 
backward to behaviour.
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not be very useful for a complex disorder such as schizo-
phrenia. However, if in addition, these strains show sim-
ilar differences in other parameters relevant for the same 
disorder, the model becomes much more interesting and 
may produce insights into the genetic loci involved in 
those abnormalities.

Spontaneous Sequence Alteration (“Genetic 
Drifting”)

The constant tendency of genes to evolve even in 
the absence of selective forces is called “genetic drift-
ing.” Spontaneous neutral mutations that disappear or 
become fixed in a population at random are a driving 
force behind this phenomenon. Other reasons can lie in 
copy number variations, residual heterozygosity in, or 
incomplete breeding of a mouse colony before it is sepa-
rated from its progenitors, and separation of a subcolony 
from its parent colony for more than 20 generations.

One of the first examples for a spontaneous sequence 
alteration model (i.e., spontaneous mutation) was discov-
ered in 1991. Fischer 344 (F344) rat substrains commercially 
available from Charles River Laboratories breeding colo-
nies in Japan and Germany exhibited an extreme reduc-
tion in the endogenous activity of dipeptidyl-peptidase 
IV activity compared with F344 substrains from breed-
ing colonies in the United States (Thompson et al., 1991). 
This discovery led to some of the first studies using a gene 
sequence alteration rat model. This rat model was used to 
investigate the functionality of the Dppiv gene product in 
a variety of domains including assimilation of prolyl pep-
tides (Tiruppathi, Miyamoto, Ganapathy, & Leibach, 1993), 
natural killer cell function (Karl,  Chwalisz, et al., 2003), 
and behavior (Karl,  Hoffmann, Pabst, & von  Horsten, 
2003b) and established a role for Dppiv in the degrada-
tion and behavioral effects of the abundantly expressed 
neurotransmitter neuropeptide Y (Karl,  Hoffmann, Pabst, 
& von Horsten, 2003a). These early studies gave evidence 
to the power of genetically modified (although not engi-
neered) rat models for medical research and behavioral 
neuroscience in particular.

Chromosome Substitution

A chromosome substitution strain (CSS) or consomic 
strain is an inbred strain in which a single chromosome 
from a donor strain replaces the corresponding chromo-
some in the host/parental strain on a defined and uni-
form genetic background. In the rat, a CSS panel consists 
of 23 strains, corresponding to 21 autosomes, and 2 sex 
chromosomes (mouse: 19 autosomes and 2 sex chromo-
somes) (Nadeau, Singer, Matin, & Lander, 2000), which 
is generated by constructing those 23 strains through a 
“marker-assisted” breeding program. Donor and host 

strains are crossed and the F1 progeny is backcrossed to 
the host strain. Backcrossing is carried out using an off-
spring of each generation, which carries the nonrecom-
binant chromosome of interest from the donor strain. 
Genotyping the offspring for genetic markers (more 
than 5500 markers available for rats (Steen et al., 1999)), 
which cover the length of this chromosome, will reveal 
those animals that are heterozygous across the entire 
chromosome. In the tenth backcross generation, males 
and females carrying the nonrecombinant chromosome 
of the donor strain are intercrossed. Offspring of this 
intercross which are homozygous for the target chromo-
some (around 25%) are then used to breed the homozy-
gous CSS strain, which carries an intact chromosome 
substitute from the donor strain (Nadeau et al., 2000). 
These rats can be inbred thereby providing a renewable 
resource. The breeding regime outlined can be improved 
by applying “speed congenics” (for details see Markel 
et al., 1997; Wakeland, Morel, Achey, Yui, & Longmate, 
1997). CSS rats are essentially genetic “twins” and mul-
tiple crosses between two strains can be setup without 
the risk of introducing modifier genes (Cowley, Roman, 
& Jacob, 2004).

To give an example, two CCS panels have been devel-
oped where chromosomes from the normotensive Brown 
Norway rat were substituted into SS/JrHsdMcwi Dahl 
salt-sensitive and Fawn Hooded Hypertensive/EurM-
cwi Fawn Hooded Hypertensive rats. The Dahl salt-sen-
sitive strain has been used for research into, for example, 
insulin resistance and vascular injury, whereas the Fawn 
Hooded Hypertensive strain has been used for investiga-
tions into renal disease and alcoholism (for more details, 
see Cowley et al., 2004). The CCS panel using Dahl salt-
sensitive rats provided evidence that chromosomes 13 
and 18 are important to determine whether a high-salt 
diet will lead to hypertension and renal disease (Cowley 
et al., 2004). In another example, CSS technology identi-
fied quantitative trait loci (QTL) on chromosome 14 and 
17 as being responsible for strain-specificity of rat pla-
centation (Konno et al., 2011).

Thus, CSS panels allow researchers to associate a 
phenotype with a particular chromosome for which the 
donor and host differ (i.e., partitioning of the genome). 
It also provides a powerful and fast way to identify QTL 
(i.e., QTL mapping), as at least one QTL must be located 
on the substituted chromosome if donor strain and host 
strain differ for a phenotype of interest. Fine-structure 
mapping after two-generation crosses and intercrossing 
to generate a homozygous chromosome segment of the 
region can then be used to study individual loci. Alter-
natively, CSS can be used to quickly produce a series 
of congenic strains (i.e., by backcrossing the appropri-
ate CSS strain to the host strain; for details, see Cow-
ley et al., 2004), which subdivide the chromosome into  
segments and thus refine the position of the QTL 
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(Nadeau et al., 2000). There are further advantages of the 
CSS technique. The phenotype of a homozygous CSS can 
be compared with heterozygous animals of the F1, allow-
ing a direct “test of dominance.” Furthermore, QTLs of 
relatively weak effect can be detected because compar-
ing a CSS with its host strain avoids any of the “pheno-
typic noise” commonly seen by segregation of unlinked 
QTLs in linkage crosses, thereby providing considerably 
more statistical power (and fewer animals are needed) 
(Cowley et al., 2004; Nadeau et al., 2000). Finally, CCS 
can be used to develop several chromosome substitu-
tion models for investigations into gene–gene interac-
tions of complex traits or diseases (Cowley et al., 2004). 
However, there are two limitations to CCS panels: (1) 
QTLs are assigned to an entire chromosome rather than 
a chromosomal region and (2) discrimination between 
single and multiple QTLs is not possible. Nonetheless, 
the ability to proceed directly to fine-structure mapping 
(as outlined previously) offsets these limitations. Thus, 
CSSs are a powerful tool for studying multigenetic traits 
and allow unique experimental designs (Cowley et al., 
2004; Hill, Lander, & Nadeau, 2006).

REVERSE GENETIC RAT MODELS

Although the forward genetic models have dominated 
in the field of genetic rat modeling, recent advances 
in our understanding of the rat genome, coupled with 
an increased toolbox, have led to a flurry of novel rat 
models, based on reverse genetic principles. These mod-
els start off by changing the genome and then moving 
backwards to the behavior (see Figure 1). In this respect, 
we often distinguish between random techniques and 
techniques in which a specific gene is targeted. These 
latter techniques are often subdivided into two different 
categories: indirect and direct. In the indirect technique 
(most popular in mice) ES cells are first removed from 
pregnant mothers, and genetically altered in vitro, before 
being placed back into a host mother. In the direct tech-
nique, on the other hand, the mutagenesis takes place by 
microinjections directly into the embryo (see the follow-
ing section).

Random Gene Targeting

N-Ethyl-N-Nitrosourea Mutagenesis
N-ethyl-N-nitrosourea (ENU: chemical formula is 

C3H7N3O2) is a highly potent mutagen that can trans-
fer its ethyl group to oxygen or nitrogen radicals of 
DNA, thereby inducing mispairings and base-pair 
substitutions if the DNA does not get repaired (Hitot-
sumachi, Carpenter, & Russell, 1985; Russell et al., 
1979). ENU predominantly modifies A/T base pairs in 

spermatogonial stem cells, with 44% A/T->T/A trans-
versions, 38% A/T->G/C transitions, 8% G/C->A/T 
transitions, 3% G/C->C/G transversions, 5% A/T-
>C/G transitions, and 2% G/C->T/A transitions. When 
translated into a protein product, these changes result in 
64% missense mutations, 10% nonsense mutations, and 
26% splicing errors (these rates have been established 
in mice ( Justice, Noveroske, Weber, Zheng, & Bradley, 
1999)). This process makes ENU a powerful tool for gen-
erating isolated mutations in genes, thereby generating 
loss-of-function mutations, gain-of-function mutations, 
viable hypomorphs of lethal complementation groups, 
and antimorphs. ENU can induce new point mutations 
at approximately 1–2 Mb intervals occurring in approxi-
mately 1 per 700 gametes.

Genetic screens are used to identify ENU-induced 
mutations using phenotype information as molecular 
markers are not available. More specifically, mutations 
are mapped in meiotic backcrosses segregating the phe-
notype relative to multiple molecular polymorphisms. 
For a resolution of 10 cM, analysis of 100 meioses is nec-
essary (i.e., for one mutation, 100 mice must be screened). 
Thus, mapping represents the bottleneck of this technique 
and simpler mapping technologies such as DNA pooling 
have been applied in the recent past (Taylor, Navin, & 
Phillips, 1994). Importantly, the mutant phenotype must 
vary significantly from the background phenotype to be 
clearly identified. Further limitations of ENU technology 
include the high maintenance costs and the labor-inten-
sive screening of large numbers of animals.

In 2003, genome-wide mutagenesis protocols using 
ENU were established for the rat inbred strains Wistar-
Furth and F344 and for the rat outbred strain Sprague–
Dawley (SD) (Zan et al., 2003). The effect of ENU on 
fertility was strain and dose-dependent (for more details 
on fertility and litter size effects as well as ENU toxicity, 
see Zan et al., 2003). Mutagenized male rats were used 
to generate F1 offspring and phenotypic abnormalities 
were identified (e.g., regarding growth and eye develop-
ment). Approximately 50% of those phenotypic mutants, 
which produced viable litters, showed heritability of the 
trait/phenotype. In the following, SD rats were used for 
the mutation-screening studies. ENU was administered 
twice at a dose of 60 mg/kg to mutagenize male rats, 
which were then bred to wild-type-like female SD rats. 
F1 animals were screened for mutant alleles of the breast 
cancer suppressor genes Brca1 and Brca2. Yeast gap-
repair, ADE2-reporter truncation assays were developed 
to identify functional mutations in those genes (for details 
and differences between screening assays, see Zan et al., 
2003). The following procedures are outlined for Brca2 
only. One of 296 F1 offspring carried a functional muta-
tion in Brca2. The Brca2 knockout founder male rat was 
then bred to SD control females to generate N2 offspring, 
which included 35 heterozygous knock-out rats out of a 
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total of 64 pubs suggesting Mendelian inheritance of the 
Brca2 mutation. Brca2 heterozygous N2 male and female 
rats were then used to generate homozygous knock-
out pubs (ratio of 1:2:1). An important outcome of this 
study was that Brca2 knock-out mice, carrying similar 
mutations in exon 11 as the newly generated rat model, 
develop a very different phenotype compared with 
Brca2 mutant rats (mice show either embryonic lethality 
or premature death). This suggests that homogeneity of 
genetic modulations across species (i.e., mouse and rat) 
cannot be assumed.

Since 2003, the technology to generate ENU-induced 
mutations in rats has been adapted, optimized, and 
developed further and additional strains can now be 
used (e.g., Lewis and Brown Norway rats). For exam-
ple, Targeting Induced Local Lesions in Genomes or 
resequencing-based screening technology allows the 
retrieval of not only stop mutations but also loss-of-
function mutations as a result of missense mutations. It 
also allows the screening of large number of animals and 
can be fully automated for higher throughput screen-
ing (Smits, Mudde, Plasterk, & Cuppen, 2004; Smits 
et al., 2006). Other techniques include Mu Transposition 
Pooling Method With Sequencer and Institute for Clini-
cal Systems Improvement technology (Mashimo et al., 
2008).

To give an example, using ENU mutagenesis, several 
years ago, we developed a series of genetically altered 
rats including the serotonin transporter knock-out rat 
(see the following section) and a rat with a premature 
stop codon in exon 1 (K50X) of the melanin concentrat-
ing hormone precursor gene PMCH (Smits et al., 2006). 
This gene gives rise to melanin concentration hormone, 
but also to two other, less well-studied peptides labeled 
neuropeptide glycine–glutamic acid and neuropeptide 
glutamic acid–isoleucine. Thus, the homozygous Pmch 
knockout is devoid of all three peptides. Pmch knockout 
rats show decreased body weight and food intake on 
three different diets (Mul et al., 2010). Subsequent stud-
ies showed that these rats also show reduced motivation 
to lever press for food (Mul et al., 2011). Although these 
data are in line with melanin concentration hormone’s 
role in food intake and satiety, it should be noted that the 
relative contribution of neuropeptide glycine–glutamic 
acid and neuropeptide glutamic acid–isoleucine in these 
rats is not entirely clear.

Transposable Elements (Transposon)
The discovery of transposable elements or so-called 

“jumping genes” or mobile genetic units in maize by 
the Nobel laureate Barbara McClintock mid-last century 
(McClintock, 1950) paved the way for the development 
of transposon technology. Transposable elements (i.e., 
transposon) are DNA sequences that can change their 
location within the genome. They can create mutations 

and are therefore a very useful tool for altering DNA of 
living organisms.

Initially, transposons were routinely used as a genetic 
tool to generate transgenic animals or insertional muta-
genesis in lower organisms, but not rodents or other ver-
tebrates because no efficient transposition systems were 
available. Several research teams then established effi-
cient transposon technology for mice using systems such 
as piggyBack (a DNA transposon from the cabbage looper 
moth Trichoplusia ni: Ding et al., 2005) and Sleeping Beauty 
(a Tc1/mariner-like transposable element reconstructed 
from fish in vitro: Fischer, Wienholds, & Plasterk, 2001; 
Horie et al., 2001; Luo, Ivics, Izsvak, & Bradley, 1998) 
transposon systems. More recently, the Sleeping beauty 
(SB) transposon system has been applied to generate rat 
mutants (Kitada et al., 2007; Lu et al., 2007). The system 
uses a cut-and-paste mechanism where the transposase 
catalyzes the excision of the transposon from its origi-
nal location and promotes its reintegration elsewhere in 
the genome (for details on the generation of transposon 
vectors, see Lu et al., 2007). Lu and coworkers also incor-
porated a tyrosinase minigene into the system so that 
successful transposition could be detected via changes 
in coat color (albino Fischer F344 inbred rats were used). 
Another advantage of this incorporation was that it 
allowed the distinction of homozygous and heterozy-
gous rats via coat color intensity without polymerase 
chain reaction (PCR) analysis. Finally, splice acceptor 
gene-trapping elements were included for increased effi-
ciency of mutagenesis.

In more detail, the transposon vector was delivered 
using pronuclear injections into fertilized eggs of F344 
rats to generate pigmented founders. Transgenic rats 
were bred to homozygosity and had multiple copies of 
the transposon integrated in the genome. Transposon-
carrying transgenic rats were then mated with transgenic 
transposase rats (expressing SB transposase) and bigenic 
offspring identified by coat color (i.e., for transposon) 
and tail DNA PCR (i.e., for transposase). Bigenic male 
offspring termed “seed rats” were mated with wild-type-
like F344 females and checked for pigmented offspring. 
PCR amplification confirmed that all rats with new coat 
color had transposition events. PCRs were used to clone 
transposon insertion sites. It was found that many rats 
carried more than one transposition event (e.g., one 
rat exhibited five independent transposition events). 
In total, 12 different genes were targeted by transposi-
tion events in a total of 57 rats. Importantly, gene size 
and vicinity to the integration site of the original trans-
poson concatemer impacted on the transposition target 
rate (i.e., majority of transpositions were “local hops” 
on the same chromosome). Southern blotting revealed 
1.2–1.3 transposition events per gamete, similar to what 
had been described for mouse technology. It was esti-
mated that in every litter of a double-transgenic male, 
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1–2 gene knockouts will be evident (Lu et al., 2007). Lu 
and coworkers predicted that about 1 in 10 transposi-
tions will generate a new rat mutant, which is unrelated 
to other transposon-induced mutations (see also Kitada 
et al., 2007).

In summary, the transposition efficiency in the rat 
germline was similar to what has been observed in mice 
and a significant percentage of transposon integration 
sites was located within known or predicted genes con-
firming that the SB system can be a powerful and effi-
cient method for creating rat mutants on a larger scale 
than previously possible. The inclusion of bidirectional 
splice acceptor gene trap elements enhanced the muta-
genic potential of the transposon and allowed the quick 
localization of the integrated transposon via PCR, which 
is not possible when using ENU mutagenesis because 
ENU requires positional cloning or large-scale sequenc-
ing. Another advantage of the SB system over chemical 
mutagenesis is that unknown mutations can exist out-
side of the gene of interest using ENU, whereas muta-
tions created by transposon systems can be located using 
transposon sequence as a tag (Kitada et al., 2007). Finally, 
the SB transposon system has potential for chromosome 
engineering because inclusion of LoxP sites in the trans-
poson allows deletions and inversions by Cre recombi-
nase expression. This enables the creation of rat models 
resembling human genetic deficiencies (see also Zheng, 
Mills, & Bradley, 2001).

Importantly, the transposon technique outlined above 
does not allow the preselection of transposition events 
that disrupt gene expression in the germline before pro-
ducing mutant progeny. Thus, more recent studies have 
focused on selecting transposition events that disrupt 
gene expression using clonally selected germline stem 
cells from culture before production of transgenic rats 
(for details, see Ivics, Izsvak, Chapman, & Hamra, 2011; 
Izsvak et al., 2010). In addition, stem cells from differ-
ent epigenetic states (i.e., spermatogonia and ES cells) 
can now be used to broaden the spectrum of functional 
genomic elements that can be disrupted during muta-
genesis screens (see the following sections and Buehr 
et al., 2008; Li et al., 2008).

To give an example for the Transposon technique, 
Rasmus and coworkers developed a rat model for the 
canonical transient receptor potential (TRPC) fam-
ily of Ca (2+) permeable, nonselective cation channels 
( Rasmus, O’Neill, Bachtell, & Cooper, 2013). These chan-
nels are abundantly expressed throughout the brain 
and play a significant role in cellular excitability. The 
TRPC4 channel subtype is predominantly expressed in 
structures that receive dopaminergic innervations. This 
suggests an involvement of TRPC4 in motivation- and 
reward-related behaviors. Indeed, TRPC4 knock-out rats 
exhibited reduced cocaine-seeking behavior in a self-
administration experiment.

Indirect Gene Targeting (Homologous 
Recombination)

Homologous recombination can be used to modify 
genes in ES cells. Once ES rat cells had been established 
(Buehr et al., 2008; Kanatsu-Shinohara et al., 2011; Li et al., 
2008), the genetic locus of interest could be disrupted 
via homologous recombination. This is a process where 
genetic recombination is based on an exchange between 
two similar or identical DNA molecules (e.g., during 
meiosis). The technique had initially been developed in 
mice by Capecchi, Evans and Smithies, for which they 
were awarded the Nobel Prize in 2007 (Capecchi, 1980, 
2001; Evans & Kaufman, 1981; Folger, Wong, Wahl, & 
Capecchi, 1982; Koller et al., 1989; Thomas & Capecchi, 
1987). In brief, the specifically designed targeting vector 
is introduced into drug-resistant (e.g., puromycin-resis-
tant) ES cells using electroporation. Drug-resistant cell 
colonies are then selected to guarantee the proliferation/ 
expansion of correctly targeted cells. Successful targeting 
(i.e., homologous recombination) is confirmed using PCR, 
sequencing, and Southern blot analysis. In case the tar-
geting vector has indeed replaced the endogenous gene, 
locus ES cell rat chimeras are produced by microinjecting 
the genetically modified cells into rat donor blastocysts 
(timing: embryonic day 4.5). These microinjected blasto-
cysts are then transferred into pseudo-pregnant female 
recipient rats. Adult chimeric offspring are then mated 
with control rats to evaluate successful germline trans-
mission of the target allele (producing heterozygous rat 
mutants). After it has been established that the ES cells 
indeed contribute to the germline (chromosomal abnor-
malities in ES cells can prevent this), homozygous mutant 
rats can be generated by cross-breeding. Major differences 
between the genetic engineering of mouse and rat mod-
els by homologous recombination include ES cell culture 
methods, drug selection schemes, colony picking, and 
screening strategies (for more details, see Tong, Huang, 
Ashton, Li, & Ying, 2011). Importantly, the use of Cre/
loxP and inducible gene expression systems allows tem-
poral control and tissue specific changes in rat genes, sim-
ilar to what has been described for mouse models (Feil, 
2007; Kuhn & Torres, 2002; Witten et al., 2011). Efficient 
gene targeting using homologous recombination has now 
been reported for a variety of rat strains including dark  
agouti, S), Long-Evans, and F344 rats. However, the 
method of generating knockout rats via “conventional” 
gene-targeting methodology in rat ES cells is time con-
suming and a laborious process. Thus, more efficient and 
direct tools have been developed in the recent past (see 
the following section) (Tong et al., 2012).

One of the first mutant rat models generated using 
homologous recombination was the p53 gene knockout 
rat (Tong, Li, Wu, Yan, & Ying, 2010). Tong and cowork-
ers used ES cell-based gene targeting technology: the 
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team designed a targeting vector to disrupt the tumor 
suppressor gene p53 in rat ES cells by means of homolo-
gous recombination. The mutation in the ES cells was 
transmitted by microinjecting subclones of these cells 
into blastocysts from F344 rats. Two chimeras were pro-
duced, one of those a germline chimera, which generated 
six mutant germline pubs. Genotyping and Southern blot 
analysis further confirmed that three of these pubs were 
p53 heterozygous knockout rats. Follow-up research 
revealed that p53 homozygous knockout rats develop 
sarcomas with a high occurrence of pulmonary metas-
tases at around 4 months of age, whereas p53 heterozy-
gous rats show the same phenotype not before 8 months 
of age (van Boxtel et al., 2011). These unique features 
make this rat highly complementary to other genetic 
rodent models of p53.

Direct Gene Targeting

Zinc-Finger Nucleases
Zinc-finger nucleases (ZFNs) technology allows the 

rapid and targeted modification of the rat genome. ZFNs 
are artificial restriction enzymes, which are generated 
by fusing zinc finger DNA-binding domain to a DNA- 
cleavage domain. ZFNs can be developed to target a par-
ticular DNA sequence and thereby disrupt genes of inter-
est (by sequence-specific DNA double-strand breaks) in 
cultured rat cells and in embryos from inbred as well as 
outbred rat strains. ZFN-induced double-strand breaks 
can be repaired by error-prone nonhomologous end join-
ing to produce small alterations at the targeted genomic 
loci (i.e., targeted mutation). The process can lead to the 
development of genetically modified rats (Gaj, Guo, 
Kato, Sirk, & Barbas, 2012; Geurts et al., 2010).

Geurts and colleagues published one of the first 
reports using embryo microinjection of ZFNs to generate 
knock-out rats (Geurts et al., 2009). The group designed 
ZFN reagents for the green fluorescent protein (GFP) gene, 
and the genes for immunoglobulin M (IgM) and Rab38 
for which they modified genetic technology, which had 
been established in Zebra fish (Doyon et al., 2008). In 
brief, ZFNs were assembled using PCR-based proce-
dures and cloned into yeast expression vectors. Candi-
date ZFN pairs were subcloned into a cytomegalovirus 
expression plasmid for testing in cultured rat cells. ZFNs 
were screened for gene disruption activity (see supple-
mentary materials of Geurts et al., 2009). Following this, 
five- and six-finger ZFNs were delivered to inbred and 
outbred rat embryos via pronuclear or intracytoplasmic 
injections of different concentrations of ZFN-encoding 
DNA or messenger RNA (mRNA). Twelve percent of 
founder rats actually carried the targeted mutation 
at various levels, including one animal with biallelic 
mutations in IgM (Geurts et al., 2009). Importantly, no 

ZFN-induced mutations were detected in off-target sites 
(those could have been segregated away by backcrossing 
to the parental strain). Mutant rats were bred to wild-
type-like control rats: one GFP and three IgM mutations 
were transmitted through the germline. The study dem-
onstrated that ZFNs are active in early rat embryos from 
inbred (i.e., Dahl S and Fawn-hooded hypertensive) as 
well as outbred strains (i.e., SD) and that they can lead 
to both mono- and biallelic gene disruption. Importantly, 
the genetic engineering of rat mutants was achieved 
within a 4-month time frame.

Another example for ZFN-based development of a 
rat model for medical research is the Rag1 mutant rat. 
The Rag1 gene is essential for immunoglobulin produc-
tion process and for the differentiation of mature B and 
T lymphocytes. The immunodeficient rat model was 
developed by Zschemisch and coworkers microinjecting 
Rag1-specific ZFN mRNAs into zygotes of inbred LEW/
Ztm rats (Zschemisch et al., 2012). A 4-base-pair deletion 
in one of the offspring caused a frame shift mutation, 
which led to a premature stop codon and a subsequently 
truncated Rag1 protein. This caused a complete deple-
tion of mature B cells and a reduced development of T 
cells, which was associated with a hypoplastic thymus. 
Furthermore, there was a near complete absence of lym-
phocytes in spleen and lymph nodes in these immuno-
deficient Rag1 mutant rats.

In conclusion, ZFNs can be developed for a multitude 
of sequences thereby providing a new, gene-specific and 
time-efficient tool to generate rat models of human dis-
eases. Furthermore, they have facilitated the progress 
of targeted gene therapy in humans (e.g., HIV therapy: 
Holt et al., 2010; Perez et al., 2008). Importantly, in the 
past few years, the technology developed by Geurts 
and  coworkers has been improved and researchers have 
started optimizing the delivery method for ZFNs (Doyon 
et al., 2010, 2011; Guo, Gaj, & Barbas, 2010; Sander et al., 
2011). Viral vector delivery is problematic as it can be 
associated with side effects (e.g., insertional mutagen-
esis) and the vector production is time consuming. The 
delivery via nonviral DNA and mRNA as outlined by 
Geurts in 2009 can be toxic, nonefficient, and is restricted 
to specific cell types. Thus, researchers have developed a 
method to directly deliver purified ZFN proteins to cells 
and confirmed that this new technology can be used to 
disrupt gene expression in a variety of mammalian cells 
(Gaj et al., 2012). This technology might also be appli-
cable to user designer nucleases including transcription 
activator-like effector nucleases (TALENs), which are 
described in the following section.

Transcription Activator-Like Effector Nucleases
TALENs can be used for in vivo genetic engineer-

ing of mutant rat models. TALENs are artificial restric-
tion enzymes and can cut DNA strands at any desired 
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sequence, which makes them an attractive tool for 
genetic engineering. TALENs are generated by fusing 
DNA binding domains of transcription activator-like 
(TAL) effectors to DNA cleavage domains. TAL effec-
tors are secreted by Xanthomonas bacteria and can bind 
DNA sequences (via repetitive amino acid residues in 
the central domain) and activate gene expression. The 
simple relationship between amino acids in the TAL 
effector and the DNA bases in its target provides the 
possibility of engineering TAL effector proteins with an 
affinity for a predetermined DNA sequence (Tong et al., 
2012). Several researchers have fused the FokI nuclease 
domain to TAL effector proteins to create TALENs (e.g., 
Miller et al., 2011). When TALENs are introduced into 
cells they can be used for genome editing in situ. For 
example, TALENs were used to disrupt the IgM locus in 
the rat and to create a heritable mutation that eliminates 
IgM function. For this, titrations of specifically designed 
TALENs were microinjected either as DNA or mRNA 
into one-cell rat embryos (similar to what has been 
described for ZFN technology), of which a proportion 
(DNA, 9.5%; mRNA, 58%) showed subsequent altera-
tions to the IgM locus. IgM mutation frequency was a 
function of TALEN dose as was the rate of biallelically 
modified rats, which were generated by mRNA (but not 
DNA) injections only. Genetically modified rats were 
then bred with wild-type-like control rats and the result-
ing F1 generation was checked for mutant alleles using 
PCRs. This procedure established TALEN technology as 
a valid tool for the generation of in vivo gene knockouts 
in rats (Tesson et al., 2011).

However, the technique to generate TALEN-medi-
ated DNA double-strand breaks described previously 
can be technically challenging using the regular clon-
ing methods and is relatively expensive. Tong and 
coworkers recently developed TALEN-targeting vec-
tors using Golden Gate cloning technique thereby 
providing a more time-efficient tool to generate 
gene-targeted rat ES cells (i.e., construction of a pair 
of TALENs targeting any sequence of interest can be 
completed in just 5 days) (Tong et al., 2012). Further-
more, TALEN-mediated homologous recombination 
has been utilized to generate a knock-in rat model 
using oocyte microinjections of TALENs mRNA with 
a linear donor (instead of a supercoiled donor, which 
was ineffective in producing knock-in rats) (Ponce de 
Leon, Merillat, Tesson, Anegon, & Hummler, 2014).

In conclusion, efficient gene targeting in rat ES cells 
can be achieved quickly using either TALEN-mediated 
DNA double-strand breaks (Tong et al., 2012) or integra-
tion of TALENs by homologous recombination (Ponce 
de Leon et al., 2014). Thus, TALENs are an affordable 
and highly efficient option for the generation of targeted 
and specific mutagenesis of the rat and will reduce sig-
nificantly time expenditure.

To give an example, Ferguson and coworkers selected 
the gene for the toll-like receptor 4 (TLR4) for TALEN-
mediated gene inactivation (Ferguson, McKay, Harris, & 
Homanics, 2013). The team developed a pair of TALEN 
constructs that specifically target exon 1 immediately 
downstream of the start of translation. TALEN mRNAs 
were microinjected into the cytoplasm of one-cell Wistar 
rat embryos and heterozygous F1 offspring were inter-
bred to produce homozygous F2 animals. The homozy-
gous knockout rats had a markedly attenuated increase 
in plasma tumor necrosis factor alpha in response to a 
lipopolysaccharide challenge compared to control rats. 
TLR4 knockout rats will also be valuable for studies of 
ethanol action and of inflammatory conditions including 
septic shock, as TLR4 appears to play a role in ethanol-
induced neuroinflammation and neurodegeneration.

GENETIC RAT MODELS FOR 
SCHIZOPHRENIA: SOME EXAMPLES

Although genetic modeling in rat, especially those 
based on reverse genetics, is still in its infancy, the field 
is rapidly increasing. This is part fueled by several com-
panies that now offer standard genetic rat models and/
or custom make genetic models. Rather than giving an 
extensive overview of all the different models currently 
available, we will discuss a few models in some detail 
and summarize the remaining models in Table 1.

Apomorphine Susceptible/Unsusceptible Rats

The apomorphine susceptible/unsusceptible (APO-
SUS/UNSUS) breeding program started in the early 
1980s and resulted from the finding that there was a 
large interindividual difference in the stereotyped gnaw-
ing response within a Wistar rat population. A detailed 
analysis showed that there was actually a bimodal dis-
tribution with about 40% of the animals showing a very 
strong (>500 gnaws per 45 min) and 40% showing a very 
weak (<10 gnaws per 45 min) stereotypy response (Cools 
et al., 1990; Ellenbroek & Cools, 2002). Males and females 
from the highest and lowest scoring litters were subse-
quently mated and their apomorphine response was 
evaluated for the next 25 generations. In addition, we 
replicated the same procedure in a completely indepen-
dent population of Wistar rats about a decade after the 
original selection started and basically found very simi-
lar results in these replication lines.

Dopamine plays a crucial role in schizophrenia, and 
challenge studies have shown that patients with schizo-
phrenia are more sensitive to apomorphine (Muller 
Spahn, Modell, Ackenheil, Brachner, & Kurtz, 1998), 
suggesting that APO-SUS rats are a valid animal model 
for schizophrenia. Indeed, several similarities were 
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TABLE 1 characteristics of Genetic Rat Models for Schizophrenia

Model Phenotype

SELECTIVE BREEDING

APO-SUS rat See text body (Apomorphine Susceptible/Unsusceptible Rats Section) and Table 2

Brattleboro rat See text body (The Brattleboro Rat Section)

SHR Increased behavioral activity and emotionality of SHR rats (Schaefer, Brackett, Gunn, & Wilson, 1978)
Hyperlocomotion and deficits in social interaction, contextual fear conditioning, and prepulse 
inhibition (all reversible by APDs) (Calzavara, Levin, et al., 2011; Calzavara et al., 2009; Calzavara, 
Medrano, et al., 2011; Levin et al., 2011)
Deficit in latent inhibition (Calzavara et al., 2009)
Improved spatial memory and unaltered anxiety-like plus maze behavior of SHR rats (Ferguson & 
Cada, 2004)
Behaviors (e.g., PPI) differentially affected by cannabinoid and vanilloid drugs (Almeida et al., 2014; 
Levin et al., 2014)

RHA/RLA rats RHA rats display a robust sensation/novelty seeking profile (reviewed in Giorgi, Piras, & Corda, 2007) 
and lower levels of conditioned fear response (Lopez-Aumatell et al., 2009)
RHA but not RLA rats develop a behavioral sensitization to amphetamine (Corda et al., 2005)
RHA rats exhibit stronger response to novelty and motility patterns induced by various doses of 
apomorphine are different between RHA and RLA (Gimenez-Llort, Canete, Guitart-Masip, Fernandez-
Teruel, & Tobena, 2005)
Strain-dependent differences in anxiety-induced cortical dark agouti output (Giorgi, Lecca, Piras, 
Driscoll, & Corda, 2003)
RHA rats exhibit a marked preference and intake of rewards, and a more pronounced behavioral and 
neurochemical response to acute morphine and psychotropic drugs (reviewed in Giorgi et al., 2007)
Acute morphine and cocaine cause a larger increment in dopamine output in the core and an 
attenuated dopaminergic response in the shell of the nucleus accumbens in sensitized RHA rats 
(reviewed in Giorgi et al., 2007)
Social stress during adolescence disturbed normal behavioral development predominantly in RHA rats 
(Coppens, de Boer, Steimer, & Koolhaas, 2012)
5-HT2A, 5-HT1A and SERT binding is increased in the frontal cortex of RHA rats, whereas mGlu2/3 
receptor binding was decreased compared to RLA rats (Klein et al., 2014)

Rats selectively bred for deficient 
sensorimotor gating

PPI deficits (reversible by APDs) (Hadamitzky, Harich, Koch, & Schwabe, 2007; Schwabe, Freudenberg, 
& Koch, 2007)
Deteriorated social behavior toward adolescent rats and reduced motivation for food rewards in low 
PPI rats (Dieckmann, Freudenberg, Klein, Koch, & Schwabe, 2007)
Enhanced perseveration in radial arm maze (i.e., during switching between an egocentric and 
allocentric version of the task) and in an operant behavioral task (Freudenberg, Dieckmann, Winter, 
Koch, & Schwabe, 2007)

ENU MUTAGENESIS

SERT knock-out rat See text body (The SERT Knock-Out Rat Section)

TRANSPOSON

Type II Nrg1 transgenic rat See text body (Neuregulin 1 Hypomorphic Rat Section)

HOMOLOGOUS RECOMBINATION

Nogo-A transgenic rat Reduced social interaction, deficient PPI, and impaired object recognition and spatial reversal memory 
(Tews et al., 2013)
Decreased cognitive functions and behavioral flexibility in a spatial active avoidance task, reduced 
anxiety, and altered circadian activity patterns (Petrasek, Prokopova, Bahnik, et al., 2014; Petrasek, 
Prokopova, Sladek, et al., 2014)

NR2B transgenic rat Transgenic rats exhibit enhanced hippocampal long-term potentiation as well as improved object 
recognition memory, spatial memory, and delayed-to-nonmatch working memory; NR2B rats also 
showed more NR2B-containing NMDARs (Wang et al., 2009)

APDs, Antipsychotic Drugs; PPI, prepulse inhibition; RHA, Roman high avoidance; RLA, Roman low avoidance; APO-SUS, apomorphine susceptible; SHR, sponta-
neously hypertensive rat.
See also Del Rio et al. (2014).
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found between the APO-SUS model and schizophrenia, 
including behavioral, neurochemical, immunological, 
and developmental similarities (Table 2). Given that the 
animals were originally only selected for their sensitivity 
to a dopaminergic agonist, it was quite surprising that 
the animals differed in so many physiological domains. 
However, it clearly gives the model interesting face 
validity (Jones et al., 2011; Lipska & Weinberger, 2000).

Because the original selection of the APO-SUS/
UNSUS rats was based on behavior, it is a classic exam-
ple of a forward genetic model and subsequent research 
has focused on trying to identify the underlying genetic 
factor(s). This has led to the identification of a copy num-
ber variation between the two lines in the aph-1b gene: 
whereas APO-UNSUS, just like normal Wistar rats con-
tain three copies of the aph-1b gene, APO-SUS rats only 
had one or two. APH-1B is a key element of the γ-secretase 
complex, known to play an important role in develop-
ment (Coolen et al., 2005). Subsequent detailed analy-
sis identified several other genetic differences between 
APO-SUS and APO–UNSUS (van Loo & Martens, 2007). 
It, however, remains to be determined whether these 
genetic differences are causally related to some or all of 
the phenotypical differences between the two rat lines.

Although the APO-SUS/UNSUS model has several 
interesting and unique characteristics, the model also 
has several limitations. First of all, although the model 
has been quite extensively characterized, two areas of 
schizophrenia have received little or no attention: the 
negative and cognitive symptoms. So far, the APO-SUS/ 
UNSUS model has not been evaluated in relation to 

changes in social behavior and/or communication or 
aspects of anhedonia. Likewise, apart from deficits in 
latent inhibition, the model has not been evaluated with 
respect to other areas of cognition, such as cognitive 
rigidity, executive functioning, or working memory, 
domains that are deficient in patients with schizophre-
nia. In addition to this, the APO-SUS/UNSUS model 
has not been evaluated with respect to predictive valid-
ity. For instance, although the APO-SUS rats show a 
deficit in prepulse inhibition and latent inhibition, it is 
unclear whether these deficits are reversible by first- 
and/or second-generation antipsychotics. To enhance 
the validity of the model, these aspects will need to be 
addressed.

The Brattleboro Rat

The Brattleboro rat is a strain originally derived 
from a single litter of Long Evans rats born in 1961 at 
Dartmouth Medical School. Close inspection of the lit-
ter showed that several pups showed severe polydipsia 
and polyuria. Subsequent breeding showed that this 
behavior could be attributed to a lack of circulation vaso-
pressin due to a frame shift mutation in a single gene 
resulting in a deficient release of vasopressin. As such, 
the Brattleboro rat is one of the very few “naturally” 
occurring genetic knockouts and an important model for 
diabetes insipidus (Bouby, Hassler, & Bankir, 1999; Valtin 
& Schroeder, 1964).

However, in addition to its role in the kidney (via 
the V2 receptor), vasopressin also plays a crucial 

TABLE 2 the Major Schizophrenia-like characteristics of apo-SUS Rats

Characteristic Effect APO-SUS Schizophrenia

Prepulse inhibition Decreased Ellenbroek et al. (1995) Braff et al. (1978)

Latent inhibition Decreased Ellenbroek et al. (1995) Baruch, Hemsley, and Gray (1988)

Cocaine self-administration Enhanced van der Kam, Ellenbroek, and Cools (2005) Miller and Fine (1993)

Tyrosine hydroxylase messenger RNA Enhanced Rots, Cools, Berod, et al. (1996) Nagatsu (1995)

Dopamine release Enhanced van der Elst et al. (2005) Howes et al. (2012)

Dopamine D2 receptor density Enhanced Rots, Cools, Berod, et al. (1996) Seeman (2013)

Developmental milestones Delayed Degen, Ellenbroek, Wiegant, and Cools (2005) Walker and Lewine (1990)

Hypothalamic pituitary adrenal axis Hyper-reactive Rots, Cools, Oitzl, et al. (1996) Lammers et al. (1995)

Th1–Th2 balance Th2 > Th1 Kavelaars, Heijnen, Ellenbroek, van Loveren, 
and Cools (1997)

Muller, Riedel, Ackenheil, and 
Schwarz (1999)

Sensitivity for rheumatoid arthritis Reduced van de Langerijt et al. (1994) Vinogradov, Gottesman, Moises, 
and Nichol (1991)

Lung cancer metastasis Reduced Teunis et al. (2002) Mortensen (1994)

Periodontitis Enhanced Breivik, Sluyter, Hof, and Cools (2000) Eltas, Kartalci, Eltas, Dundar, and 
Uslu (2013)

APO-SUS, apomorphine susceptible.
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neurotransmitter role in the brain, via the interaction 
with the V1a and V1b receptor. Moreover, vasopres-
sin has appreciable affinity for the oxytocin receptor. 
Both neuropeptides are known to play a complex role 
in the brain, being involved in emotion (especially anxi-
ety), reward, social behavior, and cognition (Griebel & 
Holsboer, 2012; Meyer-Lindenberg, Domes, Kirsch, & 
Heinrichs, 2011). It is therefore not surprising that the 
Brattleboro rat shows a wide range of behavioral abnor-
malities (for a recent review, see Feifel & Shilling, 2013).

With respect to schizophrenia, David Feifel and his 
colleagues have extensively studied the Brattleboro rat 
and shown that, like patients with schizophrenia, these 
rats show deficits in prepulse inhibition, latent inhibi-
tion, and startle habituation (Feifel & Priebe, 2001; Feifel 
& Shilling, 2013). In addition, they show an increased 
hyperactivity in a novel open field (Cilia et al., 2010). 
Moreover, there is some evidence for dopaminergic 
changes in the Brattleboro rat, including increased stria-
tal D2 receptor binding (Shilling et al., 2006) and dopa-
mine levels (Dawson, Wallace, & King, 1990; Feenstra, 
Snijdewint, Van Galen, & Boer, 1990). However, a recent 
study did not find any changes in dopamine levels or 
utilization, except for a significant decrease in frontal 
cortex dopamine (Cilia et al., 2010).

In contrast to the APO-SUS rats, the validity of the 
Brattleboro rat as a model for schizophrenia has been 
studied more extensively, mostly in relation to the defi-
cit in prepulse inhibition. However, several striking 
features have been found, which casts some doubt on 
the predictive validity of this rat model. First of all, the 
deficit in prepulse inhibition in the Brattleboro rat is 
already seen before puberty (Feifel & Shilling, 2013). As 
schizophrenia generally has an onset after puberty, most 
authors suggest that the symptoms in an animal model 
for schizophrenia should also not occur until adulthood 
(Ellenbroek, 2010; Lipska & Weinberger, 2000). On the 
other hand, it is important to realize that the diagnosis 
of schizophrenia is usually based on the presence of 
positive symptoms (hallucinations and/or delusions) 
and it is well-known that others symptoms occur dur-
ing the prodromal phase. So far to our knowledge, no 
study has looked at the presence or absence of prepulse 
inhibition deficits before the onset of florid positive 
symptoms. Another, perhaps more serious, difference 
between patients and animals relates to the interstimu-
lus interval. Thus, whereas the deficit in patients is seen 
with short (60–120 ms) but not long (250–500 ms) inter-
vals between the prepulse and startle stimulus (Braff 
et al., 1978), the reverse is true for the Brattleboro rat, 
that is, the largest deficits in prepulse inhibition as seen 
with intervals of 300 and 600 ms (Cilia et al., 2010). With 
respect to the predictive validity, it seems that both first- 
(chlorpromazine, haloperidol) and second- (risperi-
done, clozapine, olanzapine) generation antipsychotics 

reverse the prepulse inhibition deficits in the Brattle-
boro rats (Cilia et al., 2010; Feifel, Melendez, & Shilling, 
2004; Feifel, Shilling, & Melendez, 2005; Feifel & Shilling, 
2013), although the effects of haloperidol are somewhat 
contentious because at least one report showed no effect 
(Feifel et al., 2004). Nonetheless, the reversal of the pre-
pulse inhibition deficit by acute administration of an 
antipsychotic drug seems to be in contrast with clini-
cal observations, and the effects of second-generation 
antipsychotics on prepulse inhibition are questionable. 
In fact, whether antipsychotics improve prepulse inhi-
bition deficits in schizophrenia patients is still actively 
being discussed. Several longitudinal studies found no 
improvement of prepulse inhibition after antipsychotic 
treatment, even in patients that showed a reduction in 
other symptoms (During, Glenthoj, Andersen, & Oranje, 
2014; Mackeprang, Kristiansen, & Glenthoj, 2002). Other 
studies found a significant improvement (Aggernaes 
et al., 2010; Meincke et al., 2004; Quednow et al., 2006), 
but usually only after 4 or more weeks of treatment.

An interesting recent development in the Brattle-
boro model is the finding that rats heterozygous for 
the vasopressin genetic mutation also show deficits in 
prepulse inhibition. Interestingly, these animals do not 
show polyuria and polydipsia, but do show deficits in 
spatial working memory (Feifel & Shilling, 2013). This is 
an important development as it shows that polydipsia/ 
polyuria (and the many physiological changes that 
accompany it) can be separated from schizophrenia-like 
symptoms.

The SERT Knock-Out Rat

The serotonin transporter is the most important regu-
lator of extracellular 5-HT levels, and in humans a large 
number of genetic polymorphisms have been identi-
fied (Murphy et al., 2008). However, the most stud-
ied polymorphism is a 44-base-pair deletion/ insertion 
within the promoter region, generally referred to as 
the 5-hydroxytryptamine transporter linked promoter 
region (5-HTTLPR), where the short (s-)allele leads to a 
50% reduction in SERT activity (Karg, Burmeister, Shed-
den, & Sen, 2011; Lesch et al., 1996). Interestingly, this 
s-allele is a very common polymorphism, especially in 
Asians (Chiao & Blizinsky, 2010). Although the s-allele 
has been linked to an increased vulnerability for several 
psychiatric disorders including major depression, anxiety 
disorders, bipolar disorder, autism, and drug and alcohol 
addiction (Cao, Hudziak, & Li, 2013; Kenna et al., 2012), 
its relation to schizophrenia is less clear. Although there 
is clear evidence of abnormal 5-HT neurotransmission 
in schizophrenia (Selvaraj, Arnone, Cappai, & Howes, 
2014), most studies did not find a relation between the 
s-allele and schizophrenia (Golimbet, Korovaitseva,  
Faktor, Ganisheva, & Dmitriev, 2010; Pae et al., 2006; 
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Serretti, Catalano, & Smeraldi, 1999; Tsai et al., 2000). 
However, this does not necessarily preclude a role 
for the SERT in schizophrenia. Indeed, another poly-
morphism (the s-called STin2 VNTR) was found to 
be related to schizophrenia (Gatt, Burton, Williams, & 
Schofield, 2014), and a recent study also found DNA 
hypermethylation of the SERT in drug-naive patients 
with schizophrenia (Abdolmaleky et al., 2014). One pos-
sible explanation for these discrepancies is that genetic 
alterations in SERT activity may be more related to 
specific endophenotypes of schizophrenia rather than 
the disorder itself (e.g., negative symptoms: (Golimbet 
et al., 2004; Pae et al., 2003), impaired facial recognition 
(Alfimova et al., 2014), and/or impaired decision mak-
ing (Gu et al., 2013)).

Several years ago, using the ENU mutagenesis tech-
nique we created a SERT knockout rat, resulting from a 
premature stop codon in amino acid position 209 (Smits 
et al., 2006). Since then, we have extensively characterized 
these animals and have found that they show increased 
anxiety and depression-like symptoms (Olivier et al., 
2008). As mentioned previously, these symptoms often 
occur in schizophrenia and form one of the symptoms 
clusters of the PANNS. SERT KO rats show an increase 
in locomotor activity in a novel open field (Ellenbroek 
& Hulst, unpublished data), which is often regarded as 
a biomarker for positive symptoms as it can be a behav-
ioral effect of a hyperdopaminergic tone in the brain. In 
addition, these rats are also more sensitive to the rein-
forcing effects of dopamine agonists such as cocaine and 
3,4-methylenedioxy-methamphetamine (MDMA) (Hom-
berg et al., 2008; Oakly, Brox, Schenk, & Ellenbroek, 2014). 
This is reminiscent of the high comorbidity of drug addic-
tion and schizophrenia. In this respect, it is interesting 
to see that with respect to MDMA also the heterozygous 
SERT knockouts show enhanced self-administration (Brox 
& Ellenbroek, unpublished results). This is important 
as heterozygous SERT knockout rats have about a 50% 
reduction in SERT activity (Homberg, Olivier, et al., 2007) 
similar to that seen in humans with the s-allele. Moreover, 
the results on MDMA are in sharp contrast to findings 
in SERT knockout mice, which actually show reduced 
self-administration (Trigo et al., 2007), emphasizing the 
importance of genetic modeling in different species.

SERT knockout rats also exhibit deficits in social 
behavior (Homberg, Pattij, et al., 2007; Homberg, 
 Schiepers, Schoffelmeer, Cuppen, & Vanderschuren, 
2007) and cognitive performance including object recog-
nition (Olivier et al., 2009) and latent inhibition (Nonkes 
et al., 2012). So far, no studies have been published on 
prepulse inhibition and/or startle habituation in SERT 
knockout rats. However, preliminary data from our own 
laboratory suggest that both prepulse inhibition and star-
tle habituation are not different between wild-type-like 
and homozygous knockout rats (Oakly & Ellenbroek, 

unpublished data). This is in line with a recent paper 
showing no effects of (spontaneous) polymorphism in 
the rat SERT (rs8154473, C3598T) on prepulse inhibition 
(Belay et al., 2011). Unfortunately, the effects of antipsy-
chotic drugs have not been tested in SERT knockout rats 
so far, thus it is at present difficult to assess the predic-
tive validity of the model for schizophrenia.

Neuregulin 1 Hypomorphic Rat

This rat model is another example of a reverse genetic 
model, created using the BART3 gen-trap transpo-
son vector technique (see the previous section). So far 
only few studies have evaluated the behavior of this 
rat model, but studies on open-field behavior showed 
that habituation is diminished in the male neuregulin 
1 hypomorphic (Nrg1Tn) rat (Taylor, Taylor, et al., 2011), 
although there seems to be no difference in the initial 
locomotor response to novelty. Likewise, although the 
Nrg1Tn rats had higher basal levels of serum cortisol, there 
were no differences in stress sensitivity, although gluco-
corticoid receptors were altered in several brain regions 
including the paraventricular nucleus of the hypothala-
mus and the hippocampus and pituitary gland (Taylor, 
Taylor, et al., 2011). Interestingly, in female Nrg1Tn rat, 
the opposite was found, that is, an increased habituation 
to the open field. On the other hand, female Nrg1Tn rats 
showed a reduction in prepulse inhibition, which was 
not observed in male Nrg1Tn rats (Taylor, Markham,  
Taylor, Kanaskie, & Koenig, 2011). Sex differences were 
also observed in relation to anxiety, with female Nrg1Tn 
rats showing a reduced anxiety and males a strong ten-
dency for an increased anxiety as evaluated in the ele-
vated plus maze (Taylor, Taylor, & Koenig, 2013). As with 
most of the other models, the predictive validity has so 
far not been studied in any detail in the Nrg1Tn model.

CONCLUSIONS AND THE ROAD AHEAD

In the present chapter, we have discussed the cur-
rent state of genetic modeling in rats in general and 
for schizophrenia in particular. The establishment of 
gene targeting technology in rat ES cells, in combina-
tion with advances in genomics and the vast amount of 
research data on physiology and pharmacology in this 
species, now provides a powerful new platform for the 
study of human disease. The rat offers a complemen-
tary model choice to the mouse because rat models have 
been shown to more closely mimic human disease than 
mouse models in several areas such as neurodegenera-
tive diseases, hypertension, and Huntington’s disease 
(reviewed in Lu et al., 2007). For example, there are clear 
differences between the SERT knockout rat and the SERT 
knockout mouse (see the previous section). Likewise, we 
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have recently found clear differences between the BAC-
HD rat and mouse models for Huntington’s disease 
(Abada, Nguyen, Schreiber, & Ellenbroek, 2013; Abada, 
Schreiber, & Ellenbroek, 2013).

The rat is the model of choice in diverse areas of 
biomedical research such as cardiovascular diseases, 
pharmacology, behavioral/addiction studies, and neu-
robiology (Gibbs et al., 2004; Tesson et al., 2005). More-
over, rats are approximately 10 times larger than mice, 
allowing investigators to perform procedures such as 
nerve recordings, collection of tissue from small struc-
tures, and serial blood sampling more easily. Finally, 
their cognitive and social performance is much closer 
related to the human condition than mice (Abbott, 2004).

In relation to complex disorder such as schizophre-
nia, we do, however, need to realize the limitations of 
genetic modeling. Although the technology is now avail-
able to selectively alter any gene in the genome, it is well 
accepted that schizophrenia is not caused by a single 
gene defect. Indeed, the 2009 release of the schizophre-
nia gene resource database listed 7855 genes that were 
somehow involved in the etiology of schizophrenia 
(Sun, Kuo, Riley, Kendler, & Zhao, 2008), most of which 
led to only a small increase in risk (Purcell et al., 2014). 
This suggests that reverse genetic models based on a sin-
gle genetic alteration (i.e., the SERT knockout, the BDNF 
knockout, or the Nrg1Tn rat) may have less construct 
validity than forward genetic models (such as the APO-
SUS or the Brattleboro rat).

Related to this, it is becoming increasingly clear 
that schizophrenia is not a homogeneous disease, but 
rather a collection of different disorders with multiple 
pathologies and etiologies (Arnedo et al., 2014; Zhang, 
Koutsouleris, Meisenzahl, & Davatzikos, 2015). If this is 
confirmed, it will have important implications for animal 
modeling. Thus, rather than attempting to model schizo-
phrenia as a single disease, it would be more fruitful to 
develop models for specific subgroups of schizophrenia. 
However, at present we cannot clearly distinguish these 
subgroups in terms of symptoms or responsiveness to 
antipsychotic drugs, and modeling is therefore not yet 
possible. One solution to this problem is modeling endo-
phenotypes rather than attempting to model the full 
spectrum of the disorder.

Finally, it is important to note that although genetic 
alterations are a significant risk factor for schizophrenia, 
they by no means cause schizophrenia. Family studies 
have clearly shown that the concordance rates in mono-
zygotic twins are around 50%, indicating that addi-
tional, environmental risk factors also play an important 
role. Thus, it is the combined action of multiple genes 
of small effect size (Owen, Craddock, & O’Donovan, 
2005) and several environmental risk factors such as 
cannabis abuse or early life stress (McGrath et al., 2004), 
which causes the development of this mental disorder 

(Mackay-Sim, Feron, Eyles, Burne, & McGrath, 2004). For 
example, it has been shown that one such environmen-
tal challenge is adolescent cannabis use, which has been 
shown to enhance the risk of schizophrenia especially in 
interaction with genetic risk factors such as the catechol-
O-methyltransferase polymorphism (Caspi et al., 2005), 
the Akt (rs2494732) polymorphism (Di Forti et al., 2012), 
or mutant neuregulin 1 (Karl, 2013). This is summarized 
in the “two-hit hypothesis” of schizophrenia, which pre-
dicts that genetic and environmental risk factors inter-
actively trigger the development of the disorder (Bayer, 
Falkai, & Maier, 1999; Caspi & Moffitt, 2006; Ellenbroek, 
2003).

Thus, although the genetic rat models can help us 
understand how changes at the level of the DNA can 
alter the development of brain and behavior, the incor-
poration of early and/or later environmental factors 
will improve the construct validity of such models. So 
far, only few attempts have been made, and even fewer 
have investigated the predictive validity of such mod-
els. However, the enhanced understanding of the clinical 
picture of schizophrenia (including the etiological role of 
genetic and environmental risk factors) coupled with the 
enhanced genetic toolbox for rats offer great promise for 
the future.
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INTRODUCTION

Schizophrenia is a highly heritable neurodevelop-
mental disorder, characterized by heterogeneous dis-
play of psychotic (“positive”) and negative symptoms 
as well as cognitive deficits (Harvey, Wingo, Burdick, &  
Baldessarini, 2010; van Os & Kapur, 2009; Waddington  
et al., 2007). The emergence of psychotic symptoms  
is conceptualized as representing the end product of 
a pathobiological cascade which originates in early 
brain development (Rapoport, Giedd, & Gogtay, 2012;  
Waddington, Hennessy, O’Tuathaigh, Owoeye, & Russell,  
2012). Our understanding of schizophrenia is challenged 
by its complex life course and multifactorial origins that 
involve contributions from diverse genetic, epigenetic, 
and environmental factors (Brown, 2011; Hall, Trent, 
Thomas, O’Donovan, & Owen, 2014; van Os & Kapur, 
2009). The challenge is heightened by the absence of 
diagnostic pathobiology and causative genetic muta-
tions (Del Pino et al., 2013). Although recent research has 
advanced our understanding of the genetic basis of the 
disorder, identifying risk loci, and suggesting mecha-
nisms by which genetic risk is conferred (Gratten, Wray, 
Keller, & Visscher, 2014), much is still unknown, and the 
challenge also remains as to how these advances might 
be translated into therapeutically significant advances 
(Harrison, 2015). Several factors, including genetic and 
phenotypic heterogeneity, epistatic gene interactions, 
and the role that the environment plays in the devel-
opment/expression of psychiatric illness, amplify the 
difficulties associated with solving the schizophrenia 
genetics puzzle (Burmeister, 1999; Burmeister, McInnis, &  
Zollner, 2008). As a result, although investigations on  

the genetics of schizophrenia and related psychotic dis-
orders continue to progress in an incremental fashion, 
they have yet to lead to major advances in the development  
of novel antipsychotic drugs.

GENETICS OF SCHIZOPHRENIA

The risk of developing schizophrenia increases 
with the degree of biological relatedness to the patient  
(Gottesman, 1991). Meta-analyses of twin and adoption  
studies have shown that heritability accounts for ∼70% 
of disease risk in schizophrenia (Sullivan, Kendler, & 
Neale, 2003). Clinical genetic studies would suggest 
that the magnitude of risk conferred varies widely, from 
relatively modest odds for common genetic variants to 
substantial risks due to relatively rare variants. The com-
mon-disease/common-variant approach suggests that 
schizophrenia is a polygenic disorder, in which many 
common variants of small to moderate effect account 
for genetic liability (Ripke et al., 2013). In contrast, the 
common-disease/rare variant position posits that not 
only common genes of small effect, but also rare vari-
ants of large effect, contribute to disease susceptibility 
(Owen, 2012). It has been repeatedly demonstrated that 
rare chromosomal deletions and duplications, known 
as copy number variants (CNVs), can increase risk for 
the disorder, with the magnitude of the increase in risk 
substantially greater than that observed for common 
variants (International Schizophrenia Consortium, 2008; 
Kirov et al., 2009; Stefansson et al., 2008).

Partitioning the genetic contribution to the develop-
ment of schizophrenia has proven challenging, with 
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recent progress largely from technological advances 
and large-scale collaborative efforts (Hall et al., 2014). 
Recent advances in understanding the role of common 
risk variants to schizophrenia have been largely attrib-
utable to whole genome, array-based association stud-
ies. To date, genome-wide association study (GWAS) 
data have largely failed to provide supportive evi-
dence for hitherto prominent susceptibility targets (e.g., 
disrupted-in-schizophrenia-1 (DISC1), NRG1), while 
also identifying previously unknown targets (e.g., the 
major histocompatibility complex (MHC) region, TCF4, 
neurogranin, Mir-137; Gejman, Sanders, & Kendler, 
2011). The earliest GWAS identified an MHC region as 
a risk factor (International Schizophrenia Consortium, 
2009). Subsequent studies identified several loci as 
conferring increased risk for schizophrenia, including 
1p21.2 (Mir-137), 2q32.3 (PCGEM1), 8p23.2 (CSMD1), 
8q21.3 (MMP16), and 10q24.32-33 (Schizophrenia  
Psychiatric Genome-Wide Association Study Consortium,  
2011). A more recent study identified an additional 13 
loci, including genomic regions where genes implicated 
in calcium signaling (including CACNA1C and CACNB2) 
are based (Ripke et al., 2013). The most recent analysis 
has identified 108 agreed-on loci that contribute to risk 
for schizophrenia, identifying 83 novel risk markers and 
replicating 25 existing markers (Schizophrenia Working  
Group of the Psychiatric Genomics Consortium, 2014). 
Among the loci found are markers in or near genes 
involved in glutamatergic (GRM3, GRIA1 GRIN2A, 
SRR) and dopaminergic (DA-ergic; DRD2) function, 
calcium signaling (CACNA1, NRGN), synaptic function 
and plasticity (NLGN-4X), and other neurodevelop-
mental processes (e.g., MHC genes, Mir-137). Impor-
tantly, after considerable debate in the field about the 
failure of initial GWAS studies to replicate several of 
the pre-GWAS risk genes, the Schizophrenia Working 
Group of the Psychiatric Genomics Consortium (2014) 
analysis has implicated several candidate genes with 
a strong link to the pathophysiology of the disorder 
(Harrison, 2015).

However, it has been highlighted that the GWAS-
identified loci account only for a small proportion of 
overall genetic risk, and that only large-scale sequenc-
ing efforts have the potential to reveal rare small variants 
implicated in schizophrenia (Hall et al., 2014; Veltman & 
Brunner, 2012). CNV analyses that detect structural vari-
ants in the form of submicroscopic deletions and duplica-
tions of DNA have identified rare de novo and inherited 
variants that confer high risk for schizophrenia (odds 
ratio 3–20) (Winchester, Pratt, & Morris, 2014). Most of 
these variants are, however, private mutations and occur 
in only a small number of cases (<3%) (Winchester et al., 
2014). The large size of the associated CNVs gives us an 
inkling of the multiple genes that may be harbored in 
these variants. These genes may in turn, affect the dosage 

of multiple genes and the disruption of several genes at  
chromosomal breakpoints (Winchester et al., 2014).  
CNV studies in schizophrenia have employed a systems-
based statistical approach to identify biological pathways 
enriched for genes within CNV loci. Kirov et al. (2009) 
and others have identified genes encoding components 
of the N-methyl-d-aspartate (NMDA) receptor signal-
ing complex, synaptic protein interactors of the activity-
regulated cytoskeleton-associated protein, and CYFIP1, 
a recently characterized protein-binding partner of the 
fragile X mental retardation protein (Fromer et al., 2014; 
Kirov et al., 2012). In a recent large-scale, case–control, 
exome-sequencing study involving 2536 schizophrenia 
cases and 2543 controls, Purcell et al. (2014) demon-
strated a polygenic burden primarily arising from rare 
(<1 in 10,000), disruptive mutations distributed across 
many genes. They were able to detect several small and 
highly enriched sets, notably of genes related to NMDA 
receptor-associated PSD-95 protein complexes, MHC–
interacting proteins, and FMRP targets. It has been noted 
that such rare variant studies do not implicate conclu-
sively any specific gene but instead reveal an overall 
excess of such variants in schizophrenia, with clustering 
to functionally defined gene networks (Harrison, 2015; 
MacArthur et al., 2014). In a recent review of common-
disease/rare variant data, some authors have noted the 
convergence of CNV data onto a set of biological pro-
cesses involved in regulation of neuronal plasticity, espe-
cially at glutamatergic synapses (Hall et al., 2014).

Importantly, some of the genetic factors linked with 
increased risk for schizophrenia also display associa-
tion to broader phenotypes including bipolar disorder 
as well as major depression, attention deficit hyperactiv-
ity disorder, and autism (Cross Disorder Group of the 
Psychiatric Genomics Consortium, 2013), suggesting 
that clinical overlap between these disorders may in part 
reflect a shared genetic basis. On the basis of these find-
ings, it is clear that there is much greater overlap in terms 
of etiological factors than is accounted for in current 
classification systems (Hall et al., 2014; Owen, 2012). In 
a joint GWAS analysis between schizophrenia and bipo-
lar disorder, the following three genes reached genome-
wide significance: CACNA1C, ANK3, and ITIH3-ITIH4 
(Schizophrenia Psychiatric Genome-Wide Association 
Study Consortium, 2011). CACNA1C was further impli-
cated in a combined analysis of five psychiatric disor-
ders (schizophrenia, bipolar disorder, autistic spectrum 
disorder, major depressive disorder, attention deficit 
hyperactivity disorder), along with ITIH3, AS34MT, 
and CACNB2 (Cross-Disorder Group of the Psychiatric 
Genomics Consortium, 2013). In the most recent com-
bined GWAS of 19, 779 bipolar disorder and schizophre-
nia cases versus 19, 423 controls, in addition to a direct 
comparison GWAS of 7129 schizophrenia cases versus 
9252 bipolar disorder cases, the authors identify five 
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previously identified regions reaching genome-wide 
significance (CACNA1C, IFI44L, MHC, TRANK1, and 
MAD1L1) and a novel locus near PIK3C2A (Ruderfer 
et al., 2014). Interestingly, they demonstrated a signifi-
cant correlation between a bipolar disorder polygenic 
risk score and the clinical dimension of mania in patients 
with schizophrenia. It has been proposed that overlap-
ping disease pathways may partially explain shared 
symptoms across diagnoses, multiple diagnoses within 
patients, and patients receiving different diagnosis 
across the life span (McCarroll, Feng, & Hyman, 2014).

In summary, although the precise nature of the 
genetic component of schizophrenia remains elusive, 
recent GWAS and rare mutation studies have provided 
new insights into the etiology of this and related dis-
orders and hold out the prospect (as yet unrealized) of 
new directions for antipsychotic drug discovery (Pratt,  
Winchester, Dawson, & Morris, 2012; Schizophrenia 
Working Group of the Psychiatric Genomics Consortium,  
2014; Winchester et al., 2014). However, it must be 
emphasized that the existing findings only account 
for a minority of the heritability of schizophrenia (Lee,  
Kaidanovich-Beilin, Roder, Woodgett, & Wong, 2011). 
It is likely that some, and possibly a great deal, of the 
genetic risk reflects gene–gene interactions rather than 
simply the cumulative effect of multiple independent 
genes (Harrison, 2015).

GENE–GENE INTERACTIONS: CLOSING 
THE “MISSING HERITABILITY” GAP

Despite the distinct contributions of common-dis-
ease/common-variant and common-disease/rare vari-
ant approaches to our understanding of the genetic basis 
of schizophrenia, the collective findings highlight some 
common themes as: (1) “missing heritability:” The lack 
of robust findings from genetic studies does not concur 
with the high heritability estimates of schizophrenia. 
This fuels the important question of where the “missing 
heritability” of this complex disorder might be found. 
(2) Polygenic inheritance: The large number of contrib-
uting loci and susceptibility alleles and their incomplete 
penetrance suggest a polygenic model where multiple 
risk genes of small effect sizes act additively or multi-
plicatively to cause a substantial increase in disease risk. 
Given that no single gene has been shown to consistently 
confer a significant increase in disease risk across inde-
pendent studies, simple major gene effects are unlikely. 
Additionally, we may assume that the development of  
complex traits, such as psychosis, is likely to involve  
the combination of a large number of independent  
and/or interacting genetic variants (Lvovs, Favorova, &  
Favorov, 2012; Shao et al., 2008). (3) Epistasis: gene–gene 
interactions add additional layers of complexity to the 

relationship between genotype and disease risk manifes-
tation. This complexity may hinder the detection of asso-
ciation when genes/single nucleotide proteins (SNPs) 
are tested one at a time. Such interactions would most 
likely depend on multiple genetic variations, making 
it impossible to explain disease risk by the addition of 
independent genetic effects.

The term “epistasis” was first coined by William 
Bateson in 1908 to describe a masking effect in which a 
specific variant or allele at one locus is prevented from 
manifesting its effects by a variant from another locus 
(Bateson, 1909). Epistasis, also frequently used to refer 
generally to the interaction between different genes, has 
become a crucial element in molecular genetics studies 
of psychiatric disorders in recent years (Gelernter, 2015). 
As a possible underlying disease mechanism in schizo-
phrenia, epistasis is of particular significance because, if 
the effect of one locus is altered or masked by effects at 
another locus, power to detect the first locus is likely to 
be reduced (Cordell, 2002). Additionally, interrogation of 
the combined effects of these two loci will therefore be 
hindered by this interaction. If more than two loci are 
involved, this adds another layer of complexity in the 
relationship between genotype and disease risk because 
of the possibility of multiway interactions among some 
or all of the contributing loci (Cordell, 2002). In essence, 
epistasis illustrates the interdependence of the effects of 
different genetic loci in manifestation of disease risk.

In a typical GWAS analysis, the effect of each variant 
on the disease trait of interest is examined one at a time. 
The effects of all variants are then summed to deduce 
the total amount of genetic variation explained by DNA 
polymorphisms that affect the trait. The additive model 
of inheritance assumes that the effects of individual vari-
ants are independent of the effects of other contributing 
loci. Epistasis occurs if the effect of one variant affecting a 
complex trait depends on the genotype of a second vari-
ant affecting the trait. It has been proposed that quanti-
tative variation in risk for the disorder or the expression 
of disease-related endophenotypes must reflect in part a 
disturbance of highly dynamic, interconnected, and non-
linear networks (e.g., developmental and biochemical 
networks) by multiple genetic variants and thus gene–
gene interactions are likely (Mackay & Moore, 2014).

The challenge for detecting epistasis in human popu-
lations is threefold (Mackay, 2014). The first is statistical, 
in which a parametric modeling approach for epista-
sis requires much larger sample sizes than for tests of 
the effects of single loci. Proving the interactions sta-
tistically using an agnostic approach is dogged by the 
potential for false-positive and false-negative errors. As 
the number of risk factors increase, the potential inter-
actions also increase exponentially, posing challenges 
for detection (Prasad et al., 2010). Additionally, complex 
interactions with nonadditive effects can be difficult to 
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statistically understand and may be difficult to explain 
and/or empirically test in relation to underlying bio-
logical mechanisms. Another problem is computational, 
based on the large number of tests that must be evalu-
ated. Novel methods such as multifactor dimensional-
ity reduction (Ritchie et al., 2001) and machine-learning 
methods such as random forests (Breiman, 2001) are 
capable of modeling nonadditive interactions.

Therefore, “missing heritability” may reflect our lim-
ited understanding of gene–gene interactions that might 
influence the development of schizophrenia (Hemani, 
Knott, & Haley, 2013; Zuk, Hechter, Sunyaev, & Lander, 
2012), in particular idiopathic disruption of different 
networks of interacting genes (Wu et al., 2010, 2011). 
To date, schizophrenia GWAS results have highlighted 
the degree of polygenicity, consistent with thousands of 
genes and noncoding loci containing risk alleles (Purcell 
et al., 2009). Progress has been made in implicating bio-
logical systems and quantifying shared genetics among 
related psychiatric disorders. A recent large-scale analy-
sis of the relationship between genotypic networks and 
distinct clinical phenotypes in the Molecular Genetics 
of Schizophrenia GWAS dataset has identified 17 geno-
typic networks that were associated with distinct gene 
products and clinical syndromes (Arnedo et al., 2015). 
These analyses would suggest that a hidden heritabil-
ity component is encoded in a complex distribution of 
gene–gene and gene–phenotype relationships. Addition-
ally, this analysis revealed that these networks belong to 
signaling pathways already implicated in schizophrenia, 
including neural development, neurotrophin function, 
neurotransmission, and neuronal function and neurode-
generative disorders (Arnedo et al., 2015).

GENE–GENE INTERACTIONS AND 
SCHIZOPHRENIA: EVIDENCE FROM 

CLINICAL AND NEUROIMAGING 
STUDIES

Epistasis is one of several nonmutually exclusive 
explanations for small effects, missing heritability and 
lack of replication of top trait-associated variants in dif-
ferent populations in GWASs. Therefore, determining 
epistasis in the context of risk for schizophrenia might 
be expected to improve our understanding of the bio-
logical underpinnings of variation in schizophrenia risk 
as well as increase the accuracy of individual risk predic-
tion (Mackay, 2014).

The wealth of genetic and imaging data related to 
symptoms of psychiatric disorders would support the 
notion of psychiatric disorders as heterogeneous spec-
tra that deviate quantitatively but not qualitatively 
from health (McArthur et al., 2014). This has led some 
authors to suggest that rather than seeking to examine 

the relationship between genetic variation and presence 
of clinical symptoms, the concept of the endophenotype 
should be adopted (Flint & Munafò, 2014; van Os, Kenis, &  
Rutten, 2010). Endophenotypes are quantifiable, inter-
mediate disease features that bridge the gap between the 
symptoms of schizophrenia and underlying risk genes 
(Braff, Schork, & Gottesman, 2007; Gottesman & Gould, 
2003). This places considerable emphasis on dissection 
of the schizophrenia phenotype into distinct and acces-
sible endophenotypes that may relate more closely to 
underlying pathobiology.

Evidence for epistasis in schizophrenia or in the 
expression of schizophrenia-related cognitive endophe-
notypes in patients or healthy controls is described in 
the following section for candidate genes either directly 
associated with increased risk for schizophrenia or those 
associated with the pathophysiology of schizophrenia.

Dopamine

These prevailing DA theory of schizophrenia is predi-
cated on enduring evidence for DA-ergic hyperfunc-
tion as a substrate for psychosis, and for DA receptor 
antagonism (particularly at the DA D2 receptor, DRD2) 
as the only mechanism common to all clinically used 
antipsychotic drugs (Tost, Alam, & Meyer-Lindenberg, 
2010). The DA transporter (DAT) regulates DA avail-
ability in the DA-ergic synapse via reuptake of DA from 
the synaptic cleft (Mason et al., 2005); it is abundantly 
expressed in the striatum, substantia nigra, and ventral 
tegmental area as well as the posterior cingulated, motor, 
and insular cortices (Lewis et al., 2001). In contrast, the 
catechol-o-methyltransferase (COMT) enzyme, which 
is highly expressed in the prefrontal cortex (PFC), ante-
rior cingulate, and occipital cortices, plays a greater role 
than DAT in DA degradation in these areas (Lewis et al., 
2001). The evidence does not support a role for DAT or 
COMT as susceptibility genes which confer increased 
risk for schizophrenia (Gamma, Faraone, Glatt, Yeh, & 
Tsuang, 2005; Williams, Owen, & O’Donovan, 2007). 
However, the data suggest that variation in both genes 
moderates degree of impairment across cognitive endo-
phenotypes linked with the disorder. The DAT gene 
displays a polymorphic 40-base-pair variable number 
of tandem repeats in the 3′ untranslated region (DAT 
3′UTR VNTR), which yields common, 9- and 10-repeat 
alleles (Vandenbergh et al., 1992). The 9-repeat has been 
associated with overactivation in the frontal cortex dur-
ing working memory and reward-related processing 
tasks in schizophrenia (Bertolino et al., 2006; Dreher, 
Kohn, Kolachana, Weinberger, & Berman, 2009), and in 
the caudate nucleus and ventromedial striatum during 
a reward task in a nonclinical population (Aarts et al., 
2010; Dreher et al., 2009). Studies have shown epistatic 
interactions between COMT and DAT during cognitive 
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tasks in healthy controls (Bertolino et al., 2008; Caldu 
et al., 2007; Prata et al., 2009). In a study by Prata et al. 
(2009), the authors examined the possibility of a nonad-
ditive interaction between two DA-associated genes, 
DAT and COMT, on brain activation during a verbal flu-
ency task, and the extent to which this effect is modified 
in schizophrenia. Specifically, they examined evidence 
for epistasis between the DAT 3′ UTR VNTR and COMT 
rs4680 (Val158Met) polymorphisms. They observed a 
significant COMT × DAT nonadditive interaction effect 
on activation in the left supramarginal gyrus in both 
patients and controls; increased activation in this area 
was detected only when COMT rs4680 Met/Met (low-
activity) subjects also carried the 9-repeat DAT allele, 
or when, reversely, Val/Val (high-activity) subjects car-
ried the 10/10-repeat genotype. They also observed a 
diagnosis × COMT × DAT nonadditive interaction in the  
right orbital gyrus where, only within patients, greater 
activation was only associated with 9-repeat allele and 
Val/Val, and with a 10-repeat and Met/Met, conjunction.

AKT1 is a serine/threonine kinase of the AKT family, 
where AKT is downstream of DRD2 receptor activation, 
interacting with the β-arrestin 2/PP2A signaling complex  
in the regulation of DA signaling cascades and the 
expression of striatal DA-mediated behaviors (Beaulieu,  
Gainetdinov, & Caron, 2007; Beaulieu et al., 2005).  
Specifically, DRD2 receptors engage the AKT/Glycogen 
Synthase Kinase 3 (GSK-3) signaling pathway by a G 
protein–independent mechanism that involves a signaling  
complex comprised of β-arrestin 2, AKT, and the multi-
meric protein phosphatase PP2A (Beaulieu et al., 2007, 
2005). Several lines of evidence indicate that AKT/
GSK-3 signaling also plays an important role in the  
development of DA-related neuropsychiatric diseases 
including schizophrenia (Beaulieu, Del’guidice, Sotnikova, 
Lemasson, & Gainetdinov, 2011). Relative to control 
patients, patients with schizophrenia demonstrate  
significant cortical and hippocampal reduction in AKT 
expression and activity (Balu et al., 2012; Emamian, Hall, 
Birnbaum, Karayiorgou, & Gogos, 2004; Zhao, Ksiezak-
Reding, Riggio, Haroutunian, & Pasinetti, 2006) as well 
as decreased activity of downstream GSK-3 (Kozlovsky, 
Belmaker, & Agam, 2001). Additionally, downstream 
effectors of AKT including GSK-3β, β-catenin, and  
CREB have all been implicated in the pathophysiology 
of schizophrenia based on protein, messenger RNA,  
and enzyme activity changes (Lang, Puls, Muller, Strutz-
Seebohm, & Gallinat, 2007). Blasi et al. (2011) investigated  
the relative impact of DRD2 rs1076560 and AKT1 
rs1130233 across several endophenotypic measures 
and molecular markers in healthy participants and 
patients with schizophrenia. In healthy individuals, 
they found that the interaction between the T allele of 
DRD2 rs1076560 and the A allele of AKT1 rs1130233 was 
associated with reduced AKT1 protein levels, reduced 

phosphorylation of GSK-3β, in addition to altered cingulate  
response and reduced behavioral accuracy during a task 
that measured attentional function. Interestingly, inter-
action of these two alleles was associated with greater 
improvement of Positive and Negative Syndrome Scale 
scores in patients with schizophrenia after treatment 
with the antipsychotic drug olanzapine.

Tan et al. (2008) examined interactional effects of SNPs 
at AKT1 and COMT polymorphisms on PFC function 
in schizophrenia. They reported a main effect of AKT1 
rs1130233 on a range of cognitive functions (tasks engag-
ing IQ, processing speed, and executive cognitive con-
trol processes) and frontostriatal gray matter volume. An 
epistatic interaction of AKT1 with a COMT SNP (rs4680; 
Val/Met polymorphism) was observed on PFC gray 
matter volume. An epistatic interaction between allele A 
of rs1130233 and the Val allele of COMT rs4680 was also 
observed in relation to inefficient PFC activation.

Glutamate

d-amino acid oxidase (DAAO) is an enzyme involved 
in metabolism of the NMDA receptor activator, d-ser-
ine. An increase in DAAO enzyme activity and gene 
expression has been reported in postmortem cerebel-
lar tissue of patients with schizophrenia (Verrall et al., 
2007), which is consistent with the NMDA recep-
tor hypofunction hypothesis of schizophrenia. G72 
regulates transmission, by activating DAAO, which 
modulates metabolism of d-amino acids like d-serine, 
a coagonist for the NMDA glutamate receptor (Boks 
et al., 2007). A review of clinical genetic data has sup-
ported the association between G72/DAOA and risk 
for schizophrenia (Boks et al., 2007; Li & He, 2007). An 
epistatic interaction was observed between SNPs at 
the schizophrenia susceptibility gene G72 (also known  
as d-amino acid oxidase activator (DAOA); rs3916965) 
and DAO (DAO-M5, rs3918346) for schizophrenia risk 
(Corvin et al., 2007). This interaction was further supported 
by a neuroimaging study which examined the impact of 
G72 rs746187 and DAAO rs2111902 genotypes on brain 
function during a verbal fluency task in patients with 
schizophrenia, bipolar disorder as well as healthy vol-
unteers. A significant interaction was observed between 
G72, DAAO SNPs, and schizophrenia diagnosis in rela-
tion to right middle temporal gyrus activation, which 
points toward of a nonadditive interaction between gene 
variants implicated in glutamate regulation that affects 
cortical function.

Dopamine-Glutamate

Psychosis may involve changes in both DA-ergic and 
glutamatergic function and contemporary models pro-
pose that it results from an interaction between these 
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two systems (Carlsson & Carlsson, 1990; Lisman et al., 
2008). Pauli et al. (2013) investigated the possibility of 
epistasis between DAT (3′UTR VNT) and G72 (rs746187) 
on brain function, on the basis that striatal DA activity 
modulates and is modulated by cortical and medial tem-
poral glutamatergic activity (which G72 regulates). In a 
verbal fluency task, a significant task load-dependent 
nonadditive interaction was observed between G72 and 
DAT genotype on activation in the putamen and para-
hippocampal gyri bilaterally as well as in the supramar-
ginal/angular gyri bilaterally, and in the right insula, the 
left posterior cingulated/retrosplenial gyri and the right 
pre-/postcentral gyri. This epistatic effect on activation 
was not reflected in any changes to task performance.

Nicodemus et al. (2007) reported an epistatic interac-
tion between the G72 M24 (T allele) and a functionally 
inefficient three-marker COMT haplotype on risk for 
schizophrenia. The same group also reported epistatic 
interactions of specific COMT SNPs including rs4680, 
rs2097603, and rs165599 with SNPs at RGS4, GRM3,  
and DISC1 on PFC efficiency (Nicodemus et al., 2007). 
Nixon et al. (2011) further investigated this G72-COMT 
gene–gene interaction by examining their relative impact 
on performance in a working memory task (where 
patients with schizophrenia typically show impairment)  
in healthy individuals. Their study results supported 
their hypothesis that individuals possessing both risk 
genotypes for DAOA M24 (T/T) and COMT rs4860  
(Val/Val) would exhibit inefficient activation of the DLPFC  
while completing a PFC-dependent working memory 
task. The observed epistasis captured the multiplicative  
influence of DAOA (T/T) and COMT (Val/Val) risk 
genes on PFC physiology.

Genetic variation in GRM3 (which encodes group II 
metabotropic glutamate receptor 3) has been associated 
with altered glutamatergic transmission, poorer cogni-
tive performance, and disrupted mismatch negativity 
(Kawakubo et al., 2011; Marenco et al., 2006) as well as 
changes in working memory in patients with schizo-
phrenia following antipsychotic treatment (Bishop et al., 
2014). Functional magnetic resonance imaging (MRI) 
studies have investigated the separate and combined 
effects of variants in COMT and GRM3 on regulation 
of PFC activation and related cognitive task perfor-
mance (Tan et al., 2007). Pronounced combined effects of 
COMT and GRM3 variation were pronounced on PFC-
dependent working memory processing. Specifically, 
the GRM3 genotype (allele A of rs6465084), previously 
associated with suboptimal glutamatergic signaling, 
was associated with inefficient PFC engagement and 
altered PFC-parietal coupling against the background of 
COMT rs4680 (Val/Val). In contrast, the COMT rs4860 
Met/Met background appeared to ameliorate the dis-
ruptive effects of GRM3 genotype on PFC processing 
(Tan et al., 2007).

The PRODH gene codes for proline dehydrogenase; 
PRODH has been implicated in schizophrenia, in part, 
through its role in the regulation of glutamatergic signal-
ing (Kempf et al., 2008). COMT and PRODH SNPs were 
examined for their associations with MRI morphomet-
ric measures in young patients with schizophrenia or 
schizoaffective disorder (Zinkstok et al., 2008). Although 
main effects for COMT and PRODH SNPs were observed, 
an epistatic interaction were also observed on the infe-
rior frontal lobe white matter when COMT rs4860 Val 
allele was indexed with PRODH (rs20086720) alleles (GT 
or TT) and compared with the rest of patients (Zinkstok 
et al., 2008).

Schizophrenia Susceptibility Genes

The significance of epistasis in relation to understand-
ing the contribution of candidate susceptibility genes to 
the development of schizophrenia was highlighted in 
a paper by Nancy Andreasen and colleagues in 2012. 
Using machine-learning algorithms, their study sought 
to identify genes/SNPs that interacted with one another 
to predict the emergence of a schizophrenia-related ana-
tomical endophenotype, specifically changes in brain 
structure occurring after the onset of the disorder. These 
authors identified 11 interactions involving 5 genes and 
17 SNPs (five of which had been previously identified 
as schizophrenia vulnerability markers or implicate cog-
nitive deficits in schizophrenia) that had a significant 
relationship with biologically plausible tissue change in 
at least two brain regions. These interactions included 
interactions between the following genes: Erbb4 and 
DISC1, PDE4B, RELN; NRG1 and RELN; DISC1 and 
PDE4B, Erbb4, and RELN.

The neuregulins are a family of signaling proteins 
that are encoded by four genes (NRG 1–4) and share a 
common epidermal growth factor–like domain; interac-
tion of these extracellular epidermal growth factor–like 
domains with membrane-associated tyrosine kinases 
(Erbb receptors) activate intracellular signaling path-
ways that are known to play an important role in various 
developmental processes implicated in schizophrenia 
(Harrison & Law, 2006; Mei & Xiong, 2008). NRG1 was 
identified as a putative risk gene for schizophrenia ini-
tially in an Icelandic sample (Stefannsson et al., 2002). 
In meta-analysis, the association between the NRG1 
schizophrenia-associated risk haplotype (HapICE) and 
schizophrenia has proved replicable, although GWAS 
findings have largely failed to support NRG1 as a risk 
gene (Bertram, 2008). Few studies of NRG1 epistasis 
have been conducted to date. There have been reports 
of interaction between the original NRG1 schizophrenia-
risk haplotype (HapICE) and its receptor Erbb4 in mod-
ulating risk for schizophrenia (Norton et al., 2006; Shiota 
et al., 2008).
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In a study by Nicodemus and colleagues (Nicodemus, 
Law, et al., 2010), they investigated epistasis between 
NRG1 and selected NMDA–glutamate pathway part-
ners implicated in its effects, including Erbb4, AKT1, 
DLG4, NOS1, and nNOS1-neuronal nitric oxide syn-
thase. NRG1 pathway partners implicated in NMDA 
signaling were selected because they either directly 
interacted with NRG1 (Erbb4 and PSD-95) or they inter-
acted directly with genes in the extended Erbb4-NMDA 
signaling pathway (PSD-95-nNOS1, nNOS1-neuronal 
nitric oxide synthase, and AKT1). A three-way inter-
action between a nonsynonymous SNP in NRG1 and 
SNPs in Erbb4 and AKT1 was associated with sub-
stantial increased risk for schizophrenia and inefficient 
physiological processing of working memory in healthy 
participants. Epistatic interactions were stronger than 
SNP effects and in some cases occurred in the absence 
main effects for the SNPs implicated, providing strong 
evidence for genuine epistasis. In the case–control 
comparison, the following interactions were observed 
between SNPs and schizophrenia: NRG1 5′ and 3′ 
SNPs rs4560751 and rs3802160; NRG1 (rs10503929; 
Thr286/289/294Met) and its receptor Erbb4 (rs1026882); 
a three-way interaction with the latter two SNPs and 
AKT1 was also observed. For all forms of schizophrenia-
associated genetic variation, there is increasing evidence 
that the implicated genes converge upon biochemical 
pathways and networks. One of the clearer examples of 
convergence of multiple genetic hits within a well-estab-
lished biochemical pathway is the NRG1-Erbb4-PI3K-
AKT1 pathway. Although it should be noted that none 
of these genes is significant in the large GWAS studies, 
there is evidence for association of all four genes with 
schizophrenia, and for epistasis between them (Harrison,  
2015; Law et al., 2012; Nicodemus, Law, et al., 2010).

Lateral ventricle enlargement represents one of the most 
consistent findings in first-episode schizophrenia studies 
(Vita, De Peri, Silenzi, & Dieci, 2006) and has been pos-
tulated as a potential endophenotype for schizophrenia 
(Andreasen et al., 2011; McDonald et al., 2006). Three SNPs 
within the DISC1 gene rs6675281, rs821616, and rs2793092 
were examined for an interaction with SNP8NRG243177 
of the NRG1 gene, which had previously been shown 
to independently predict lateral ventricle volume in a 
schizophrenia patient sample (Mata et al., 2010). The first 
finding was a significant association between lateral ven-
tricle volume and the rs2793092 SNP in the DISC1 gene, 
whereby those patients who were T/T homozygotes pre-
sented substantially enlarged lateral ventricles. In a previ-
ous study (Mata et al., 2009), they reported similar results 
with SNP8NRG243177 within the NRG1 gene; those 
patients carrying T allele presented substantially enlarged 
lateral ventricles. They also reported an additive effect of 
SNP8NRG243177 in the NRG1 gene and rs2793092 in the 
DISC1 gene on lateral ventricle enlargement.

A study in a Scottish pedigree demonstrated that a 
familial mutation in the DISC1 gene resulting from a 
balanced chromosomal translocation at 1q42.1-1q42.3, 
segregated with several psychiatric disorders, includ-
ing schizophrenia; this association between DISC1 and 
schizophrenia has been replicated across diverse pop-
ulations (Chubb, Bradshaw, & Soares, 2008; Hennah 
et al., 2009; Schumacher et al., 2009). During embryonic 
development, DISC1 appears to play an important role 
in neurodevelopment and neuronal plasticity via inter-
action with several proteins, including phosphodiester-
ase-4B, Fez1, NudEL, and LIS1; these functions likely 
alternate, depending upon the stage of development 
(Chubb et al., 2008). Several studies have examined 
whether variation within the putative DISC1 protein 
pathway influences risk for schizophrenia or the expres-
sion of schizophrenia-associated cognitive endopheno-
types. NDE1 and NDEL1 have been shown to interact 
with DISC1 to increase risk for schizophrenia. A study 
conducted by Burdick and colleagues tested for asso-
ciation and interaction between the functional SNP Ser-
704Cys in DISC1 and NDEL1 and risk for schizophrenia 
(Burdick et al., 2008). They observed a significant inter-
action between the rs1391768 SNP in NDEL1 and DISC1 
Ser704Cys, with the effect of NDEL1 on risk of schizo-
phrenia evident only against the background of DISC1 
Ser704 homozygosity (Burdick et al., 2008). Nicodemus, 
Callicott, et al. (2010) also reported evidence that SNPs in 
three genes in the putative DISC1 pathway, DISC1, CIT, 
and NDEL1, act in epistasis to influence risk for schizo-
phrenia in a sample of patients with schizophrenia. In a 
complementary neuroimaging analysis, three of the four 
interactions were validated via neuroimaging in healthy 
controls; carriers of the combinations of schizophrenia 
risk-associated genotypes showed less efficient cogni-
tive processing, similar to schizophrenia patients, than 
those carrying no risk-associated genotypes during a test 
of working memory.

Kim et al. (2012) reported a significant interaction at 
both the molecular and clinical level between DISC1 
and SLC12A2 (which encodes NKCC1, a cortical chlo-
ride transporter). Research has demonstrated that func-
tional variation in the SLC12A2 gene was associated 
with a modest increase in schizophrenia risk, together 
with working memory performance variation, global 
cognition, and inefficient prefrontal cortical activation 
in healthy participants (Morita et al., 2014). During 
adult and early postnatal hippocampal neurogenesis in 
the mouse, they also showed that DISC1 knockdown-
induced dendritic overgrowth of newborn neurons 
required GABA-induced depolarization, which is cru-
cially dependent upon abundant expression of SLC12A2 
(Kim et al., 2012). A significant interaction between 
SNPs in DISC1 and SLC12A2 (rs10089) and risk for 
schizophrenia was also demonstrated in a combined 
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analysis of three independent case–control samples 
(Kim et al., 2012). Using functional MRI, Callicott et al. 
(2013) reported that healthy participants carrying minor 
alleles in the same two SNPs show a significant decrease 
in hippocampal region activation and hippocampal con-
nectivity with PFC during a recognition memory task, 
confirming a biological interaction between these genes 
on risk for schizophrenia and the expression of schizo-
phrenia-related cognitive endophenotypes.

Meta-analyses have shown that the association 
between the dysbindin gene DTNBP1 (which encodes a 
neuronal protein that is part of the dystrophin protein 
complex) and schizophrenia have proven replicable 
across numerous independent samples (Allen et al., 
2008); however, no functional variant has been identified 
and there is inconsistency as to the reported alleles/hap-
lotypes between studies. DTNBP1 functions as a com-
ponent of a protein complex, termed the biogenesis of 
lysosome-related organelles complex 1 (BLOC-1; Li et al., 
2003). The BLOC-1 is a 200-kDa ubiquitously expressed 
soluble oligomeric protein complex known to consist 
of proteins encoded by at least eight genes: DTNBP1, 
MUTED, PLDN, CNO, SNAPAP, BLOC1S1, BLOC1S2, 
and BLOC1S3 (Ciciotte et al., 2003). Using canonical cor-
relation analysis to perform gene-based tests of epista-
sis in schizophrenia, Morris et al. (2008) examined the 
interaction between DTNBP1 and other BLOC1 genes 
(MUTED, PLDN, CNO, SNAPAP, BLOC1S1, BLOC1S2, 
BLOC1S3) and risk for schizophrenia. They reported 
epistatic interactions between DTNBP1 and MUTED, 
although a main effect was not reported for the latter 
gene. Another study looked at the interaction between 
DTNBP1, the candidate susceptibility gene RGS4, and 
IL3 (Edwards et al., 2008). In the family-based sample, 
a three-locus interaction between IL3 SNP rs2069803, 
DTNBP1 SNP rs2619539, and RGS4 SNP rs2661319 was 
observed (Edwards et al., 2008). In the case–control sam-
ple, a two-locus interaction was observed between IL3 
SNP rs31400 and DTNBP1 SNP rs760761 and risk for 
schizophrenia.

Nicodemus et al. (2014) recently investigated the rela-
tive explanatory power of polygenic scores versus epi-
static analyses in accounting for the variation in working 
memory performance. Impaired working memory, one 
of the cognitive deficits of schizophrenia, was used as 
the outcome measure while epistatic analyses were mea-
sured in the context of interactions between SNPs in 
the psychosis susceptibility gene ZNF804A pathway. It 
was shown that the removal of SNPs within ZNF804A 
reduced the R2 values only slightly, suggesting that the 
joint contribution of genes within the pathways is more 
significant than the independent effects of single SNPs. 
It was also shown that when epistasis was included in 
the interaction term in addition to polygenic scores, 
the amount of variation explained in two independent 

test sets of cases increased threefold. Furthermore, they 
showed that the combined effects of schizophrenia risk 
alleles led to worse performance of patients with schizo-
phrenia in measures of working memory and social 
cognition.

Several studies have supported a link between 
increased susceptibility for schizophrenia and microdele-
tions affecting the gene neurexin 1 (NRXN1; Kirov et al., 
2009; Levinson et al., 2012). Neurexins are presynaptic 
proteins that act as synaptic recognition molecules and 
may contribute to various aspects of synaptic function via 
binding to neuroligins (Ichtchenko et al., 1995). Mozhui 
et al. (2011) demonstrated that markers in NRXN1 and 
GSK-3β show epistatic interactions in modulating risk 
for schizophrenia. They reported a significant two-loci 
interaction between rs4563262 (NRXN1) and rs4340737 
(GSK-3β) with risk, and using a three-loci model, there 
was a significant interaction between rs6736816 and 
rs9309200 in NRXN1 and rs9826659 in GSK-3β. This neu-
robiological interaction may focus on cellular interaction 
between both proteins at the presynaptic region.

TRANSLATIONAL GENETIC 
APPROACHES FOR STUDYING 

SCHIZOPHRENIA

A survey of the literature reveals that preclinical genetic 
models of neurodevelopmental or neuropsychiatric dis-
ease have primarily involved use of mice with targeted 
mutation of a single risk-associated gene via knockout or 
transgenesis (e.g., gain-of-function and dominant nega-
tive mutants). Oft-cited limitations associated with consti-
tutive single-gene knockout models include the potential 
for embryonic or perinatal lethality, especially pertinent 
when one consists that many of the most prominent 
schizophrenia risk genes play a role in central nervous 
system and non–central nervous system developmental 
processes (Desbonnet, Waddington, & Tuathaigh, 2009; 
O’Tuathaigh & Waddington, 2015). Additionally, inter-
pretation of mutant phenotype is complicated by the 
potential influence of compensatory mechanisms, and 
the potential for redundancy. The strength of the consti-
tutive approach includes the ability to vary gene dosage 
as well as the ability to achieve a level of molecular speci-
ficity that may not be available if the researcher is reliant 
on existing pharmacological tools.

Taking into account the evidence for complex inter-
actions between many genes and environmental factors 
in modulating risk for schizophrenia, several issues with 
implications for preclinical modelling have been sum-
marized in reviews of the field: (1) the notable absence 
of clinically implicated functional variants for the major-
ity of the genes associated with the disorder, thereby 
limiting validity of mutant models for the risk allele in 
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question; (2) the absence of null mutations in this disor-
der, which has led some authors to question the scientific 
value of constructing single-gene knockout models for 
schizophrenia (Harrison et al., 2012); (3) poor evolution-
ary conservation of disease-associated noncoding DNA 
sequences and species differences in neural circuits and/
or molecular networks that might link the risk gene to 
aberrant circuitry, thereby potentially limiting the value 
of a model species like the mouse (McCarroll et al., 2014); 
(4) where a gene has been shown to be downregulated 
in schizophrenia, a heterozygous knockout model may 
represent a valid modeling approach (Meck et al., 2012); 
and (5) where the expression of some genes is upregu-
lated in schizophrenia, transgenic overexpression is a 
frequently used approach; the caveat should be added 
that the magnitude of overexpression in a mouse model 
can be dramatically different from the clinical situation 
(Harrison et al., 2012). In summary, studies employ-
ing constitutive gene knockout models might be better 
conceptualized as phenotypic examinations of the func-
tional roles of genes associated with risk for psychosis as 
opposed to isomorphic models of psychotic illness itself.

It has been proposed that new approaches to preclini-
cal modeling require incorporating emerging knowledge 
regarding the polygenic architecture of schizophrenia 
(McCarroll et al., 2014). Double- and triple-knockout or 
transgenic models constitute one step toward address-
ing this challenge, but practical concerns restrict the via-
bility of such approaches (Lyon, Kew, Corti, Harrison, & 
Burnet, 2008). Additionally, careful consideration must 
be taken when selecting which gene combinations to 
manipulate; promising candidates should include genes 
with a known biochemical pathway or genes within a 
candidate genomic locus (Arguello, Markx, Gogos, & 
Karayiorgou, 2010; Harrison et al., 2012).

MEASURING SCHIZOPHRENIA IN MICE

Modeling a disorder characterized by symptomatic 
and likely etiological heterogeneity is best addressed 
from a pragmatic standpoint by focusing on specific 
components of the disease phenotype rather than disease 
phenotype in its entirety (O’Tuathaigh, Desbonnet, &  
Waddington, 2014). It has been often stated that the 
psychotic symptoms (e.g., hallucinations, delusions, 
thought disorders) as well as negative symptoms (e.g., 
blunted affect) may not be measurable in small rodents, 
thereby restricting model validation efforts to assessment 
of face and (in some cases) predictive validity (Moran, 
O’Tuathaigh, Papaleo, & Waddington, 2014). Phenotypic 
modeling of negative symptoms has focused primarily on 
a small number of cross-species behavioral features that 
are quantifiable in both humans and animals (e.g., deficits  
in social interaction and motivation) (O’Tuathaigh & 

Waddington, 2015). DA-associated motor-based mea-
sures (e.g., novelty- or stimulant-induced hyperactivity), 
and/or preattentional and attentional phenomena such 
as prepulse inhibition (PPI) or latent inhibition (LI) have 
been employed a proxy measures of psychotic symp-
toms in mice. PPI and LI disruption in animal models 
of schizophrenia are considered analogous to the basic 
information processing deficits observed in schizophre-
nia (van den Buuse, 2010; Moran et al., 2014). Maze- and 
operant-based tasks have been used to measure cogni-
tive processes analogous to those observed in patients 
with schizophrenia (Desbonnet et al., 2009).

GENE–GENE INTERACTIONS AND 
SCHIZOPHRENIA: EVIDENCE FROM 

MUTANT MOUSE MODELS

Assuming a polygenic basis for schizophrenia, nei-
ther partial nor complete loss of function or overexpres-
sion of any single gene in a mouse model will result in 
generation of a valid mouse model for the disease. It has 
been suggested that simultaneous dysregulation of mul-
tiple risk genes will more closely reflect the genetic risk 
component of the disorder (O’Tuathaigh & Waddington, 
2015). In this context, mice containing partial loss- or 
gain-of-function for multiple candidate genes could 
perhaps mimic more precisely the etiopathologic mech-
anisms as well as the pathophysiological features of 
schizophrenia. Evidence from cellular and molecular 
studies conducted to date suggests that multiple com-
mon alleles and/or rare variants converge on a spe-
cific number of biochemical pathways that may reflect 
the etiopathobiology of schizophrenia (Harrison, 2015; 
O’Tuathaigh & Waddington, 2015). For example, NRG1, 
AKT, and DISC1 dysfunction have been characterized 
as elements in a common pathway that may regulate 
neurodevelopment and contribute to susceptibility to 
schizophrenia (Desbonnet et al., 2009).

Characterization of mice with simultaneous dysregu-
lation of several risk genes has the potential to provide 
insight into resultant additive and multiplicative effects 
that contribute to the expression of schizophrenia-related 
endophenotypes. Evidence for epistasis in schizophre-
nia or in the expression of schizophrenia-related endo-
phenotypes from studies employing mutant model  
are described later for candidate susceptibility genes 
either directly implicated in clinical genetic analyses, or 
those which have been implicated in pathophysiological 
processes associated with schizophrenia.

Dopamine

As stated previously (Section 4.1), COMT is 
expressed in the pyramidal neurons of the PFC and 
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hippocampus and plays a specific role in the catabo-
lism of cortical dopamine but not noradrenaline (Papaleo  
et al., 2008). Several studies suggest that functional  
polymorphisms of the COMT gene are associated with 
performance on PFC-dependent cognitive tasks which 
are disrupted in schizophrenia (Desbonnet et al., 2009). 
Studies in COMT knockout mice have investigated motor 
activity, anxiety, aggression, and sensorimotor gating, 
and have reported only minor effects on aggression and 
anxiety (Gogos et al., 1998; Haasio, Huotari, Nissinen, &  
Männistö, 2003). COMT knockout mice also display a 
mild improvement in cognitive tasks that are dependent 
upon PFC DA availability (Papaleo et al., 2008).

Meta-analyses have indicated DTNBP1 to be a repli-
cable risk gene for schizophrenia (Section Schizophrenia 
Susceptibility Genes). In vitro work indicates that reduc-
tion in dysbindin can lower glutamate release, whereas 
overexpression of dysbindin elevates glutamate release, 
suggesting a modulatory role for dysbindin in glutamate 
neurotransmission is indicated in cortical neuronal cul-
tures (Numakawa et al., 2004). The “sandy” (Sdy) mouse, 
a spontaneous mutation identified in the DBA/2J strain, 
carries a naturally occurring deletion that includes the 
DTNBP1 gene. Jentsch et al. (2009) reported a disruption 
in working memory in the Sdy mutant using the choice 
accuracy measure in delayed-nonmatch-to-position task;  
this deficit was accompanied by disruption of excit-
atory neurotransmission in the PFC, as indexed by both 
a reduction in the amplitude of action potential-evoked 
excitatory postsynaptic currents and the frequency of 
miniature excitatory postsynaptic currents as well as the 
abolition of paired-pulse facilitation. DTNBP1 knockout 
also caused deficits in working memory as measured by 
the delayed-nonmatch-to-position task; this deficit was 
accompanied by a decrease in cortical NR1 messenger 
RNA expression, which was found to be significantly  
correlated with working memory performance (Karlsgodt  
et al., 2011). In a separate study, modified T-maze  
working memory task, Sdy mice displayed enhanced 
learning of the in the acquisition phase of a modified 
T-maze working memory task; with the introduction 
of delay intervals, DTNBP1 mutants displayed overall 
worse performance relative to wild-type controls (Papaleo 
et al., 2012). Cellular studies including data reported in 
the same study suggested that the interaction between 
CaMKII and enhanced signaling at cortical DRD2 may at 
least partially contribute to the working memory pheno-
types reported for DTNBP1 knockout mice in these stud-
ies (Ji et al., 2009; Papaleo et al., 2012).

Based on these data implicating a role for DTNBP1 
and COMT on cortical DA-ergic signaling (Moran 
et al., 2014), epistasis between both genes in relation 
to the development of schizophrenia-like phenotypes 
was investigated by intercrossing the COMT knockout 
and Sdy mutant strains (Papaleo, Burdick, Callicott, & 

Weinberger, 2014). In contrast to effects produced by 
DTNBP1 or COMT single-gene knockout, the combined 
reduction of both genes in the same mouse produced a 
marked deficit in working memory function (Papaleo 
et al., 2014). Importantly, this same epistatic effect was 
found in healthy humans performing an n-back work-
ing memory test in conjunction with functional MRI: 
individuals homozygous for COMT rs4680 Met alleles 
(i.e., with relative reduction in COMT) and displaying 
no reduction in dysbindin activity (i.e., not carrying a 
specific functional variant for DTNBP1) performed bet-
ter than other COMT genotypes; in contrast, individuals 
with COMT rs4680 Met/Met genotypes and who were 
also homozygous for the low dysbindin expression-
associated haplotype were the poorest performing com-
pared with other COMT genotypes (Papaleo et al., 2014). 
These results are consistent with an inverted U function 
showing nonlinear effects of increasing DRD2 signaling 
in PFC-dependent cognitive functions. These findings 
once again highlight an important point with respect to 
epistasis underlying the genetic basis of behavior: that 
such processes are often nonlinear, and that their genetic 
origins might be epistatic and bidirectional.

DARPP32 (dopamine and cyclic-adenosine 50-phos-
phate–regulated phosphoprotein, Mr 32 kDa) is a shared 
downstream component of both DA-ergic and seroto-
nergic pathways (Fienberg et al., 1998; Svenningsson 
et al., 2000). The data suggest that PDE1B may par-
ticipate in the same pathways (Ehrman et al., 2006).  
Targeted deletion of DARPP32 produces a reduction in the 
locomotor response to psychostimulants such as cocaine 
or amphetamine at moderate doses (Svenningsson  
et al., 2003). Mice deficient for both PDE1B and DARPP32 
demonstrated a normalization of changes to locomotor 
activity response to methamphetamine compared with 
PDE1B knockout mice (Ehrman et al., 2006). In a test 
of anxiety behavior, the elevated zero-maze, DARPP32 
knockout mice spent more time in the open, indicative of 
less anxiety, but PDE1B deletion normalized the anxiety  
state in these mice relative to DARPP32 mutant mice. 
Using the Morris water maze as a test for spatial learning 
and memory, genetic inactivation of both DARPP32 and 
PDE1B caused spatial navigation deficits, manifested in 
delayed acquisition and reversal learning.

Glutamate

Allelic variation in GRM3 has been associated with 
risk to develop schizophrenia, and mGlu2/3 agonists 
have shown efficacy in experimental models of schizo-
phrenia (Patil et al., 2007; however, see Kinon et al., 
2011). In mice with simultaneous knockout of GRM2 and 
GRM3 or GRM2 alone, the ameliorative effects of the 
mGlu2/3 receptor agonist LY404039 on phencyclidine- 
and amphetamine-evoked hyperactivity were absent;  
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the same profile was not present in GRM3 knockout 
mice, indicating that activation of mGlu2 and not mGlu3 
receptors may be responsible for the antipsychotic-
like effects of LY404039 (Fell, Svensson, Johnson, &  
Schoepp, 2008).

A recent comparative characterization of behavioral 
phenotypes across GRM2, GRM3, and GRM2/GRM3 
knockout lines revealed no effects on anxiety across or 
cognition in the rewarded alternation test (De Filippis 
et al., 2014). Lane et al. (2013) reported a reduction in 
DA levels (accompanied by a reduction in the metabo-
lites DOPAC and HVA) in the striatum (particularly the 
nucleus accumbens) of double GRM2/GRM3 mutant 
mice. In contrast, no differences in monoamines or their 
metabolites between genotypes were observed in single-
gene GRM2 or GRM3 knockout mice.

In a series of elegant studies described by Lyon et al. 
(2011), mice with simultaneous disruption of GRM2 
and GRM3 demonstrated a pattern of subtle deficits in 
hippocampus-dependent spatial memory. They were 
selectively impaired in an appetitively motivated spa-
tial memory tasks but not in the aversively motivated 
open field water maze. These deficits were shown not 
to reflect reduced appetitive reward-related motivation; 
instead, the pattern of results suggested a change in the 
arousal–cognition function in GRM2/GRM3 knockout 
mice. Consistent with this altered arousal phenotype in 
double-mutant mice, they displayed locomotor hypoac-
tivity relative to wild-type controls in both the absence 
and presence of amphetamine (Lyon et al., 2011).

Schizophrenia Susceptibility Genes

AKT1 (see Section 4.1) is one of the downstream 
kinases of the NRG1 signaling pathway (Huang et al., 
2015), and in vitro studies have demonstrated that NRG1 
signaling is associated with schizophrenia via the PI3K/
AKT-dependent pathway (Kanakry, Li, Nakai, Sei, & 
Weinberger, 2007). Additionally, diminution of sensory 
gating function and decreased NRG1-stimulated AKT 
phosphorylation was reported in nontreated, first-episode  
schizophrenic patients (Kéri, Beniczky, & Kelemen,  
2010). NRG1-AKT1 epistasis was further examined 
via generation of double heterozygous AKT1 × NRG1 
mutant mice by intercrossing heterozygous AKT1 knock-
out and NRG1 TM-domain knockout mice. Both AKT1-
deficient and double heterozygous mice had less striatal 
glucose uptake, as measured in a fluorine-18-fluorodeox-
yglucose positron emission tomography scan, compared 
with wild-type controls, which is indicative of less brain 
activity in the striatum (but not the medial PFC). No sig-
nificant effect of either genotype or both was observed in 
relation to PPI performance or novelty-induced locomo-
tion. In the “what-when-where” episodic memory object 
recognition task, the only genotypic effect observed was 

that on “where” memory, where NRG1 heterozygotes 
and double-mutant mice showed significantly lower 
ability to discriminate the spatial trace compared with 
AKT1 heterozygotes and wild-type mice. In the sociabil-
ity test, a marginal disruption of social approach behav-
ior, and reduced social sniffing toward a novel male 
conspecific, was observed in double mutants. In the 
social novelty preference task, both single-gene mutants 
and the double-mutant group showed disruption of 
preference for the socially novel stimulus. No effect of 
genotype was observed in a measure of spatial working 
memory, the delayed nonmatch to sample test, employ-
ing several delay periods (5, 15, and 30 s).

GSK-3 is a highly conserved serine/threonine protein 
kinase that is expressed as two coenzymes: GSK-3α and 
GSK-3β (Woodgett, 1990). It is ubiquitously expressed in 
the brain and has been implicated in basic neuronal func-
tions such as neurodevelopment (Kim et al., 2009), neu-
rotransmitter function (Beaulieu et al., 2007, 2005), and 
synaptic plasticity (Peineau et al., 2007). In one of two 
DISC1 gene mutant models, the L100P line, generated 
via ENU mutagenesis in exon 2 of DISC1, demonstrate 
impairment across several behavioral models related to 
schizophrenia, including PPI and LI (both reversible by 
antipsychotic treatment), working memory as well as 
novelty-induced hyperactivity (Clapcote et al., 2007). 
Both the phosphodiesterase 4 inhibitor rolipram and 
the GSK-3 inhibitor TDZD-8 synergized to reverse PPI 
deficits and hyperactivity in the L100P DISC1 mutant 
(Lipina et al., 2011).

Lentiviral silencing of DISC1 expression in the adult 
mouse dentate gyrus was accompanied by an increase 
in novelty-induced hyperlocomotion; this behavioral 
effect was reversed following treatment with the GSK-
3β inhibitor SB-216,763, suggesting that increased GSK-
3β activity secondary to DISC1 loss of function might 
be associated with schizophrenia-like behaviors (Mao 
et al., 2009). Further support for molecular interactions 
between DISC1 and GSK-3 in schizophrenia has come 
from reports that pharmacological or genetic inactivation 
of GSK-3 in the ENU-generated DISC1 mutant (L100P) 
reversed phenotypic deficits in PPI and LI, and normal-
ized their hyperactivity profile (Lipina, Wang, Liu, &  
Roder, 2012). In summary, it was shown that genetic 
deletion of GSK-3α was equally as effective in revers-
ing the behavioral deficits in the DISC1-L100P mouse 
model as acute administration of the GSK-3 antagonist 
TDZD-8. GSK-3α heterozygotes were intercrossed with 
DISC1-100P homozygous, heterozygous, or wild-type 
mice. Introduction of the GSK-3α mutation reversed 
hyperactivity observed in DISC1-L100P homozygotes 
(to the level observed in wild-type mice). Similarly, both 
DISC1-L100P heterozygous and homozygous mutants 
displayed deficits in PPI; these deficits were abolished in 
mice also lacking a GSK-3α allele. In the test of LI, both 
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DISC1-L100P heterozygous and homozygous mutants 
evidenced LI deficits in the conditioned lick suppres-
sion task, which could not be attributed to a nonspecific 
effect on learning or reward. Once again, partial deletion 
of GSK-3α in DISC1-L100P heterozygotes and homozy-
gotes normalized LI deficits in these mice. In a similar 
manner, administration of the selective GSK-3 inhibitor, 
TDZD-8, reversed PPI and LI deficits, and normalized 
hyperactivity of DISC1-L100P mutant mice.

They also explored molecular interactions and the 
consequence of the L100P mutation on GSK-3 function. 
They reported that the DISC1 L100P mutation did not 
affect tyrosine phosphorylation of both GSK-3 isoforms, 
but that the interaction between DISC1 and GSK-3 was 
significantly reduced within the striatum of the DISC1-
L100P (Lipina et al., 2012). DISC1-L100P mutants also 
display abnormalities of frontal cortical pyramidal 
neurons, including reduced dendritic length, dendrite 
surface area, and spine density (Lee et al., 2011). They 
reported the morphological deficits previously reported 
in DISC1-L100P mutants, and a similar pattern of abnor-
malities in GSK-3α mutant mice. However, in double 
DISC1-L100P × GSK-3α mutant mice, genetic inactiva-
tion of GSK-3α significantly rescued spine density but 
had no effect on dendritic length, surface area, arboriza-
tion (Lee et al., 2011). These findings further implicate 
impaired DISC1- GSK-3 interplay in the emergence of 
schizophrenia-relevant endophenotypes.

Another recent study described the phenotypic con-
sequences of intercrossing the heterozygous TM-domain 
NRG1 knockout model and the DISC1 L100P mutant 
(O’Tuathaigh et al., 2012). It was shown that mice with 
partial or complete codisruption of DISC1 and NRG1 
demonstrated pronounced impairments across various 
domains of social behavior implicated in schizophre-
nia. This negative symptom-like profile in simultaneous 
NRG1/DISC1 mutant mice, largely restricted to males, 
was reflected in disruption across various measures of 
social interaction and cognition as well as alteration 
of hypothalamic expression of the oxytocin and/or  
vasopressin genes relative to control mice. They also 
observed postpubertal induction of PPI deficits and 
novelty-induced hyperactivity in mice with heterozygous 
deletion of NRG1; these deficits were reversed by the 
antipsychotic drug clozapine.

CONCLUSIONS

Clinical studies highlight the challenges associated 
with modeling epistasis in schizophrenia, where such 
interactions require enormous statistical power and 
place vast demands on sample size. However, various 
hypothesis-based studies have demonstrated evidence 
for epistatic interactions between two or more individual 

risk genes in mediating risk for schizophrenia and varia-
tion across schizophrenia-associated cognitive endophe-
notypic measures in healthy participants. Against the 
backdrop of a relative lack of clinical studies, preclinical 
modeling of epistatic interactions offers the possibility 
of multitiered investigation of convergence of multiple 
risk genes on selected molecular or biochemical path-
ways. These types of insights represent an important 
step toward the development of novel therapeutics that 
might involve targeted modulation of specific components 
on such disease-associated pathways.
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INTRODUCTION

Awareness is increasing that the burden created by 
psychiatric disorders is enormous, as is the amount of 
research conducted on the causes of mental illnesses 
(Murray et al., 2012). With 0.5–0.7% of the human popu-
lation affected by schizophrenia (Saha, Chant, Welham, 
& McGrath, 2005), it represents a major public health 
concern, having an overall disability burden exceeding 
that of many infectious diseases (Murray et al., 2012). 
Despite its enormous impact and the work being done 
to understand it, the disease is still defined by many 
variable symptoms without a single unifying defini-
tion of presentation. Put as simply as it is possible to, 
schizophrenia is a debilitating psychiatric disorder char-
acterized by positive (e.g., hallucinations and delusion), 
negative (e.g., social withdrawal and flat affect), and cog-
nitive impairment. These abnormalities usually lead to 
a lifelong disability, reduced socioeconomic status, and 
increased risk for suicide among patients (Goldberg 
et al., 2011).

Heterogeneous clinical manifestations and symp-
toms of schizophrenia overlap with those of other psy-
chotic disorders (i.e., bipolar and substance-induced 
psychotic disorders). This continuity of presentation 
with other diseases, and also growing genetic evidence, 
has caused many researchers to question the very 

concept of schizophrenia as a disorder (Berrios, Luque, &  
Villagran-Moreno, 2003). This uncertainty has also led 
to the development of diagnosis category-independent 
perspectives for psychotic disorders, including dimen-
sional approach and research domain criteria matrix. 
van Os and Kapur (2009) propose to group symptoms 
of psychotic disorders into five dimensions, including 
psychosis (“the positive-symptom dimension”), avoli-
tion and social withdrawal (“the negative-symptom 
dimension”), cognitive impairments (“the cognitive-
symptom dimension”), and affective disorders clustered 
into depressive and manic symptoms. Also reflecting 
this sea change in the view of schizophrenia disease, a 
review of schizophrenia by a group of prominent psy-
chiatrists has led to the Fifth Edition of the Diagnostic 
and Statistical Manual of Mental Disorders now including 
dimensional assessments (Heckers et al., 2013).

Meta-analysis of twin studies has estimated the heri-
tability for schizophrenia at approximately 80%, and the 
impact of environmental influences on risk to account 
for a value near 11% (Sullivan, Daly, & O’Donovan, 
2012; Sullivan, Kendler, & Neale, 2003). The psychiatric 
research field is approaching consensus that gene–envi-
ronment interaction (GEI) plays a considerable role in 
the pathogenesis of the disorder (van Os & Kapur, 2009; 
Uher, 2014). The chapter overviews existing animal 
models of GEI related to schizophrenia. In doing so, we 
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suggest a modification in research approach. Given the 
complexity of human disease manifestation and etiol-
ogy, the existing research highlights the need in focus-
ing on modeling a specific disease as an etiologically and 
pathobiologically separate category (Nestler & Hyman, 
2010). Instead, consistent with the main theme of the 
book (please, also see the chapter by John Waddington), 
we suggest that a dimensional approach will better facil-
itate mechanistic studies to understand GEI in schizo-
phrenia and other psychotic disorders.

GENES AND ENVIRONMENT  
IN SCHIZOPHRENIA

The greatest progress in understanding the genetics 
of schizophrenia has comes from the large sample-sized 
genome-wide-association studies (GWAS). Psychiat-
ric Genomics Consortium, established in 2007, is made 
up of more than 500 investigators from 25 countries 
(Sullivan, 2010). The latest Psychiatric Genomics Con-
sortium paper describes the genotyping data of 36,989 
cases and 113,075 controls. With this sample size, 108 
loci contributing to risk of schizophrenia were identi-
fied including 25 replicating and 83 newly described 
risk markers. More than 70% of discovered loci were 
located in regions encoding proteins involved in dopa-
minergic and glutamatergic neurotransmission, calcium 
signaling, synaptic plasticity, potassium channels, and 
neurodevelopment (Schizophrenia Working Group of 
the Psychiatric Genomics Consortium, 2014). Single 
nucleotide polymorphisms in the extended major his-
tocompatibility complex region on chromosome 6 were 
significantly associated with schizophrenia, suggesting 
etiological relevance of immune responses and inflam-
matory pathways (Shi et al., 2009; Sullivan et al., 2012). 
Genomic structural alterations also play an important 
role in etiology of schizophrenia (Walsh et al., 2008; the 
Chapter 15B by N. Hiroi). Various mutations affecting 
single genes were found in several families exhibiting 
large phenotypic abnormalities (Goate et al., 1991; Klein 
& Westenberger, 2012; Rogaev et al., 1995).

There are many environmental insults that have been 
found to be associated with schizophrenia. Among them 
are in utero exposure to infection, diet, perinatal compli-
cations, maternal malnutrition, stressful events during 
pregnancy, and early postnatal development as well as 
substance abuse (Brown, 2011; Meyer & Feldon, 2010). 
It is important to note, however, that the various envi-
ronmental risk factors are suggested to lead to develop-
ment of schizophrenia by engaging genetic liability for 
the disorder, which in itself is not enough to result in 
any clinical phenotype (van Os & Kapur, 2009; Rethelyi, 
Benkovits, & Bitter, 2013; Uher, 2014).

GENE–ENVIRONMENT INTERPLAY  
IN SCHIZOPHRENIA

Gene–environment interdependence encompasses 
the combined influence of genes and environment 
(Kendler & Eaves, 1986; Rutter, 2007; Rutter, Moffitt, & 
Caspi, 2006). Kendler and Eaves suggested two major 
models describing the combined effect of genes and 
environment on liability to psychiatric illness: gene–
environment correlations (rGE) and GEI (Kendler & 
Eaves, 1986). rGEs are characterized by genetic differ-
ences in exposure to particular environments, whereas 
GEI is characterized by genetic differences in suscep-
tibility to particular environments. The mechanistic 
explanations behind gene–environment interdepen-
dence can run the spectrum from highly complicated 
to intuitively simple. As an example of one of the sim-
plest interplay mechanisms, we can consider the epi-
genetic modifications (Jaffe, Eaton, Straub, Marenco, &  
Weinberger, 2014). In this case, the environmental insult 
directly impacts the genetic background of the patient. 
Other interactions do not always offer such a direct 
linkage between genetics and environment.

rGE refer to genetically maintained predisposi-
tion toward certain environmental conditions (Plomin, 
DeFries, & Loehlin, 1977; Rutter, 2007). In other words, 
choice of environmental factors is driven by an individ-
ual’s genetic predisposition to a particular milieu. rGE 
includes three main subtype: passive, active, and evoca-
tive. Passive correlation denotes effects of the environ-
ment in which child is raised and which is formed by 
genetic predisposition of his parents (or another external 
subject) to that environment. In other words, the geneti-
cally controlled parental behavior creates an environ-
ment that, in turn, influences the child’s personality 
and behavior. Evocative correlation happens when an 
individual’s genetically influenced behavior evokes an 
environmental response. A popular example of that rGE 
is maternal conflict, often occurring when one of the par-
ents has a depressive disorder. Finally, active correlation 
is associated with an individual’s inherited propensity 
toward active searching for a specific environment, and 
the results from exposure to that environment (Scarr & 
McCartney, 1983).

GEI includes a genetic control of responses to protec-
tive or adverse environment, and often a dependency 
of genetic effects on an environment (i.e., genetic effects 
can be stronger in one environment than in the other)  
(Rutter et al., 2006). In some cases, both GEI and rGE can 
be involved. As an example, polymorphisms of one of 
the genes for the alcohol dehydrogenase enzyme family, 
the ADH1B, contribute to fetal alcohol spectrum disor-
ders (FASD). Whereas ADH1B*1 has been suggested to 
be a risk factor for FASD, ADH1B*2 and ADH1B*3 have 
been shown to reduce the risk for FASD. Because these 
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gene variants have differential impacts on susceptibility 
to the effect of alcohol, they may refer to GEI. At the same 
time, the association between alcohol exposure in utero 
and FASD may refer to a passive rGE since mothers who 
carried the ADH1B*1 allele are identified to be at higher 
risk for greater alcohol consumption than mothers who 
carried the ADH1B*2 or 3. This example suggests that 
investigators who measure genes and environments 
should be observing for both rGE and GEI (Edenberg & 
Foroud, 2013).

Recent epidemiological studies have shed light on 
the underpinnings of GEI relevant to schizophrenia 
and related psychotic disorders (Modinos et al., 2013; 
van Winkel, van Beveren, Simons, & Genetic Risk and  
Outcome of Psychosis (GROUP) Investigators, 2011). 
Even if the available GEI results are limited, they have 
allowed for developing animal models to determine the 
molecular and neurobiological mechanisms, whereby 
environmental and genetic risk factors interact to lead 
to schizophrenia (Iyegbe, Campbell, Butler, Ajnakina, & 
Sham, 2014).

ANIMAL MODELS OF GEI RELEVANT  
TO SCHIZOPHRENIA

The main goal of animal models of GEI is to provide 
mechanistic insights into how genetic and environmental 
factors interact with each other to explain the heteroge-
neity of clinical manifestations and symptoms of schizo-
phrenia (Ayhan et al., 2009; Hida et al., 2013; Kannan, 
Sawa, & Pletnikov, 2013; Rethelyi et al., 2013; van Winkel 
et al., 2011). The main environmental risk factors applied 
to GEI animal models can be largely separated into four 
groups: immune dysfunction, stress, substance abuse, 
and environmental toxins.

Models of Immune Activation

Several lines of evidence suggest that prenatal and 
early childhood infections increase the risk of schizo-
phrenia. In particular, maternal infection and in utero 
exposure to influenza as well as toxoplasma have been 
shown to increase the risk of schizophrenia in offspring 
(Brown, 2011). One of the most popular approaches to 
simulate prenatal infection is maternal immune activa-
tion (MIA) using viral or bacterial-like immune activat-
ing agents (Meyer & Feldon, 2012; and Chapter 12A by 
Malkova et al.). This approach is widely used with mice 
carrying genetic variants of the candidate genes.

Interaction with DISC1
The first studies of GEI applying MIA to a genetic 

model were done using mice carrying human mutations 
of Disrupted-In-Schizophrenia (DISC1), a rare genetic 

factor associated with major psychiatric disorders (Porteous  
et al., 2011). DISC1 has been shown to regulate major neu-
ronal functions, including neural proliferation, migration, 
dendritic arborization, spine formation, and the main-
tenance of synapses (Brandon & Sawa, 2011; Wen et al., 
2014). Recently, the important role of DISC1 in regulation 
of mitochondrial functions, oligodendrocyte differentia-
tion, and astrocyte functioning has also been demonstrated 
(Eykelenboom et al., 2012; Kim et al., 2012; Ma et al., 2013; 
Park et al., 2010; Wood, Bonath, Kumar, Ross, & Cunliffe, 
2009). Our group generated a transgenic model of induc-
ible expression of mutant human DISC1, a putative prod-
uct of the translocation (Pletnikov et al., 2008). Expression 
of mutant DISC1 in forebrain neurons leads to increased 
spontaneous locomotor activity, decreased social inter-
action, and increased aggressive behavior in males and 
decreased spatial recognition memory in the Morris water 
maze in females.

To assess the interaction of DISC1 and MIA, mutant 
DISC1 mice were prenatally exposed to polyinosine-
polycytidylic (poly I:C) treatment of pregnant dams 
(Abazyan et al., 2010). Injection of pregnant mice with 
poly I:C at gestational day (GD) 9 resulted in the altered 
pattern of secreted cytokines in the mutant DISC1 fetal 
brains. In addition, a prenatal exposure to poly I:C 
increased anxiety-like and depressive-like behaviors 
and decreased sociability in adult mice carrying DISC1 
mutation. These findings have been correlated with the 
morphometric analysis of amygdala and periaqueductal 
gray matter, brain regions involved in the circuitries of 
fear and anxiety responses. The volumes of these regions 
were significantly decreased in mutant mice treated with 
poly I:C. In addition, MIA led to altered functioning of 
the hypothalamus-pituitary-adrenal axis by blunting the 
corticosterone response of DISC1 mice to restrain stress. 
Importantly, the expression of mutant DISC1 was neces-
sary during the entire period of prenatal and postnatal 
development to induce neurobehavioral alterations fol-
lowing immune challenge (Abazyan et al., 2010).

Another group evaluated the effect of poly I:C expo-
sure during early postnatal development using the 
mouse model constitutively expressing mutant DISC1 
(Hikida et al., 2007). Poly I:C injection for 5 consecutive 
days from postnatal day (PND) 2 resulted in the impaired 
short-term memory in adulthood in both control and 
mutant mice. Yet, only in mutant DISC1 mice did it 
also produce impaired fear memory, increased locomo-
tor activity, decreased social interaction, and increased 
aggressive behaviors. Moreover, immune response 
activated by poly I:C treatment in mutant DISC1 mice 
resulted in the decreased number of parvalbumin posi-
tive cells in the medial prefrontal cortex (PFC) and the 
increased number of BrdU-positive cells (an indicator 
of neurogenesis) in the granular cell layer of the den-
tate gyrus of the mouse hippocampus. This study has 



20. MODELING GENE–ENVIRONMENT INTERACTION348

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

demonstrated that some schizophrenia-resembling 
abnormalities (e.g., reduced parvalbumin reactivity) can 
be precipitated by an early postnatal immune challenge 
in DISC1 mice (Ibi et al., 2010).

Interaction of poly I:C exposure with expression of 
mutant DISC1 genes were also investigated using Disc1-
L100P and Disc1-Q31L mutant mice carrying Q31L and 
L100P point mutations in the second exon of the Disc1 
gene, respectively (Clapcote et al., 2007). Intact Q31L 
mutant mice demonstrate increased immobility in 
forced swim test (FST), decreased sociability and social 
novelty, and reduced sucrose consumption, consistent 
with depressive-like phenotypes. L100P mutant mice 
show the increased locomotor activity, decreased pre-
pulse inhibition (PPI) of the acoustic startle and latent 
inhibition (LI) and a poor memory assessed in T-maze. 
Both Q31L and L100P heterozygous animals were chal-
lenged with poly I:C MIA at GD 9. MIA reduced socia-
bility, worsened PPI deficit, and impaired novel object 
recognition in all tested animals. However, compared 
with wild-type (WT) animals and Disc1-Q31L, Disc1-
L100P mutants were more sensitive to the effects of MIA, 
consistent with the concept of GEI. MIA also resulted 
in increased IL-6 expression in the fetal brains, with a 
strongest effect being observed in L100P mice. Notably, 
anti-interleukin-6 (IL-6) treatment reversed the poly I:C 
effects on PPI and LI in mutant mice, supporting the 
previous findings that IL-6 mediates adverse effects of 
MIA (Lipina, Zai, Hlousek, Roder, & Wong, 2013; Smith, 
Li, Garbett, Mirnics, & Patterson, 2007). Taken together, 
these studies of GEI in DISC1 mice exposed to MIA pro-
vide important data suggesting how an environmental 
factor could trigger pathological outcomes by interac-
tion with risk gene factors.

Interaction with Nuclear Receptor  
Related-1 Protein

The nuclear receptor related-1 protein (Nurr1) is a 
transcription factor and orphan member of the steroid/ 
thyroid nuclear receptor superfamily. The Nurr1 is 
expressed predominantly in mesencephalic dopami-
nergic neurons and regulates their differentiation dur-
ing early development (Buervenich et al., 2000; Moore, 
Brown, Cade, & Eells, 2008; Xing, Zhang, Russell, & 
Post, 2006). Native heterozygous Nurr1 knockout (KO) 
mice, which are characterized by increased activity, dis-
play greater levels of activity following phencyclidine 
or amphetamine administration. This effect has been 
reversed by the typical antipsychotic drug, haloperidol 
(Rojas, Joodmardi, Hong, Perlmann, & Ogren, 2007). 
Altered dopamine (DA) and serotonin metabolism in 
the frontal cortex, striatum, and hippocampus of mutant 
animals (Rojas et al., 2007) has been accompanied with 
the increased immobility and impaired retention mem-
ory in males, suggesting a depression-like phenotype 

of this mouse model. Interaction of MIA with mutant 
Nurr1 has been evaluated using poly I:C challenge at 
GD17. Treated mutants exhibited the increased locomo-
tor activity, startle reactivity, PPI, and LI at PND 70–120. 
Immunohistochemical analysis revealed decreased 
tyrosine hydroxylase and increased catechol-O-meth-
yltransferase (COMT) levels in nucleus accumbens and 
PFC staining. Curiously, poly I:C injection raised IL-6, 
IL-10, and tumor necrosis factor (TNF)-α production in 
WT animals but not in mutant mice which, in a naive 
state, had decreased levels of those factors (Vuillermot, 
Feldon, & Meyer, 2011; Vuillermot et al., 2012).

Interaction with Neuregulin-1
Neuregulin-1 (NRG1) is a protein that plays the 

important role in synaptic plasticity and neuroinflam-
mation (Li, Woo, Mei, & Malinow, 2007). In addition, it 
has been shown that mutations in the NGB1 gene are 
associated with schizophrenia. NRG1 interacts with 
IL-1β and increases the activation of pro-inflammatory 
cytokines such as IL-6, IL-8, and TNF-α in patients with 
schizophrenia (Marballi et al., 2010). O’Leary et al. (2014) 
employed a complex design of cross-fostering to assess 
multiple effects of GEI, including dams’ behaviors fol-
lowing an adverse environmental exposure during preg-
nancy. The study evaluated the schizophrenia-related 
interactions between MIA and NRG1. Several behavioral 
abnormalities were found depending on the combina-
tions of NRG1, prenatal insult, and cross-fostering. The 
authors propose that numerous interactions of individ-
ual genes and different environmental factors are to be 
analyzed and recreated in future animal models.

Modeling of Stress

Multiple observations lead to an increasing appre-
ciation that stress is a major environmental risk factor 
for psychiatric illness (Dvir, Denietolis, & Frazier, 2013; 
Fine, Zhang, & Stevens, 2014; van Winkel et al., 2008). 
To modulate stressful events in animals several different 
approaches can be used. The most popular ones are prena-
tal stress (Hillerer, Neumann, & Slattery, 2012; Markham 
& Koenig, 2011), maternal separation (Boccia et  al., 2007), 
or social defeat paradigm (Willner et al., 1984; Nestler & 
Hyman, 2010). Several recent reviews have described the 
effects of the prenatal and postnatal stresses on the activ-
ity of the hypothalamus-pituitary-adrenal axis and resul-
tant behavioral phenotypes, and readers are directed to 
these reviews (Koenig, 2006; Weinstock, 2005; also, please 
see the Chapter 12C by F. Cirulli).

Interaction with Reelin
Reelin is a large extracellular matrix glycopro-

tein involved in neuronal migration in the develop-
ing brain through control of cell–cell interactions 
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(Rogers & Weeber, 2008). The lack of reelin expres-
sion in mutant reeler mice leads to defects in neuronal 
position and dendrite development. Reelin messenger 
RNA (mRNA) and protein levels have been found to 
decrease in brain (Impagnatiello et al., 1998) and blood 
(Fatemi, Kroll, & Stary, 2001) of schizophrenia patients. 
The decreased neuronal levels of reelin were accompa-
nied with increased activity of D-N-methyltransferase, 
suggesting that hypermethylation in the reelin pro-
moter might be responsible for decreased reelin expres-
sion (Eastwood & Harrison, 2003; Grayson et al., 2005; 
Ruzicka et al., 2007). Yet, while a reduced reelin level 
has been confirmed by many studies (Fatemi, Earle, & 
McMenomy, 2000; Guidotti et al., 2000), some works 
failed to reproduce these results (Tochigi et al., 2008). 
Therefore, this suggests that additional factors can be 
implicated in the reelin-related pathophysiology of 
schizophrenia.

Early maternal separation was associated with 
reduced reelin, brain-derived neurotrophic factor 
(BDNF), and glia-derived neurotrophic factor levels over 
the developing period in WT mice (Ognibene et al., 2008; 
Zhang, Qin, & Zhao, 2013). Interactions between early 
maternal separation and reeler expression have been 
studied using a protocol of 5 h of daily maternal separa-
tion applied from PND 2–6 (Laviola, Adriani, Gaudino,  
Marino, & Keller, 2006). The social motivation was 
assessed by the homing test paradigm conducted on 
PND 9. During this test the locomotor activity directed 
by motivation to find the nest was measured. However, 
whereas maternal separation applied to WT mice signifi-
cantly reduced social motivation, homozygous and het-
erozygous reeler mice were found unaffected (Ognibene, 
Adriani, Macri, & Laviola, 2007). Also, the decreased 
body weight found in WT mice after maternal separation 
was not detected in heterozygous reeler mice. Further-
more, maternal separation resulted in a smaller decline 
in expression of BDNF and glia-derived neurotrophic 
factor but enhanced stimulating effects of antipsychotic 
treatment on BDNF levels. Moreover, reelin level was up 
regulated in 3-month-old male mice as a result of mater-
nal separation. These observations allowed the authors 
to hypothesize that the “beneficial” effects of maternal 
separation in reeler mice may result from a compensa-
tion of neural plasticity defects, most probably by the 
activation of hormonal steroid pathways.

Interaction with Nurr1
Another approach to recapitulate aspects of child-

hood trauma includes social isolation (SI) during ado-
lescence. SI between PND 19–21 of heterozygous Nurr1 
mice has been shown to result in impaired PPI when 
assessed 12 weeks after the cessation of isolation in adult 
mice and was accompanied by decreased levels of DA  
and dihydroxyphenylacetic acid in the PFC in mutants 

but not in WT animals (Eells, Misler, & Nikodem, 2006). 
However, corticosterone levels measured in mutants 
and controls before and after isolation did not reveal any 
group differences, suggesting that SI does not affect stress 
reactivity in mutant mice (Eells et al., 2006).

Interaction with SEPT5
The effects of SI were also studies in a mouse model 

of the SEPTIN5 (SEPT5) gene. The gene is located within 
22q11 region, and therefore it has long been consid-
ered as a possible risk factor for schizophrenia (Harper 
et al., 2012). SEPT5 is expressed in the brain both dur-
ing neurodevelopment and adulthood (Asada et al., 
2010) and involved in vesicular exocytosis by binding 
to syntaxin in presynaptic soluble N-ethylmaleimide– 
sensitive factor attachment receptor complexes (Beites, 
Campbell, & Trimble, 2005). SEPT5 KO mice exhibit 
decreased social interaction, increased PPI, and spent more 
time in the open arms of the elevated plus maze. SEPT5 
deletion was also associated with the longer latency to 
reach the goal in the L-maze. However, no differences 
were observed in spontaneous activity, T-maze, rewarded 
alternation, and tail suspension tests (Suzuki et al., 2009). 
Moreover, virally guided overexpression of SEPT5 in the 
hippocampus or amygdala enhanced social interaction in 
C57BL/6J mice. In addition, it has been shown that indi-
vidually postweaning housing leads to the elevated SEPT5 
level in the amygdala and increased active affiliated social 
interaction in comparison to group-housed animals. Com-
pared with group-housed mutants, single-housed mice 
demonstrated less thigmotaxis in open field, spent more 
time in the open arms of the elevated plus maze, and spent 
more time in active social interaction compared with group 
housed mutants, consistent with reduced anxiety levels. 
This study is another example when seemingly adverse 
environmental effects may interact with a genetic mutation 
to ameliorate the negative effects of either one presented 
separately (Harper et al., 2012).

Interaction with Pituitary Adenylate  
Cyclase-Activating Polypeptide

Pituitary adenylate cyclase-activating polypeptide 
(PACAP) is a neuropeptide that displays structural 
similarity to vasoactive intestinal peptide and a mem-
ber of the secretin/glucagon/vasoactive intestinal 
peptide family. PACAP is crucial for the regulation of 
circadian rhythms, axonal maturation, axonal integ-
rity, and cellular stress responses (Waschek, 2013). 
PACAP is encoded by the ADYCAP1 gene located in 
locus associated with schizophrenia to 18p11.32 (Fara-
one et al., 2005; Mukherjee et al., 2006; Schwab et al., 
1998). In addition, ADYCAP1 variants were associ-
ated with schizophrenia, deficits in verbal memory, 
and hippocampal volume (Hashimoto et al., 2007; 
Koga et al., 2010). Moreover, PACAP directly interacts 
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with DISC1-Binding Zinc-finger protein resulting in 
increased DISC1 expression and reduction in neurite 
outgrowth, both of which are suggested as factors 
potentially relevant to schizophrenia (Hattori et al., 
2007).

In a study addressing whether stress can modu-
late the phenotype of mice lacking the Adycap1 gene, 
animals have been subjected to two different rearing 
conditions, namely a short-term SI at PND 28 or envi-
ronmental enrichment (EE) starting at PND 28 or 56. 
SI applied to Adcyap1−/− mice resulted in increased 
locomotor activity, decreased latency to attack, and 
increased attacking time in social interaction tests, sug-
gesting elevated aggression. In addition, SI further led 
to decreased PPI in mutants. On the contrary, EE started 
from PND 28 but not from PND 56 decreased hyper-
activity; increased time spent in social interaction tests 
and decreased duration of immobility in FST. Impor-
tantly, that this applied earlier EE worsened the results 
of PPI in Adcyap1−/− mice (Ishihama et al., 2010), sug-
gesting that outcome of EE × PACAP is time-dependent 
and cannot be explain by “rescue” effects of positive 
environment.

Thus, ameliorative effects of cannot be generalized to 
all behavioral changes, with some, in fact, possibly being 
adverse (Burrows, McOmish, & Hannan, 2011; Takuma, 
Ago, & Matsuda, 2011). Still, exposing mutants to may 
shed some light on this “preventive” therapy and might 
point to treatments of the cognitive and negative symp-
toms that resistant to the current antipsychotics (Pratt, 
Winchester, Dawson, & Morris, 2012).

Interaction with DISC1
Recently, a dominant negative mouse model with 

expression of mutant DISC1 under the PrP promoter 
was used to study stress effect on animals expressing 
DISC1 mutation. Mutant and control were exposed to 
3-week isolation from 5 to 8 weeks of age. It was found 
that only mutants exposed to SI displayed increased 
locomotor activity, deficient PPI, and increased immo-
bility in FST, suggesting GxE effects. These effects were 
associated with decreased extracellular levels of DA and 
tyrosine hydroxylase expression, and increased D2R 
expression in the frontal cortex and increased DA levels 
in the nucleus accumbens, the main forebrain targets of 
DA projections of the ventral tegmental area. SI applied 
to these mice resulted in increased corticosterone level, 
hypomethylation of the tyrosine hydroxylase promoter, 
and selectively reduced tyrosine hydroxylase expression 
in the mesocortical pathway. Treatment with glucocor-
ticoid receptor antagonist, mifepristone, rescued the 
SI-induced behavioral and biochemical abnormalities 
(Niwa et al., 2013).

The GEI effects of chronic social defeat (CSD) 
were evaluated in mice carrying Q31L or L100P Disc1 

mutations. CSD applied at PND 50 for 20 days resulted 
in increased time spent in open arms of the elevated plus 
maze in Q31L mice. However, this time was significantly 
decreased in L100P mice after CSD. Also, CSD led to 
diminished PPI and enhanced sociability and social nov-
elty in L100P mutants (Haque, Lipina, Roder, & Wong, 
2012).

Interaction with Glutamic Acid Decarboxylase
Glutamic acid decarboxylase (GAD) is an enzyme 

responsible for conversion of glutamate to gamma-
aminobutyric acid (GABA). Decreased expression of 
GAD, specifically the GAD67 isoform, has been found in 
Parvalbumin-positive interneurons in the PFC of schizo-
phrenia patients (Akbarian et al., 1995; Beneyto, Morris, 
Rovensky, & Lewis, 2012; Curley et al., 2011; Hashimoto 
et al., 2003; Kimoto, Bazmi, & Lewis, 2014; Volk, Austin,  
Pierri, Sampson, & Lewis, 2000; Volk et al., 2012). 
Reduced GAD67 expression has also been accompanied 
with increased levels of DNA methyltransferases, which 
silence transcription by methylation of the promoter 
region (Veldic, Guidotti, Maloku, Davis, & Costa, 2005). 
Recent data suggest that methylation is a dynamic pro-
cess that can be activated in response to stressful envi-
ronmental factors and lead to abnormal development 
and functions of GABAergic neurons (Fine et al., 2014). 
Prenatal stress has been used in an animal model that 
was designed as knock-in mice expressing green fluores-
cence protein under GAD67 promoter to label GAD67-
positive interneurons (Tamamaki et al., 2003). Therefore, 
heterozygous mice have reduced GAD67 expression 
and can be considered as a knock-down GAD67 model 
(Tamamaki et al., 2003). Restraint-and-light stress at 
GD17 increased maternal cortisol levels in both WT and 
knock-down GAD67 mothers, with mutant having a 
greater increase. Maternal stress resulted in decreased 
fetal body weight, which was much lower in the mutant 
fetuses. Moreover, fetal cortisol levels in mutants were 
much higher (Uchida, Oki, Yanagawa, & Fukuda, 2011). 
Restraint-light stress during GD15–17.5 was associated 
with the decreased number of parvalbumin-positive 
interneurons in the PFC, somatosensory cortex, and hip-
pocampus of mutant offspring only (Uchida, Furukawa, 
Iwata, Yanagawa, & Fukuda, 2014).

Interaction with Synaptosomal-Associated 
Protein-25

Synaptosomal-associated protein-25 (SNAP25) is a 
presynaptic protein that takes part in vesicular exocyto-
sis (Chen & Scheller, 2001), neurite outgrowth (Wu et al., 
2011), and long-term potentiation (Jurado et al., 2013). 
Evaluation of synaptic proteins in the postmortem sam-
ples revealed decreased SNAP25 levels in the frontal and 
temporal lobes (Karson et al., 1999; Thompson, Sower, 
& Perrone-Bizzozero, 1998), and also in the entorhinal 
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cortex (Young et al., 1998), hippocampus (Fatemi, Earle, 
Stary, Lee, & Sedgewick, 2001; Thompson, Egbufoama, 
& Vawter, 2003), and cerebellum (Mukaetova-Ladinska, 
Hurt, Honer, Harrington, & Wischik, 2002) of schizo-
phrenia patients. Additional evidence for the role of 
SNAP25 came from relatively small-scale genetic epi-
demiologic studies, some of which reported positive 
association with SNAP25 variants and schizophrenia 
(Carroll, Kendall, O’Donovan, Owen, & Williams, 2009;  
Lochman, Balcar, Stastny, & Sery, 2013), but negative stud-
ies also exist (Dai et al., 2014; Kawashima et al., 2008). I67T 
point mutation in SNAP25 results in an increased bind-
ing affinity within the core SNARE complex, preventing 
the normal recycling of synaptic vesicles. Mice carrying 
this dominant mutation were named blind-drunk (Bdr) 
because of its distinctive ataxic gait (Jeans et al., 2007). 
Bdr mice displayed PPI impairment, reduced social 
interaction, and exploratory behavior (Jeans et al., 2007). 
Circadian rhythm impairment, namely phase advance in 
the sleep pattern, as well as altered blood corticosterone 
and arginine-vasopressin levels have been observed in 
these mice (Oliver et al., 2012). Stressful treatment of Bdr 
and control mice resulted in reduced PPI that could be 
improved with antipsychotics (Oliver & Davies, 2009). 
However, only Bdr mice subjected to prenatal stress 
showed decreased time spent with another mouse (as a 
sociability index) and decreased time spent with a novel 
stranger mouse (as a social novelty index).

Interaction with NRG1
NRG-1 mutations are associated with impairments 

in glutamatergic, dopaminergic, and GABAergic neu-
rotransmission (Li et al., 2007; Newell, Karl, & Huang, 
2013). Nrg1 is necessary for the establishment of excit-
atory synapses in GABAergic interneurons and for the 
development of a balanced excitatory/inhibitory tone 
in the brain (Ting et al., 2011). The association of NRG1 
and schizophrenia was first suggested in a large Icelan-
dic sample (Stefansson et al., 2002). Follow-up epide-
miologic studies reported both positive and negative 
associations of different NRG1 variants and schizophre-
nia (Iwata et al., 2004; Li et al., 2004; Stefansson et al., 
2003; Thiselton et al., 2004; Williams et al., 2003). Several 
postmortem studies indicated increased NRG1 signaling 
in schizophrenic patients (Chong et al., 2008; Hahn et al., 
2006; Hashimoto et al., 2004). Upregulation of NRG1 
signaling leads to increased GABAergic inhibition of 
glutamatergic pyramidal neurons, resulting in a hypo-
glutamatergic state (Deng, Pan, Engel, & Huang, 2013; 
Mei & Nave, 2014; Mei & Xiong, 2008). Also, NRG1 poly-
morphism interacts with the psychosocial stress modi-
fying reactivity to expressed emotions in schizophrenia 
patients (Kéri et al., 2009). Therefore, several research 
teams have investigated the response of Nrg1 rodent 
models to stress. A NRG1 knock-down model carrying 

mutation in the transmembrane domain has demon-
strated increased spontaneous activity, an anxiolytic-
like phenotype, and PPI deficiency (Golub, Germann, & 
Lloyd, 2004). CSD was applied to these mutants starting 
on PND35. When evaluated at adulthood, CSD in Nrg1 
mutant mice decreased locomotor activity, numbers of 
alternation in Y-maze, decreased the proportion of time 
spent with a novel subject in a social interaction test, and 
increased the number of walkovers in social investiga-
tion. Analyses of selected immunological variables were 
carried out and revealed that CSD in mutants differen-
tially increased the levels of basal cytokines and caused 
variable changes in IL-1β and TNF-α levels in different 
brain regions (Desbonnet et al., 2012).

Modeling Substance Abuse

Cannabis
Long-term and high-dose cannabis use during ado-

lescence significantly increase the risk for schizophre-
nia development in adulthood (Andreasson, Allebeck, 
Engstrom, & Rydberg, 1987; Arseneault et al., 2002;  
Fergusson, Horwood, & Ridder, 2005; van Os et al., 
2002). Also, epidemiologic studies indicate that early use 
of cannabis is associated with an earlier onset of schizo-
phrenic symptoms (Barnes, Mutsatsa, Hutton, Watt, & 
Joyce, 2006). Still, the role of cannabis use in schizophre-
nia remains poorly understood. One suggestion is that 
heavy cannabis usage during adolescence may have 
particularly harmful effects on cognition and the devel-
opment of psychoses in genetically vulnerable individu-
als (Murray et al., 2012). Clinical and preclinical studies 
have suggested that genes encoding to proteins involved 
in DA signaling can contribute to the cannabis–psychosis  
association (O’Tuathaigh et al., 2012).

Interaction with COMT

COMT is an enzyme involved in degradation of 
DA, the role of which has been extensively evaluated 
as it relates to the pathogenesis of schizophrenia. Also, 
increased risk of psychosis was associated with deletion 
of 22q11, where COMT gene is located (Gothelf et al., 
2014; Karayiorgou et al., 1998; Murphy, Jones, & Owen, 
1999; Paterlini et al., 2005). In addition, the COMT Val-
158Met polymorphism was demonstrated to moderate 
the effects of cannabis use on adult psychosis (Heim, 
Coyne, Kamboh, Ryan, & Jennings, 2013; Mueller, 
Makeig, Stemmler, Hennig, & Wacker, 2011; Nixon et al., 
2011; Ucok, Ozturk, Duman, & Saruhan-Direskeneli, 
2010; Wirgenes et al., 2010).

COMT-deficient mice have been available for close 
to two decades, allowing for several interesting lines of 
inquiry with this model (Gogos et al., 1998). Homozy-
gous mice have no COMT activity, accompanied with 
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increased levels of dihydroxyphenylacetic acid and 
homovanillic acid, but no changes in striatal, cortical, or 
hypothalamic content of DA or noradrenaline (Huotari 
et al., 2002). Heterozygous mutants displayed increased 
sifting and chewing, and reduced “free” rearing (Babovic 
et al., 2007). To evaluate possible effects of GEI between 
cannabis and COMT variants, COMT-deficient mice 
were exposed to chronic adolescent tetrahydrocannabi-
nol (THC) treatment, an active ingredient of cannabis, at 
PND 32–52. Adolescent THC treatment led to increased 
exploration, impairment in spatial working memory, 
and a stronger antianxiety effect in COMT KO mice 
compared with WT. The study demonstrated interaction 
between genes and adverse environmental exposures 
over adolescence a particular stage of development in 
the expression of the psychosis phenotype (O’Tuathaigh 
et al., 2010). A follow-up study also showed that ado-
lescent THC exposure resulted in decreased density 
and soma size of dopaminergic neurons in the ventral 
tegmental area (Behan et al., 2012). A related work from 
the same group assessed the effects of treatment with 
the cannabinoid receptor agonist, WIN 55212, of COMT 
mutants at PND 32–52. This treatment, assessed 21 days 
later, led to increase of the startle response, decrease of 
PPI, and increase of the time spent in light area in light/
dark test in mutant mice. Notably, the COMT inhibitor, 
tolcapone, reversed all these effects, suggesting that at 
least some of the behavioral effects in COMT-deficient 
mice are mediated by disturbances of DA metabolism 
(O’Tuathaigh et al., 2012).

Interaction with NRG1

The clinical importance of NRG1 cannabis interaction 
has recently been shown by a genetic study in African- 
Americans, which found that NRG1 is major candidate 
for the development of cannabis dependence (Han et al., 
2012). This observation is in line with an early experi-
mental study demonstrating that NRG1-deficient mice 
exposed to THC displayed no differences in the appear-
ance but exhibit increased spontaneous activity and defi-
cient PPI (Golub et al., 2004).

Analyses of Nrg1 × cannabis interactions in trans-
membrane domain Nrg1-mutant mice (NRG1 KD 
model) suggest that Nrg1 increases the susceptibility to 
the neurobehavioral effects of cannabis (Boucher et al., 
2007). In this study, 6–7 month-old WT, Nrg1 KO, and 
KD animals were tested for acute THC treatment effect. 
Native Nrg1 KD mice spent more time in the light com-
partment in light–dark and in open arms in elevated-plus 
maze tests and displayed hyperactivity. Only in these 
mice but not in controls, THC treatment led to reduced 
locomotor activity, decreased time spent in open arms, 
and decreased time spent in light area and changed PPI. 
Similar results were received when Nrg1 mice were 
treated with THC from PND 21–32 and a comprehensive 

evaluation was carried out at adulthood. THC adminis-
tration resulted in a decreased hyperactive phenotype in 
mutant mice. Furthermore, THC chronic treatment led 
to sniffing reduction (an index of social interaction). The 
effects of chronic THC administration can be at least in 
part explained by increased CBR1 binding and affected 
5HT2A and NMDA receptor binding in Nrg1 mutants 
(Long et al., 2013).

Methamphetamine
Besides cannabis, methamphetamine (METH) was 

also implicated in the pathophysiology of schizo-
phrenia in some populations. Chronic METH abuse 
commonly leads to psychoses similar to those of schizo-
phrenia (Bramness et al., 2012; Callaghan et al., 2012; 
Hsieh et al., 2014; Li et al., 2014). The first evidence of 
METH-induced psychosis came from Japan after the 
1950s epidemic of METH use and was described as 
a long-lasting psychotic syndrome following METH-
associated brain damage (Sato, 1992). The second and 
third epidemic in Japan followed at 1980s and 1990s, 
respectively, and the characteristics of the syndrome 
was defined as progressive impairment in mental 
and cognitive status with repeated use, vulnerability 
to relapse of psychotic symptoms, and a long dura-
tion for this vulnerability (Ujike & Sato, 2004). Similar 
to cannabis use, GEI may play a role in the genesis 
of METH-associated psychosis. A recent study has 
revealed that the risk alleles for METH-induced psy-
chosis were enriched in schizophrenia GWAS dataset 
(Ikeda et al., 2013).

Interaction with DISC1

Our laboratory has evaluated putative effects of 
chronic METH administration in mutant DISC1 mice. 
To mimic a pattern of human METH abuse, a nontoxic, 
gradually escalating dose regimen was used. Specifically, 
METH doses were gradually increased over a 2-week 
period. Mutant DISC1 mice exhibited reduced METH-
induced locomotor sensitization and attenuated condi-
tioned place preference in female mice. We also found 
decreased DA D2 receptor binding and altered AKT/
GSK3 signaling in the ventral striatum in female mutant 
DISC1 mice. These findings suggest that DISC1 signal-
ing may be involved in the neurobehavioral changes 
induced by psychostimulants to moderate their contribu-
tion to schizophrenia (Pogorelov et al., 2012).

Environmental Toxins Models

Organophosphates
Although the putative role of environmental toxins in 

schizophrenia is only now becoming a focus of epide-
miological and basic research, the detrimental effects of 
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neurotoxins on brain and behavior have been convinc-
ingly demonstrated. For example, organophosphates 
were used to model abnormal neurodevelopment as 
prenatal organophosphates exposure was linked to neu-
rocognitive impairment (Whyatt & Barr, 2001.)

Previously it was shown that chlorpyrifos (CPF), an 
organophosphate pesticide, might induce behavioral 
disturbances after intrauterine exposure, consistent 
with epidemiological (Whyatt & Barr, 2001) and ani-
mal data (Levin et al., 2002). It was hypothesized that 
a deficiency in reelin may ameliorate the abnormal 
behavioral rose by CPF insults. Pregnant heterozygous 
reelin females were exposed to CPF to assess the effects 
prenatal treatment on neurobehavioral development 
of the offspring. Decreased ultrasonic vocalization as a 
measure of communication in mice was tested at PND 
7 and found increased in reeler mice up to WT lev-
els after CPF treatment (Scattoni, Crawley, & Ricceri, 
2009). Similar modulatory effects of CPF exposure were 
found with regard to amphetamine-induced hyperac-
tivity and increased stereotypy (Laviola et al., 2006). 
The behavioral effects of CPF were associated with the 
brain changes in the olfactory bulb and the cerebellum 
in reeler mice (Mullen, Khialeeva, Hoffman, Ghiani, 
& Carpenter, 2013). These findings may be relevant to 
cholinergic abnormalities in autism and schizophrenia 
and demonstrate how adverse effects of environmental 
toxins could become paradoxical when combined with 
genetic variants.

Lead
Exposure to lead (Pb2+) during prenatal and early 

postnatal development was recently also suggested 
as potential environmental risk of schizophrenia (cita-
tions). Although the epidemiological evidence for this 
association is relatively weak, there is the strong biologi-
cal plausibility for the putative link as both schizophre-
nia and developmental Pb2+ exposure are characterized 
by hypoactivity of the NMDA receptors (Guilarte, 2009).

To experimentally test this hypothesis, we investi-
gated the effects of prenatal exposure to Pb2+ in mutant 
DISC1 mice (Abazyan et al., 2014; Guilarte, 2009). The 
experimental groups of mice were fed with moderate lev-
els of Pb2+ throughout their lifetime, whereas the control 
group received regular diet. Male mutant DISC1 mice 
exposed to Pb2+ displayed increased peripheral activity 
and decreased rearing. Pb2+ decreased the time spent in 
open arm in both mutants and controls consistent with 
increased anxiety-like behavior. In both female and 
male mice, Pb2+ exposure and mutant DISC1 additively 
increased locomotor activity induced by the NMDA 
receptors antagonist, MK-801. Because Pb2+ plays a role 
in vesicular exocytosis and high doses alters the structure 
and formation of NMDA-containing synapses (Neal, 
Stansfield, Worley, Thompson, & Guilarte, 2010; Neal, 

Worley, & Guilarte, 2011), we tried to rescue the effects 
of Pb2+ by administering an NMDA receptor coagonist, 
d-serine. d-serine is an allosteric modulator of NMDA 
receptors and has been used in translational studies as 
well as in clinical trials (Kantrowitz et al., 2010; Labrie & 
Roder, 2010; Yang & Svensson, 2008). DISC1 binds serine 
racemase, the enzyme producing d-serine and mutant 
DISC1 decreases d-serine production by altering the 
binding properties of serine racemase (Ma et al., 2013). 
Administration of d-serine was able to rescue the effects 
of Pb2+ on PPI (Abazyan et al., 2014). The results seem to 
support the hypothesis that some environmental neuro-
toxins may be able to contribute to the pathogenesis of 
schizophrenia or related mental illnesses via interacting 
with genetic liability in susceptible individuals.

SUMMARY

Recent advances in genetics and epidemiology have 
provided the foundation for the development of GEI 
animal models relevant to schizophrenia. The existing 
animal preparations model the complex interactions 
between different factors implicated in the disorder as 
summarized in Table 1.

In reviewing the models published for the past 
5–6 years, one can identify the main features common 
among many models. Although many investigators 
seem to expect detecting synergistic effects of a genetic 
mutation and an environmental adversity, there have 
been described different results of GEI as well. It is not 
uncommon to observe so-called “protective” effects in 
some GEI models or neurobehavioral changes that were 
not previously seen in any of experimental groups. 
These diverse outcomes of GEI are consistent with the 
notion of the shared etiology and underlying patho-
biology of several psychiatric disorders (Hall, Trent, 
Thomas, O’Donovan, & Owen, 2015; Insel, 2010). This 
book is a first compilation of the chapters to argue that 
animal models should stop mimicking a disease as a cat-
egory and instead focus on recapitulating and assessing 
dimensions and endophenotypes as a way of advancing 
the field of GEI (see the Chapter 3 by J. Waddington).

FUTURE PROSPECTS

Recent progress in psychiatric genetics and epidemi-
ology has facilitated the development of animal models 
of GEI relevant to schizophrenia. Although these models 
have provided some important insights, many caveats 
of recent preparations need to be addressed in the future 
studies.

To overcome these roadblocks for the clinical and 
basic research, terms such as “endophenotype” and  
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TABLE 1 Animal Models of GEI in Schizophrenia

Gene Environmental Insult Effects References

INFECTION AND IMMUNITY MODELS

DISC1 Prenatal poly I:C Synergistic increases in anxiety- and depressive-like 
behaviors

Abazyan et al. (2010)

DISC1 Early postnatal poly I:C Synergistic impairment of short-term memory Hikida et al. (2007) and Ibi et al. 
(2010)

DISC1 Prenatal poly I:C Synergistic increase in IL-6, impaired novel object 
recognition and PPI

Smith et al. (2007) and Lipina 
et al. (2013)

Nurr1 Prenatal poly I:C Synergistic impact on PPI, startle response, and latent 
inhibition

Vuillermot et al. (2011, 2012)

NRG1 Prenatal poly I:C Several impacts: some additive, some with no combined 
effect

O’Leary et al. (2014)

STRESS MODELS

Reelin Maternal separation Protective effect of mutation on social motivation Laviola et al. (2009), Ognibene 
et al. (2007), and Ognibene et al. 
(2008)

Nurr1 Social isolation, restraint stress Synergistic impairment of PPI Eells et al. (2006)

SEPT5 Social isolation Protective effect of mutation on anxiety like behaviors Harper et al. (2012)

PACAP Social isolation vs 
environmental enrichment

Synergistic elevation of aggression and impact on PPI Ishihama et al. (2010)

DISC1 Social isolation Synergistic increases in locomotion, immobility in FST, 
and PPI deficiencies

Niwa et al. (2013)

DISC1 Chronic social defeat Opposite effects of social defeat stress on mutant vs WT 
in tests of anxiety, synergistic effect on PPI and social 
interaction

Haque et al. (2012)

GAD Maternal stress Synergistic effects on fetal cortisol and birth weight Uchida et al. (2014, 2011)

SNAP25 (bdr) Maternal stress Synergistic effects on sociability and PPI Oliver and Davies (2009)

NRG1 Social stress Additive effects on locomotion, memory, sociability, and 
synergistic effect on brain cytokine levels

Desbonnet et al. (2012)

DRUG EXPOSURE MODELS

COMT Cannabis Additive decreases in size and density of dopaminergic 
cells

Behan et al. (2012)

COMT Cannabis Additive increase in startle response, PPI deficit, and 
decreases in anxiety

O’Tuathaigh et al. (2010, 2012)

NRG1 Cannabis Synergistic reduction of locomotor activity, increased 
anxiety, and impact on PPI

Boucher et al. (2007) and Long 
et al. (2013)

DISC1 Methamphetamine Mutation blunted response to methamphetamine, 
synergistic attenuated response to conditioned place 
preference

Pogorelov et al. (2012)

TOXIN EXPOSURE MODELS

Reelin Prenatal chlorpyrifos Protective impact of toxic exposure on ultrasonic 
vocalization and on stimulant response

Scattoni et al. (2009), Laviola et al. 
(2006), and Mullen et al. (2013)

DISC1 Prenatal lead Synergistic increases in anxiety like behaviors and in 
response to MK-801 administration

Abazyan et al. (2014) and Guilarte 
(2009)

GEI, gene–environment interaction; poly I:C, polyinosine-polycytidylic; IL, interleukin; PPI, prepulse inhibition; FST, forced swim test; WT, wild-type.
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“intermediate phenotype” have been introduced  
(Donaldson & Hen, 2014). How the endophenotype 
concept has been shaping GEI animal models has been 
recently reviewed (Kannan et al., 2013). Briefly, the next 
generation of animal models should expand use of 
physiological and neural circuitries intermediate phe-
notypes, genome-wide gene expression, and epigenetic 
modification profiling in specific cell types (e.g., neurons 
vs astrocytes). We believe that utilization of standard 
endophenotypic measures may not only help minimize 
variability in effects of GEI but also bring in new model 
organisms to study the molecular mechanisms of GEI 
across species (e.g., worms, fruit flies, and zebrafish).

We need to take our animal models beyond studying a 
single pathophysiological process involved in GEI even 
if we model an interaction with a single adverse event. 
For example, in addition to the hypothalamus-pituitary-
adrenal axis, studies of stress exposure should include 
the immune response to stressful stimuli (Dantzer et al., 
2008). Similarly, the role of innate and adaptive immune 
responses in mediating effects of illicit drugs will need 
to be addressed in future GEI models, including the 
immune responses taking place in the intestinal tract 
(Miller, Boulter, Ikin, & Smith, 2009).

Practically all basic (and human) GEI studies have been 
performed in candidate risk factors, the majority of which 
have not been confirmed by the recent GWAS (McCarroll, 
Feng, & Hyman, 2014; Nestler & Hyman, 2010). Although 
GEI studies based on rare highly penetrants mutations 
will likely remain the mainstream direction for years to 
come, there is an emergence of new models that incorpo-
rate polymorphisms identified by the Psychiatric Genom-
ics Consortium (Quednow, Brzozka, & Rossner, 2014).

It is important to take developmental considerations 
into account when interpreting environmental effects that 
vary across different time points (Moffitt, Caspi, & Rutter, 
2005; Rutter, 2008). In the past, addressing time-dependent 
interaction in GEI models has been achieved by changing 
the time when genetically modified animals are challenged 
with an environmental adversity. Future studies should 
also attempt to regulate timing of the effects of a specific 
mutation as exemplified by a recent study with inducible 
expression of mutant DISC1 in mice prenatally exposed to 
MIA (Abazyan et al., 2011).

Combining an environmental challenge with a genetic 
mutation can produce diverse effects. Appearance of 
new brain and behavioral phenotypes, particularly while 
using the genetic mutation implicated in various psychi-
atric conditions, could inform us about the role of envi-
ronment in bringing about diverse clinical outcomes in 
patients with the same mutation. The Scottish pedigree 
with the disruption of DISC1 due to the chromosomal 
defect is a most prominent example of such a possibility 
(Blackwood et al., 2001).

The focus of most published GEI research has been on 
risk factors. However, the contribution of protective factors 
is also important and has so far been relatively neglected, 
although there are some exceptions. Identification of genes 
conferring resilience to schizophrenia-related abnormali-
ties is a new emerging research to uncover unrecognized 
molecular targets (Mihali, Subramani, Kaunitz, Rayport, 
& Gaisler-Salomon, 2012). In this context, the role for envi-
ronment enrichment in ameliorating/rescuing genetically 
produced abnormalities has been recently reviewed (Pratt 
et al., 2012; Takuma et al., 2011).

New models with mutations in regulatory elements 
in candidate genes with more subtle regional, cell type- 
and time-specific manipulations, or human genetic vari-
ants knock-in models will better reflect the complex 
genetic and molecular mechanisms of schizophrenia 
(Papaleo, Lipska, & Weinberger, 2012). Therefore, time-
dependent or circuitry- or cell-specific manipulations to 
target mRNA and/or proteins should be used.

Most studies have focused on neuronal functions 
of susceptibility genes. However, these genes are also 
expressed by glial cells (Iijima et al., 2009; Prevot et al., 
2003). Given growing interest in the role for glia cells in 
mediating the effects of stress and microbial pathogens, 
GEI models with cell-specific perturbation of candidate 
genes are also needed. A recent study has provided the 
first evidence for the potential role of DISC1 in astro-
cytes, connecting DISC1 and serine racemase in modu-
lating NMDA receptor functions (Ma et al., 2013).

In conclusion, GEI animal models have already begun 
to provide new insights into the etiological complexity 
and heterogeneity of schizophrenia. We believe GEI ani-
mal models will continue to be a crucial tool to advance 
our knowledge about this debilitating disease and help 
searching for new treatment options.
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INTRODUCTION

The search for etiological mechanisms in schizophrenia 
has long been dominated by investigations exploring the 
genetic basis of the disease (Gejman, Sanders, & Kendler, 
2011; Shields & Gottesman, 1972). The obvious reason for 
these efforts lies in the fact that schizophrenia is, to a con-
siderable degree, a heritable brain disorder, in which poly-
genic etiological mechanisms seem pivotal (Gejman et al., 
2011; Hall, Trent, Thomas, O’Donovan, & Owen, 2015; 
Purcell et al., 2014). Based on population genetics, it has 
been suggested that the heritability of schizophrenia may 
reflect a combination of relatively common alleles with 
small effect sizes and rare alleles with relatively large effect 
sizes (Doherty, O’Donovan, & Owen, 2012). Genome-
wide association studies have identified several risk loci 
at the genome-wide level and have provided evidence 
for a substantial burden of common risk loci (Doherty 
et al., 2012). In addition, these studies point to an impor-
tant etiological role of relatively uncommon chromosomal 
abnormalities such as copy number variations, which can 
confer high risk of schizophrenia and related neurodevel-
opmental brain disorders (Giaroli, Bass, Strydom, Rantell, 
& McQuillin, 2014; Grayton, Fernandes, Rujescu, & Col-
lier, 2012; Hiroi et al., 2013). These novel insights into the 
genetic basis of schizophrenia readily support the conclu-
sions derived from family, adoption, and twin studies, 
suggesting a major involvement of genetic predisposition 
in schizophrenia (Kendler, 2001; Shields & Gottesman, 
1972). For example, the concordance rate of schizophrenia 
for monozygotic twins is estimated to be approximately 
40–60%, whereas it is 5–25% for dizygotic twins (Cardno & 
Gottesman, 2000). Even though the former underscores a 
major genetic contribution to schizophrenia risk, it is simi-
larly important to emphasize the 40–60% discordance rate 

for schizophrenia cases who share identical genes. Hence, 
there seems to be considerable room for “nongenetic” fac-
tors in influencing the risk of developing schizophrenia, 
which is one of the main reasons why environmental fac-
tors are now being considered as crucial components in 
schizophrenia etiology.

In fact, the methodological advances in human epi-
demiological research suggest that exposures to adverse 
environmental factors may play a more important role 
in the etiopathogenesis of schizophrenia than previously 
assumed (Schwartz & Susser, 2006; Torrey, 1992), and the 
evidence for significant associations between schizophre-
nia and discrete environmental exposures is accumulating 
(Brown, 2011; van Os, Kenis, & Rutten, 2010). These envi-
ronmental adversities typically operate at sensitive peri-
ods of early brain development and/or maturation and 
therefore may negatively affect a number of neurodevel-
opmental and maturational processes required for normal 
adult brain functions, including neuronal specification 
and migration, synaptogenesis and synaptic pruning, 
myelination, and neuronal plasticity (Figure 1). Among 
the most established prenatal or perinatal factors that 
increase the risk of schizophrenia are prenatal or neonatal 
infections, prenatal exposure to stress, obstetric complica-
tions, and macro- and/or micronutrient deficiencies such 
as nutritional protein deprivation or iron and vitamin D 
deficiencies (Brown, 2011; van Os et al., 2010). In addition 
to these early-life environmental factors, the risk of devel-
oping schizophrenia is significantly increased after expo-
sure to environmental adversities taking place during 
juvenile and/or adolescent periods, including childhood 
infections, periadolescent exposures to traumatizing 
events, low socioeconomic status, and excessive intake 
of drugs of abuse such as cannabis (Brown, 2011; van Os 
et al., 2010). The etiological relevance of environmental 
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exposures in schizophrenia has also received substantial 
support from diverse animal models, which demonstrate 
the development of schizophrenia-relevant brain and 
behavioral abnormalities following exposures to distinct 
environmental detriments (Meyer & Feldon, 2010; Pow-
ell, 2010). Some of these animal models are discussed in 
this book (see Chapters 9–13).

It is interesting to note that the relative effect size of 
some of these environmental risk factors can be quite 
substantial when compared with the effect sizes of indi-
vidual genetic risk factors for schizophrenia. For exam-
ple, serologically verified maternal exposure to influenza 
infection has been reported to increase the offspring’s 
risk of schizophrenia by a factor of three- to sevenfold 
(Brown et al., 2004). This contrast with the relatively 
small effect sizes attributed to individual schizophrenia 
susceptibility genes such as neuregulin-1 (NRG1), dis-
rupted in schizophrenia-1 (DISC1), or catechol-O-meth-
yltransferase (COMT), which typically show odd ratios 
ranging between 0.7 and 1.5 when considered individu-
ally (Brown, 2011). Similarly to the small effect sizes 
reported for individual susceptibility genes, however, 
it seems that most environmental factors have mod-
est effects on schizophrenia risk in large populations 
(Khashan et al., 2008; Nielsen, Benros, & Mortensen, 
2014; Sørensen, Nielsen, Pedersen, & Mortensen, 2011). 
Against these backgrounds, it has been suggested that 
environmental exposures may unfold their etiopatho-
logical impact primarily in genetically predisposed sub-
jects. According to this concept of gene–environment 
(G × E) interactions, the effect of a certain environmental 
factor on increasing schizophrenia risk would be more 
pronounced or only detectable in subjects with genetic 
vulnerability to the disorder compared with subjects 
without a genetic predisposition. As reviewed in numer-
ous excellent articles elsewhere (European Network of 
National Networks studying Gene-Environment Inter-
actions in Schizophrenia (EU-GEI), et al., 2014; Kannan, 

Sawa, & Pletnikov, 2013; McGrath, Mortensen, Visscher, & 
Wray, 2013; Modinos et al., 2013; see also Chapter 17), 
such G × E interactions have been described for various 
environmental adversities, including prenatal infection 
(Clarke, Tanskanen, Huttunen, Whittaker, & Cannon, 
2009; Demontis et al., 2011), periadolescent exposure to 
traumatizing events (Vinkers et al., 2013), and chronic 
cannabis intake (Power et al., 2014). Notably, the com-
bination of genome-wide association studies with the 
epidemiological assessment of specific environmental 
risk factors can lead to the detection of novel schizo-
phrenia susceptibility genes (Børglum et al., 2014). This 
would be the case when a specific environmental factor 
may unmask the (statistical and biological) significance 
of certain genetic variations, which would be left unno-
ticed when studied without inclusion of environmental 
exposures (Børglum et al., 2014).

In contrast to the wide appreciation of G × E interactions 
in schizophrenia, the possible etiological importance of 
multiple environmental exposures is somewhat less fre-
quently acknowledged. Indeed, epidemiological evidence  
supporting a role for such environment–environment 
(E × E) interactions is still limited to a few epidemiologi-
cal investigations, which have been conducted primar-
ily in relation to the impact of adverse social contexts. 
For example, there is evidence suggesting that the 
effects of social deprivation on increasing the risk psy-
chosis are significantly potentiated by environmental 
exposures at the individual level, including cannabis 
misuse (Heinz, Deserno, & Reininghaus, 2013). Whether 
and to what extent other established environmental risk 
factors can interact with each other to shape the risk of 
schizophrenia remains largely unanswered by current 
epidemiological research. Hence, direct epidemiologi-
cal evidence is lacking for the cumulative impact of dis-
tinct prenatal and postnatal environmental challenges 
on the vulnerability to schizophrenia and related psy-
chotic disorders.

FIGURE 1 Graphical summary of main environmental risk factors of schizophrenia. The figure outlines individual risk factors in correspon-
dence to main neurodevelopmental processes and stages of life.
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Despite this apparent lack of knowledge, however, 
various new findings from environmental rodent mod-
els strongly support the biological plausibility for E × E 
interactions to facilitate abnormal brain development 
and/or maturation. In these models, the combined 
effects of exposures to multiple environmental insults 
are typically compared with those evoked by exposure 
to a single factor alone (Meyer, 2014). The common theo-
retical construct underlying these models is that expo-
sure to an initial environmental insult can increase the 
subject’s vulnerability to the detrimental effects of sub-
sequent exposures to the same or other environmental 
adversities. Conceptually, these models thus incorporate 
environmental aspects of the “two-hit hypothesis” of 
schizophrenia (Bayer, Falkai, & Maier, 1999; Maynard, 
Sikich, Lieberman, & LaMantia, 2001). This hypothesis 
posits that early neurodevelopmental programs can be 
the targets for a “first hit” during early development, 
which in turn can predispose the affected neuronal net-
works to a more severe and/or enduring pathological 
response to a second hit occurring later in life. With 
respect to E × E interaction models of schizophrenia, this 
hypothesis further implies that the effect of a certain 
environmental factor on increasing disease risk would 
be more pronounced or only detectable in subjects 
with an early-life history of exposure to environmental 
adversities.

This chapter summarizes and integrates current 
attempts to model such E × E interactions in rodent  
models. A special emphasis is placed on their relevance 
to schizophrenia and related psychotic diseases. When-
ever possible, these models are also discussed with 
respect to their relevance to other neuropsychiatric dis-
orders, in which aberrant brain developmental processes 
seem critical.

PRENATAL INFECTION × POSTNATAL 
STRESS

Based on the findings provided by human epidemio-
logical studies, a great deal of interest has been centered 
upon the establishment and use of etiological environ-
mental animal models in which the basic experimen-
tal manipulation takes the form of prenatal exposure 
to infection and/or immune activation (Meyer, 2014; 
Meyer & Feldon, 2010, 2012; see also Chapter 11). This 
class of animal models has been driven, to a great extent, 
by the human epidemiological literature document-
ing elevated risk to develop schizophrenia following 
prenatal exposure to infection and/or inflammation 
(Brown & Derkits, 2010). Several different experimen-
tal approaches are commonly used in rodents, includ-
ing maternal gestational exposure to human influenza 
virus, the bacterial endotoxin lipopolysaccharide (LPS), 

the viral mimic polyinosine-polycytidylic acid—poly 
(I:C)—the locally acting inflammatory agent turpentine, 
or selected pro-inflammatory cytokines (Meyer, Fel-
don, & Fatemi, 2009). These models have been proven 
very helpful for the establishment of causal relation-
ships and for the identification of cellular and molecu-
lar mechanisms affecting normal brain development 
in the event of early-life immune exposures. They also 
allow a multifaceted, longitudinal monitoring of the 
disease process as it unfolds during the course of neu-
rodevelopment from prenatal to adult stages of life 
(Piontkewitz, Arad, & Weiner, 2011; Piontkewitz, Arad, 
& Weiner, 2012; Richetto, Calabrese, Riva, & Meyer, 2014;  
Vuillermot, Weber, Feldon, & Meyer, 2010).

An important recent refinement of these models is 
the incorporation of multiple etiologically relevant risk 
factors by combining prenatal immune challenges with 
specific genetic manipulations (see Chapter 17) or addi-
tional environmental adversities. One of the most widely 
used experimental approaches for these purposes is 
based on maternal gestational treatment with poly (I:C). 
Poly (I:C) is a commercially available synthetic analog of 
double-stranded RNA. Double-stranded RNA is gener-
ated during viral infection as a replication intermediate 
for single-stranded RNA or as a by-product of symmet-
rical transcription in DNA viruses (Takeuchi & Akira, 
2007). It is recognized by the mammalian immune sys-
tem through the transmembrane protein Toll-like recep-
tor 3 (TLR3) (Alexopoulou, Holt, Medzhitov, & Flavell, 
2001). TLRs are a class of pathogen recognition recep-
tors that recognize invariant structures present on and/
or associated with virulent pathogens. Upon binding to 
TLRs, double-stranded RNA or its synthetic analog poly 
(I:C) stimulates the production and release of many pro-
inflammatory cytokines, including interleukin (IL)-1β, 
IL-6, and tumor necrosis factor-α (Cunningham, Cam-
pion, Teeling, Felton, & Perry, 2007; Meyer et al., 2006). 
In addition, poly (I:C) is a potent inducer of the type 
I interferons α and β (Cunningham et al., 2007; Meyer 
et al., 2006). Administration of poly (I:C) can therefore 
efficiently mimic the acute phase response to viral infec-
tion (Traynor, Majde, Bohnet, & Krueger, 2004).

As reviewed in detail elsewhere (Meyer & Feldon, 
2012), there are several features of the maternal poly (I:C) 
administration model that make it highly suitable for 
the experimental investigation of E × E (or G × E) inter-
actions with relevance to schizophrenia pathogenesis. 
Perhaps one of the most relevant aspects for the present 
discussion is that the poly (I:C) model can be modified 
in such a way that the intensity of the maternal inflam-
matory response can be adjusted by appropriate dosing 
(Meyer & Feldon, 2012). This allows researchers to study 
the impact of immune stimulus intensity in shaping the 
vulnerability to long-lasting brain disorders. Indeed, 
whereas prenatal exposure to high doses of poly (I:C) 
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typically induce robust brain and behavioral changes in 
the offspring (Meyer, 2014; Meyer & Feldon, 2010, 2012), 
prenatal treatment with low doses of poly (I:C) only 
induces mild (or even latent) abnormalities in adult brain 
functions (Lipina, Zai, Hlousek, Roder, & Wong, 2013; 
Meyer, Feldon, Schedlowski, & Yee, 2005). Hence, the 
sensitivity of the poly (I:C) model to dosing effects yields 
to the identification of threshold effects in neurodevel-
opmental brain dysfunctions associated with prenatal 
exposure to infection/inflammation. Furthermore, this 
feature of the model strongly facilitates the identification 
of possible interactive effects between (mild) prenatal 
immune activation and other environmental (or genetic) 
risk factors implicated in schizophrenia.

Giovanoli et al. (2013) have recently taken advantage 
of this feature of the prenatal poly (I:C) model with the 
aim to explore possible interactions between mild (and 
physiologically relevant) prenatal immune activation 
and exposure to another environmental risk factor impli-
cated in schizophrenia, namely experience of traumatiz-
ing events during adolescent development (Varese et al., 
2012). In this two-hit mouse model, maternal treatment 
with a low (subthreshold) dose of poly (I:C) served as 
the first hit and exposure to subchronic stress in pubes-
cence served as the second hit (Giovanoli et al., 2013). 
The authors found that mild prenatal immune activa-
tion and peripubertal stress caused synergistic effects 
in the development of specific behavioral abnormalities 
such as sensorimotor gating deficiency and enhanced 
sensitivity to psychotomimetic drugs, both of which are 
key pathological features of schizophrenia and related 
psychotic disorders (Giovanoli et al., 2013). Neither 
immune activation alone nor stress alone affected these 
behavioral functions in adulthood, so that abnormalities 
in these domains became evident only after combined 
exposure to the two environmental factors (Giovanoli 
et al., 2013). Interestingly, the emergence of multiple 
behavioral dysfunctions in offspring with combined 
exposure to prenatal immune activation and pubertal 
stress was clearly dependent on postpubertal matura-
tional processes, which, in turn, is consistent with the 
clinical course of mental illnesses with delayed onsets, 
including schizophrenia (Paus, Keshavan, & Giedd, 
2008). Moreover, interactive effects between prenatal 
immune activation and postnatal stress were not seen in 
this model when stress was applied in late adolescence 
(Giovanoli et al., 2013), suggesting that the precise tim-
ing of postnatal stress is critical for the interaction with 
the prenatal immune challenge. In a follow-up study, 
Giovanoli, Weber, and Meyer (2014) further found a sig-
nificant reduction of parvalbumin-expressing interneu-
rons in the ventral dentate gyrus of adult mice exposed 
to combined prenatal immune activation and pubertal 
stress. Single exposure to either environmental factor 
was insufficient to cause similar neuropathology. These 

findings thus added additional support for the hypothe-
sis that prenatal immune activation and stress in puberty 
can interact with each other to cause cellular abnormali-
ties commonly observed in schizophrenia (Giovanoli 
et al., 2014). Taken together, the combination of a sub-
threshold prenatal immune activation model with peri-
pubertal stress exposure in mice illustrates that prenatal 
infection can act as a “disease primer” that increases the 
vulnerability of the offspring to the detrimental neuro-
pathological effects of other environmental insults such 
as peripubertal stress.

A similar conclusion can be drawn on the basis of 
the findings reported by Deslauriers, Larouche, Sarret, 
and Grignon (2013), who combined poly (I:C)–induced 
prenatal immune activation with peripubertal stress 
exposure in the form of restraint stress in mice. The 
behavioral deficits caused by the combined exposure 
of immune activation and stress were accompanied 
by cellular abnormalities in the prefrontal and striatal 
γ-aminobutyric acid (GABA)ergic and dopaminergic 
systems. These neuropathological changes were char-
acterized by reduced expression of the 67-kDa form of 
glutamic acid decarboxylase (GAD67), the main rate-
limiting enzyme of GABA synthesis, and by increased 
dopamine D2 receptor expression. Similar abnormalities 
have been noted in the brain of patients with schizophre-
nia and other neurodevelopmental disorders, including 
bipolar disorder and autism (Deslauriers et al., 2013).

The potential of prenatal immune activation to inter-
act with postnatal stressor does not seem to be limited to 
the priming by viral-like immune activation, but similar 
interactions can also occur following initial exposure to 
bacterial-like immune activation induced by maternal 
LPS treatment. LPS is recognized primarily by the patho-
gen recognition receptor TLR4 and induces a cytokine-
associated innate immune response that is typically seen 
after infection with gram-negative bacteria (Triantafilou &  
Triantafilou, 2002). Using an LPS-based rat model of 
prenatal immune activation, Burt, Tse, Boksa, and 
Wong (2013) revealed significant interactions between 
this early prenatal insult and acute stress exposure  
in early adolescence, the latter of which was induced 
by acute restraint stress or by exogenous applica-
tion of the stress hormone corticosterone. The authors 
found that maternal LPS treatment alone, that is, in the 
absence of additional stress exposure, was sufficient  
to abolish hippocampal long-term depression and  
other N-methyl-d-aspartate (NMDA) receptor-dependent  
electrophysiological parameters in the offspring. Inter-
estingly, however, acute exposure to restraint stress or 
corticosterone treatment stress facilitated long-term 
depression in hippocampal slices from prenatal LPS rats 
but not prenatal control rats, indicating that the prenatal 
manipulation altered the responsiveness of the adolescent 
offspring to physiological and pharmacological stressors  
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(Burt et al., 2013). Indeed, these findings suggest a level 
of interaction where (supra-threshold) prenatal infection 
causes NMDA receptor hypofunction in resting conditions 
but heightened responsiveness of NMDA receptor–medi-
ated synaptic functions to (acute) stress (Burt et al., 2013).

PRENATAL INFECTION × ADOLESCENT 
CANNABIS INTAKE

Prenatal immune activation models have also been 
used recently to explore possible interactive effects with  
another environmental risk factor of schizophrenia, 
namely adolescent cannabis intake. Chronic cannabis 
use during adolescence has been repeatedly found to 
increase the risk to develop psychotic disorders in early 
adulthood (Henquet, Murray, Linszen, & van Os, 2005; 
Moore et al., 2007). The endocannabinoid signaling sys-
tem, which is targeted by the main psychoactive com-
ponent of cannabis (Δ9-tetrahydrocannabinol), plays an 
important role in processes of brain maturation and cog-
nitive development (Trezza et al., 2012). Altering endo-
cannabinoid neurotransmission by chronic consumption 
of cannabis during adolescence may thus negatively 
affect brain maturational sequences and facilitate the 
emergence of behavioral, emotional, and cognitive dis-
turbances associated with psychotic disorders (Luzi, 
Morrison, Powell, di Forti, & Murray, 2008). It needs to 
be pointed out, however, that only a minority of cannabis 
users will eventually develop psychotic disorders. It has 
therefore been suggested that an interaction of cannabis 
with other genetic and/or environmental risk factors is 
required to induce psychosis (Pelayo-Terán, Suárez-Pini-
lla, Chadi, & Crespo-Facorro, 2012; Power et al., 2014).

Recent experimental research in rats has therefore 
sought evidence for the possibility that the negative effects 
of adolescent cannabis exposure could be potentiated 
by prenatal immune challenge. In this E × E interaction 
model, maternal gestational exposure to the viral mimic 
poly (I:C) served as the “first hit” and chronic adolescent 
administration of the synthetic cannabinoid HU210 as 
the second hit. In a first study, Dalton et al. (Schwartz &  
Susser, 2006) revealed synergistic interactions between 
these two environmental exposures on serotonin recep-
tor binding in the hippocampus, which is one of the main 
brain areas derogated in schizophrenia (Harrison, 2004). 
More specifically, the authors found that although HU210 
alone did not exert any noticeable effects, it significantly 
potentiated the increase in serotonin 1A receptor bind-
ing induced by prenatal poly (I:C) treatment (Dalton,  
Verdurand, Walker, Hodgson, & Zavitsanou, 2012). 
These synergistic effects became apparent at late ado-
lescence and persisted into adulthood, indicating the 
combined exposure to prenatal immune activation and 
adolescent cannabinoid exposure resulted in long-lasting 

serotonergic changes in the hippocampus. Using the same 
E × E interaction model in rats, Hollins et al. (Hollins, 
Zavitsanou, Walker, & Cairns, 2014) recently compared 
the single and combined effects of prenatal poly (I:C)–
induced immune activation and adolescent cannabinoid 
exposure on genome-wide microRNA (miRNA) expres-
sion in the entorhinal cortex, which represents another 
brain region strongly associated with schizophrenia 
(Benes & Berretta, 2000). MiRNAs are small noncoding 
RNA molecules that can regulate gene expression post-
transcriptionally, thereby affecting the de novo synthesis 
of proteins (Ambros, 2004). Accumulating evidence sug-
gests that numerous miRNAs are deregulated in periph-
eral and central tissues of patients with schizophrenia 
and other neurodevelopmental disorders (Geaghan & 
Cairns, in press). These aberrations may readily represent 
a molecular mechanism for altered gene translation in 
these brain disorders (Geaghan & Cairns, in press), but the 
underlying etiopathological processes leading to altered 
miRNA expression remain unclear. By revealing an 
altered miRNA expression signature following combined 
prenatal immune activation and cannabinoid exposure, 
the recent E × E interaction study by Hollins et al. (2014) 
thus provides an important contribution to our under-
standing of how environmental risk factors could cause 
long-term changes in miRNA expression with relevance 
to schizophrenia and related disorders. Interestingly, the 
miRNA expression profile induced by combined prenatal 
immune activation and cannabinoid exposure was largely 
characterized by altered expression of miRNAs residing 
within the imprinted DLK1-DIO3 locus on chromosome 
6q32 (Hollins et al., 2014). The rat 6q32 locus corresponds 
to the 14q32 locus in humans, which similarly encodes a 
large proportion of miRNAs differentially expressed in 
peripheral blood lymphocytes from patients with schizo-
phrenia (Ambros, 2004; Gardiner et al., 2012). Hence, the 
findings obtained from this novel E × E interaction model 
suggest that interaction of early (prenatal infection) and 
late (adolescent cannabinoid exposure) environmental 
insults may affect miRNA expression profile in a way that 
is relevant to schizophrenia.

PRENATAL INFECTION × PRENATAL 
IRON DEFICIENCY

Prenatal iron deficiency is another relatively well-
documented environmental risk factor of schizophrenia 
(Ellman et al., 2012; Insel, Schaefer, McKeague, Susser, & 
Brown, 2008; Sørensen, Nielsen, Pedersen, & Mortensen, 
2011). Depending on the population, maternal iron defi-
ciency has been shown to increase the offspring’s disease 
risk by a factor of 1.5- to 4-fold (Insel et al., 2008; Sørensen 
et al., 2011). It has been proposed recently that prenatal 
exposure to infection may interact with maternal iron 
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deficiency to disrupt normal brain and behavioral devel-
opment (Harvey & Boksa, in press). This potential link 
indeed appears plausible for several reasons. First, both 
environmental factors show a high global incidence 
(Gangopadhyay, Karoshi, & Keith, 2011; Silasi et al., 
2015), so that these two insults may occur simultaneously 
during pregnancy. Second, activation of the immune sys-
tem typically induces a transient state of hypoferremia 
(Kluger & Rothenburg, 1979). This process is mediated to 
a great extent by the pro-inflammatory cytokines IL-1β 
and IL-6 (Lee, Peng, Gelbart, Wang, & Beutler, 2005; 
Nemeth et al., 2004) and serves to reduce the availability 
of this essential micronutrient to the invading pathogens 
as part of the host’s inherent defense system (Kluger & 
Rothenburg, 1979). Because iron is also pivotal for nor-
mal brain development (Kwik-Uribe, Golub, & Keen, 
2000; Unger et al., 2007), infection-induced hypoferremia 
may readily contribute to neurodevelopmental abnor-
malities caused by prenatal immune challenges.

To test possible interactive effects between prenatal 
infection and iron deficiency on abnormal brain and 
behavioral development, Harvey and Boksa developed 
a model in which pregnant rats were placed on iron-
sufficient or iron-deficient diets from early gestation 
until the early postpartum period and were treated with 
the bacterial endotoxin LPS or vehicle control solution 
during mid-/late gestation (Harvey & Boksa, in press). 
In a first series of investigations, the authors showed 
that LPS administration in iron-deficient rats induced 
more excessive pro-inflammatory cytokine responses 
compared with LPS exposure in iron-sufficient rats, 
suggesting that the maternal iron status is a critical 
determinant of inflammatory responses to bacterial-like 
immune challenge (Harvey & Boksa, in press). Despite 
these interactions at the level of maternal inflammatory  
responses, however, the two environmental exposures  
appeared to induce distinct neurodevelopmental changes  
and adult behavioral abnormalities in the offspring 
(Harvey & Boksa, 2014; Harvey & Boksa, in press). For 
example, adult offspring born to iron-deficient dams 
(in the absence of additional LPS exposure) displayed 
significant deficits in sensorimotor gating and emo-
tional learning, whereas offspring from LPS-treated 
dams (under iron-sufficient diets) showed altered social 
behavior with unfamiliar rats and locomotor changes in 
a novel environment and during exploration in response 
to the psychotomimetic drug amphetamine (Harvey & 
Boksa, 2014). These findings suggest that the long-term 
effects of prenatal (bacterial-like) immune challenge 
and iron deficiency on adult behavioral functions are 
additive, such that offspring exposed to both insults 
develop quantitatively more adult behavioral abnor-
malities than offspring exposed to either factor alone 
(Harvey & Boksa, 2014). It is therefore likely that mater-
nal infection and iron deficiency may disrupt brain and 

behavioral development in the offspring through inde-
pendent mechanisms of action, despite the existence of 
interactive effects at the level of the maternal immune 
response to infection (Harvey & Boksa, in press). This 
interpretation may seem surprising given that the sever-
ity of long-term brain abnormalities following prenatal 
immune challenge has previously been shown to cor-
relate with the intensity of maternal immune reactions, 
both in experimental models (Meyer et al., 2005; Lipina 
et al., 2013; Shi, Fatemi, Sidwell, & Patterson, 2003) as 
well as in human settings (Ellman et al., 2010). The find-
ings from Harvey and Boksa (2014, in press) may, in 
fact, be taken to support the idea that multiple (and yet 
unknown) mechanisms exist whereby maternal infection 
and/or inflammation during pregnancy can affect brain 
development in the offspring (Meyer & Feldon, 2010). 
Hence, the assumption that greater inflammatory reac-
tions in the pregnant maternal host may lead to more 
severe neuropathological outcomes in the offspring 
may hold true for some cases (Ellman et al., 2010; Meyer 
et al., 2005; Shi et al., 2003; Smith, Li, Garbett, Mirnics, &  
Patterson, 2007), but not necessarily for others (Harvey 
& Boksa, 2014, in press). This consideration may be par-
ticularly relevant when the nature and/or severity of the 
maternal inflammatory responses are compared against 
different nutritional statuses (Harvey & Boksa, 2014, in 
press) or immune-pathogens (Harvey & Boksa, 2012).

CESAREAN SECTION × PERINATAL 
ANOXIA

Schizophrenia has frequently been associated with 
obstetric complications, with such perinatal complica-
tions reported in the medical histories of ∼20% of schizo-
phrenic patients (Cannon, Jones, & Murray, 2002; Lewis &  
Murray, 1987). Meta-analyses of population-based data 
identified three main categories of obstetric complica-
tions that are significantly associated with schizophre-
nia (Cannon et al., 2002): (1) complications of pregnancy 
(bleeding, preeclampsia, diabetes, and rhesus incom-
patibility), (2) abnormal fetal growth and development 
(low birth weight, congenital malformations, and small 
head circumference), and (3) complications of delivery 
(asphyxia, uterine atony, and emergency cesarean sec-
tion). The pooled odds ratio of the effect of exposure to 
obstetric complications on the subsequent development 
of schizophrenia has been estimated to be approximately 
2.0 (Geddes & Lawrie, 1995), indicating that individu-
als with a medical history of obstetric complication are 
twice as likely to develop schizophrenia.

The effects of obstetric complications, including dia-
betes during pregnancy, preeclampsia, intrauterine  
growth restriction, cesarean section, and perinatal 
hypoxia, have also been extensively studied in laboratory 
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animals (Boksa, 2004). Some of these experimental 
studies (e.g., diabetes during pregnancy, preeclamp-
sia, intrauterine growth restriction) have primarily 
focused on acute developmental effects in fetal or neo-
natal life, so that their possible long-term influences on  
schizophrenia-related phenotypes in adulthood remain 
largely unknown (Boksa, 2004). Some models of obstet-
ric complications, however, have also documented the 
long-term consequences on brain and behavioral func-
tions. As reviewed in detail elsewhere (Boksa, 2004), 
these include models of obstetric complication in the 
form of birth by cesarean section, perinatal/postnatal 
hypoxia, and placental insufficiency.

The existing evidence derived from animal models 
suggests that discrete obstetric complications can each 
induce a certain degree of brain and behavioral abnor-
malities, some of which are long-lasting and reminiscent 
of schizophrenia-related dysfunctions (Boksa, 2004). In 
support of possible E × E interactions, however, some of 
the negative effects on brain functions appear to be more 
extensive when several obstetric complications cooccur. 
For example, in comparison to rats born by rapid cesar-
ean section alone, animals born by cesarean section with 
acute perinatal anoxia develop helpless-like behavior 
and show alterations in passive avoidance pretraining 
(Boksa, Wilson, & Rochford, 1998), indicating impaired 
coping with stressful situations upon combined expo-
sure to these perinatal factors. Consistent with this inter-
pretation, adult rats born by cesarean section with acute 
anoxia display enhanced locomotor activity in response 
to stress compared with animals born vaginally or by 
cesarean section alone (El-Khodor & Boksa, 2000). Com-
bined exposure to cesarean section and perinatal anoxia 
further leads to differential dopaminergic responses to 
adult stress compared with animals exposed to either 
obstetric complication alone (El-Khodor & Boksa, 2001). 
Taken together, these findings suggest that obstetric 
complications can interact with stress in adulthood to 
alter behavior and dopaminergic functions, especially 
when several perinatal complications cooccur (Boksa & 
El-Khodor, 2003). Obstetric events are often interlinked, 
so that any complication during pregnancy is likely to 
increase the risk of further pregnancy complications and 
impact on the eventual labor and delivery (Clarke, Har-
ley, & Cannon, 2006). Therefore, additional investiga-
tions towards a better understanding of the long-term 
effects of exposure to multiple obstetric events on brain 
and behavioral are clearly warranted.

NEONATAL × ADOLESCENT STRESS

In view of the apparent role of stress exposure in the eti-
ology of schizophrenia (Corcoran et al., 2003; Holtzman 
et al., 2013; Varese et al., 2012), several animal models 

have been developed in order to unravel the neuroendo-
crine and neuronal processes underlying the disruption 
of adult brain functions following stress exposure at sen-
sitive developmental and maturational periods (Goel &  
Bale, 2009; see also Chapters 9 and 11C). To model pre-
natal stress exposure in laboratory rodents, researchers 
typically subject pregnant dams to subchronic or chronic 
psychological stressors (e.g., restraint stress of electri-
cal foot shock) or stress-hormone treatments (e.g., glu-
cocorticoid administration). Depending on the severity 
and gestational timing, maternal stress exposure has 
been shown to induce a variety of brain and behavioral 
abnormalities in the offspring, some of which are remi-
niscent of schizophrenia-related dysfunctions (Goel & 
Bale, 2009; Koenig, 2006; Koenig et al., 2005; Meyer & 
Feldon, 2010). One commonly used experimental proce-
dure to induce early neonatal stress is based on maternal 
deprivation, in which neonates are daily separated from 
the lactating dam for a certain amount of time (Franklin,  
Saab, & Mansuy, 2012). This can be coupled with addi-
tional social isolation of the neonates by separating 
pups individually from each other during the phase of 
maternal deprivation. Social isolation procedures are 
also used to induce postweaning stress; that is, after the 
animals have been weaned from their mothers (typically 
on postnatal day 21 in rats and mice) (see Chapter 9). In 
addition to social isolation, several other procedures are 
frequently used in rodents to induce stress during ado-
lescent maturation, including chronic restraint stress, 
exogenous glucocorticoid treatment, and exposure to 
unpredictable, variable stress (Burke & Miczek, 2014; 
Green & McCormick, 2013).

Exposure to each of these pre- and postweaning 
stressors can induce long-term brain and behavioral def-
icits relevant to schizophrenia (Bouet, Lecrux, Tran, &  
Freret, 2011; Niwa, Matsumoto, Mouri, Ozaki, & 
Nabeshima, 2011; Van den Buuse, Garner, & Koch, 2003). 
Accumulating evidence suggests that specific stressors 
applied at different periods of neonatal or adolescent 
development can interact with each other to shape the 
vulnerability for adult brain dysfunctions. For example, 
the combination of early neonatal stress (induced by 
maternal deprivation) and adolescent stress (induced 
by corticosterone treatment) has been shown to decrease 
hippocampal levels of brain-derived neurotrophic fac-
tor in adulthood and to impair hippocampus-dependent 
learning and memory (Choy, de Visser, Nichols, & van 
den Buuse, 2008). Even though single exposure to either 
of these stressors was found to induce mild cognitive 
abnormalities, the severity of hippocampus-dependent 
learning and memory was markedly increased follow-
ing combined exposure to neonatal and adolescent stress 
(Choy et al., 2008). Interestingly, these effects appear to 
be sex-specific in that cognitive deficits emerge in male 
rats only (Hill, Klug, et al., 2014). On the other hand, 
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female rats exposed to the combination of early neona-
tal stress (maternal deprivation) and adolescent stress 
(corticosterone treatment) developed signs of anhedonia 
(as assessed using a sucrose preference test), which were 
absent in males (Hill, Klug, et al., 2014). Sex-specific 
effects of combined exposure to these stressors have also 
been noted with respect to hippocampal and prefrontal 
brain-derived neurotrophic factor levels (Hill, Kiss Von 
Soly, et al., 2014; Hill, Klug, et al., 2014) and dopamine 
receptor alterations in forebrain structures (Hill, Kiss Von 
Soly, et al., 2014). Together, these findings highlight that 
exposure to (multiple) stressors can induce a distinct pat-
tern of long-term brain pathology in males and females, 
with cognitive and affective functions being more read-
ily impaired in the male and female sex, respectively.

Long-term brain pathology can also be induced by 
combined developmental exposure to “pharmacologi-
cal” stressors and psychological stressors. Based on the 
suggested involvement of altered glutamatergic devel-
opment and functions in schizophrenia (Javitt, Zukin, 
Heresco-Levy, & Umbricht, 2012; Snyder & Gao, 2013), 
a great deal of interest has been placed on the effects 
of developmental exposure to noncompetitive NMDA 
blockers such as phencyclidine or dizocilpine (MK-801) 
in rodent models (Mouri, Noda, Enomoto, & Nabeshima, 
2007; Seillier & Giuffrida, 2009). Recent investigations 
in rats show that combined neonatal MK-801 treat-
ment and chronic adolescent stress exposure induced 
by postweaning isolation rearing have interactive effects 
on adult schizophrenia-related abnormalities: whereas 
neonatally MK-801–treated rats that had been reared in 
isolation displayed long-lasting deficits in sensorimotor 
gating, hyperlocomotion, and impaired object recogni-
tion memory, animals exposed to one of these manipu-
lations alone exhibited less robust sensorimotor gating 
abnormalities and normal locomotor and cognitive func-
tions (Lim, Taylor, & Malone, 2012). Similar findings 
were obtained when postweaning social isolation was 
combined with phencyclidine (Gaskin, Alexander, & 
Fone, 2014), suggesting that pharmacologically induced 
NMDA receptor blockade during early neonatal periods 
represents a robust priming event for subsequent stress-
induced brain dysfunctions.

CONCLUDING REMARKS

Human epidemiological findings have been highly 
influential in shaping our current thinking on how to 
model schizophrenia-relevant etiological factors in ani-
mals. Indeed, they have encouraged the establishment 
of neurodevelopmental animal models that are based on 
exposure to specific environmental insults during pre-
natal, neonatal, and adolescent periods of life, including 
immune activation, obstetric complications, nutritional 

deficiencies, and psychological stressors. With the 
attempts to incorporate multiple environmental factors, 
we have seen an important refinement of these environ-
mental models over the past several years. The findings 
from these models suggest that early-life exposure to an 
initial environmental insult can increase the vulnerabil-
ity of the developing organism to the detrimental effects 
of subsequent adversities during postnatal maturation. 
Hence, models of multiple environmental exposures can 
be used to test key aspects of the “multiple-hit hypothesis” 
of schizophrenia (Bayer et al., 1999; Maynard et al., 2001).

Whereas the importance of G × E interactions has been 
widely appreciated in this hypothesis, the etiological rel-
evance of E × E interactions has attracted somewhat less 
attention thus far. The findings from current E × E inter-
action models may therefore encourage epidemiologists 
and basic researchers to extend their research efforts 
toward a closer examination of such interactions. Such 
efforts would be highly desirable because environmental 
factors are more amenable to preventive interventions 
compared with genetic factors (Brown & Patterson, 2011; 
McGrath, Brown, & St Clair, 2011). Ongoing experimen-
tal research in rodent models is beginning to determine 
the specificity of brain and behavioral pathology fol-
lowing exposure to multiple environmental factors. The 
continuous use and further extension of E × E interaction 
models may provide important information to guide 
future epidemiological research and to establish preven-
tive interventions that could reduce the risk of devel-
oping long-term brain abnormalities associated with 
environmental exposures.
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INTRODUCTION

Schizophrenia is a behaviorally and pathophysiologi-
cally complex disorder that affects more than 1% of the 
world’s population (Bromet & Fennig, 1999). The syn-
drome is characterized by three classes of symptoms: 
positive (delusions, hallucinations, and a disorganiza-
tion of thought), negative (affective flattening, anhe-
donia, alogia, and social withdrawal), and cognitive 
(deficits in executive function, attention, and working 
memory). Decades of genetic and environmental studies 
show a heritability of 50–80%, suggesting the disease is 
a multifactorial neurodevelopmental disorder caused by 
a combination of genetic and environmental factors  
(Sullivan, Kendler, & Neale, 2003). Such complexity 
greatly exacerbates the challenge of developing effective 
clinical treatments.

The first drugs used for treating schizophrenia, called 
first-generation antipsychotics, have been used since the 
1950s to treat the positive psychotic symptoms of the 
disease. Unfortunately, these drugs do little to amelio-
rate the negative and cognitive symptoms and can cause 
extrapyramidal side effects. The development of a  second 
generation of antipsychotics, the atypical antipsychot-
ics, reduced many of the unwanted side effects but still 
had little therapeutic advantage over the first generation 
(Lieberman et al., 2005). Thus, there is an ongoing need 
to identify more efficacious therapeutics for schizophre-
nia patients, particularly in regard to treating cognitive 
impairments. Cognitive deterioration often precedes 
the development of psychosis (Caspi et al., 2003; Jones, 

Rodgers, Murray, & Marmot, 1994) and is the most accu-
rate predictor of clinical outcome (Green, 1996). Cog-
nitive symptoms are relatively stable over time (Albus 
et al., 2002), remain resistant to current treatments, and 
continue to be present even after psychosis remission 
(Keefe et al., 2007). However, for advances in the treat-
ment of cognitive symptoms to occur, researchers must 
reach a clearer understanding of how affected molecular 
pathways shape these symptoms.

Mutant animal models are valuable tools with which 
to investigate the neurobiological basis of psychiatric 
disorders because they allow for rapid monitoring of 
disease progression, the chance to test novel thera-
peutics, and the opportunity to study the biological 
function of the genetic variants implicated in associa-
tion studies. However, schizophrenia’s heterogeneous 
symptoms are the result of a complex constellation of 
genetic and environmental stressors, making the devel-
opment of reliable and predictable rodent models dif-
ficult. Moreover, several aspects of the disorder, such as 
hallucinations and delusions, are difficult to emulate or 
measure in nonprimate animals. Thus, rather than mim-
icking the entire syndrome, a more focused approach 
is taken. Schizophrenic endophenotypes—individual 
and objectively measured markers that each represents 
one single subclinical, genetically linked component of 
the disease—serve as compartmentalized substitutes of 
complicated behaviors and can be used as tools to estab-
lish a disease model’s validity (Kellendonk, Simpson, & 
Kandel, 2009; Waddington et al., 2007), although these 
ideas have been contested (Walters & Owen, 2007).
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Several schizophrenia endophenotypes have well-
established homology in mice: for positive symptoms, 
these include indirect dopamine-linked measures, such as 
hyperactivity and stereotypy (O’Tuathaigh, Desbonnet, &  
Waddington, 2012), whereas models of negative symp-
toms focus primarily on a selected range of social behav-
iors such as social interaction deficits (O’Tuathaigh et al., 
2008). On the other hand, the exact nature of the cog-
nitive disturbance(s) present in schizophrenia and the 
accuracy of cognitive paradigms in animal models are 
ongoing sources of debate (Insel, 2010). These ambiguities, 
juxtaposed with the need for novel cognitive therapies, 
were the incentives for the US National Institute of 
Mental Health to spearhead the Measurement and Treat-
ment Research to Improve Cognition in Schizophrenia 
(MATRICS)—an initiative to attempt to establish a reli-
able, valid, and consensus-derived method of assessing 
cognition in schizophrenia. The study has identified 
seven distinct cognitive domains in which schizophre-
nia patients show deficits: attention/vigilance; working 
memory; reasoning and problem-solving; processing 
speed; visual learning and memory; verbal learning and 
memory; and social cognition (Green et al., 2004). This 
attempt to operationalize cognition has been paralleled 
by the development of animal behavioral paradigms for 
these domains (Young, Powell, Risbrough, Marston, & 
Geyer, 2009). A comprehensive list of cognitive tasks that 
measure specific cognitive domain endophenotypes can 
be found elsewhere (Arguello & Gogos, 2010; Kellen-
donk et al., 2009; Young et al., 2009).

As expected of endophenotypes, genetic mouse mod-
els displaying particular cognitive deficits often show 
functional, anatomical, and ultrastructural changes in the 
brain regions necessary for performance of specific tasks, 
particularly the frontal cortices and the hippocampus 
(Arguello & Gogos, 2006; Papaleo, Lipska, & Weinberger, 
2012). As a result, there might be a direct link between 
an individual gene and a specific endophenotype, pav-
ing the way for mechanistic studies linking the two. 
However, these underlying pathological mechanisms— 
particularly spine pathology, which has been consis-
tently verified to be deficient schizophrenia—have been 
underexplored.

DENDRITIC SPINES INFLUENCE 
COGNITIVE FUNCTION

Dendritic spines are small bulbous structures pro-
truding from the dendrites of pyramidal cells and serve 
as postsynaptic sites for the majority of excitatory syn-
apses in the central nervous system (DeFelipe & Farinas, 
1992). Each spine usually receives one glutamatergic 
axon bouton, and its synapse strength is influenced 
by the spine’s morphological properties because spine 

geometry correlates with its glutamatergic receptor con-
tent (Rochefort & Konnerth, 2012). Thus, structural plas-
ticity, via changes in spine density and shape, is a key 
indicator of the neuron’s electrophysiological properties 
and neural firing patterns.

During postnatal development, many highly mobile 
filopodia appear on dendrites, initiate synaptic con-
tacts with neighboring axons, and subsequently mature 
into more stable mushroom-shaped spines (Ziv &  
Smith, 1996). These spines are then maintained or 
eliminated during adolescence in response to a variety 
of physiological stimuli (Engert & Bonhoeffer, 1999; 
Zhou, Homma, & Poo, 2004). For example, during 
adolescence, spines can undergo experience-depen-
dent changes: rapid spine enlargement and increases 
in spine density correspond with long-term potentia-
tion (Matsuzaki, Honkura, Ellis-Davies, & Kasai, 2004), 
whereas spine shrinkage is associated with long-term 
depression (Zhou et al., 2004). Likewise, animal mod-
els that show deficits in cortical and hippocampal spine 
dynamics are associated with impairments in cognitive 
tasks (Cahill et al., 2009; Hains et al., 2009). Therefore, 
the formation, remodeling, and pruning of spiny syn-
apses are intimately linked with cognition, and dis-
ruptions may serve as a common substrate for many 
cognitive symptoms in neuropsychiatric disorders.

DENDRITIC SPINES AND 
SCHIZOPHRENIA

One of the defining neuropathological features of 
schizophrenia is gray matter loss (Selemon & Goldman- 
Rakic, 1999; Thompson et al., 2001; Vita, De Peri, 
Deste, & Sacchetti, 2012). Several postmortem studies  
have shown brain regions—many of which have been 
associated with perturbed function in the disease—with 
the highest indices of gray matter loss also have notice-
able reductions in spine density. For example, the dorso-
lateral prefrontal cortex is critical for working memory 
function, and schizophrenic individuals show reduced 
activity of this region during working memory tasks 
(Weinberger, Berman, & Zec, 1986). Spine loss in the 
dorsolateral prefrontal cortex has been reproducibly  
reported, particularly in layer 3 neurons (Glantz & 
Lewis, 2000). Reductions in hippocampal volume and 
reduced spine density on CA3 dendrites in schizophrenia  
(Kolomeets, Orlovskaya, Rachmanova, & Uranova, 2005;  
Steen, Mull, McClure, Hamer, & Lieberman, 2006) could 
be the physiological reason why patients have problems 
with memory and spatial learning. Finally, genetic link-
age and genome-wide association studies have discov-
ered a plethora of disease-associated genes encoding 
synaptic proteins involved in neuronal plasticity, neu-
ronal transmission, and synaptogenesis (Fromer et al., 
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2014). Taken together, these findings suggest that dysreg-
ulation of glutamatergic neurotransmission is a probable 
contributor to abnormal cognition apparent in patients 
with schizophrenia, likely as a result of a causal chain 
between abnormal expression, localization, and function 
of the products of synapse-specific susceptibility genes 
for schizophrenia, spine pathology, and the concomitant 
loss of gray matter in brain regions responsible for cog-
nitive function.

GENETIC MOUSE MODELS OF 
SCHIZOPHRENIA

Twin studies have demonstrated that schizophrenia 
has a heritable genetic component that can be largely 
divided into two etiological categories: the result of a 
combination of many common, low penetrant alleles 
(e.g., single nucleotide polymorphisms (SNP)), or 
several rare but highly penetrant variants (e.g., copy 
number variants, functional point mutations). Com-
mon alleles usually have no obvious effect on protein 
structure or expression (Rebbeck, Spitz, & Wu, 2004) 
and in some cases serve as physical proxies for true risk 
variants residing nearby (Newton-Cheh & Hirschhorn, 
2005). On the other hand, despite having a low fre-
quency in the overall population, rare variants usually 
have strong detrimental effects on gene function and 
thus are more likely to be accurately reproduced by 
genetic knock outs.

Modeling high-risk susceptibility alleles in mice, 
therefore, holds tremendous promise for uncovering 
the function of a gene and its contribution to the patho-
physiology of the associated disease or disease-related 
endophenotypes; with genetic models, researchers can 
ascertain the selective effects of particular disease-asso-
ciated molecules on underlying molecular and cellular 
pathways, neural circuits and behaviors, and interac-
tions with environmental factors in a gene-dosage man-
ner (Arguello & Gogos, 2006). Conversely, caveats to 
this approach exist. Foremost, robust genetic findings 
are critical for the creation of reliable mouse models, 
but there have been few rare alleles that are consistently 
associated with schizophrenia in multiple studies. Next, 
many genetic models employ constitutive or conditional 
knockout strategies, which cannot be accurately used 
to examine the subtle variations in patient risk alleles. 
For example, there is considerable phenotypic differ-
ence between an autism-associated Arg451Cys knock-in 
and a knock out neuroligin-3 mouse (Radyushkin et al., 
2009; Tabuchi et al., 2007). In addition, because many 
risk alleles are heterozygous, phenotypes of homozy-
gous mice may be poor predictors of the disease patho-
physiology. Finally, compensatory effects, particularly 
in constitutive models, can dampen the robustness of 

endophenotypic readouts (Kvajo, McKellar, & Gogos, 
2012).

Taken together, this information suggests that etiologi-
cal genetic mouse models, although useful in pinpoint-
ing the molecular roles of rare, highly penetrant variants 
in schizophrenia neurobiology, cannot be relied upon 
exclusively. Fortunately, other models of disease induc-
tion exist, including genetic pathophysiological (e.g., 
genetically modeling pathways rather than susceptibil-
ity alleles), developmental, pharmacological, and lesion-
induced, all of which serve as standards of comparisons 
for model validity and as collective tools to uncover 
convergent signaling pathways (Jones, Watson, &  
Fone, 2011).

Our focus here, however, will be on summarizing 
spine and cognitive data of etiological genetic mouse 
models of experimentally proven schizophrenia risk fac-
tors (see Table 1 for a summary).

NRXN1

Neurexins (Nrxns) are a group of presynaptic cell 
adhesion proteins (Sudhof, 2008) which interact with 
postsynaptic neuroligins (NLs 1–4) to form transsynap-
tic adhesions (Chih, Gollan, & Scheiffele, 2006; Comoletti 
et al., 2006; Ichtchenko et al., 1995; Ichtchenko, Nguyen, 
& Sudhof, 1996). The three NRXN genes each encode an 
α protein and a β protein from independent promoters, 
each of which can be processed by alternative splicing, 
giving potentially thousands of distinct protein isoforms 
(Ullrich, Ushkaryov, & Sudhof, 1995). Knockout mice 
lacking all three α-Nrxns (or NLs 1–3) show little change 
in total number of synapses, but exhibit severe presynaptic 
transmission phenotypes (Missler et al., 2003; Varoqueaux 
et al., 2006), thereby implicating Nrxns in presynaptic 
maintenance, but not formation, in vivo (although some 
studies contest this idea (Kwon et al., 2012)).

Although NRXN1 mutations have been linked 
strongly to autism risk, recent studies uncovered rare 
NRXN1 copy number variations (CNVs) in patients 
with schizophrenia. Kirov et al. (2008) initially reported 
a deletion of NRXN1 (promoter and exon 1) in a female 
case, which was also present in her affected brother, but 
not in 372 controls, and further studies confirmed this  
preliminary finding (Kirov et al., 2009; Rujescu et al., 2009). 
Recent studies have shown large CNVs—particularly  
deletions (e.g., 1q21.1, 15q11.2, and 22q11.2)—confer signif-
icant risk for schizophrenia (Zhang, Gu, Hurles, & Lupski, 
2009); however, because of the large number of genes within 
these CNVs, understanding the relationship between par-
ticular genes and endophenotypes has been challenging. 
On the other hand, the deletions found in NRXN1 are spe-
cific and thus represents a decisive step toward identifica-
tion of a specific pathogenic pathway in schizophrenia.



TABLE 1 Concise Summary of Spine and Cognitive Findings for Genetic Mouse Models Discussed in This Review

Gene

Evidence for 
Schizophrenia 
Association Cognitive Deficits Spine Deficits

References for Cognitive 
Deficits

References for Spine 
Deficits

NRXN1 CNVs PPI Mildly reduced type II spine density 
in cortex

Etherton, Blaiss, Powell, and 
Sudhof (2009)

Dudanova, Tabuchi, 
Rohlmann, Sudhof, and 
Missler (2007)

22q11 CNVs Spatial working memory, fear 
conditioning, PPI

Reduced spine density and size in 
hippocampal neurons

Paylor et al. (2006) and Stark 
et al. (2008)

Mukai et al. (2008)

MIR137 SNPs; other 
schizophrenia risk  
genes are miR137  
targets

Not reported Reduced spine density in 
hippocampus (miR-137 
overexpression by retroviral 
injection)

NA Smrt et al. (2010)

GRIN1 SNPs; mutations; 
expression changes; 
behavioral effects of 
NMDAR antagonists

Social interaction, PPI (global GRIN1 
ablation); spatial working memory 
(hippocampal-specific GRIN1 ablation); 
working memory, habituation, and 
associative learning (PV-specific GRIN1 
ablation)

Reduced spine density, increased 
spine head size in cortical 2/3 layer 
(pyramidal-specific GRIN1 ablation)

Carlen et al. (2012), 
Duncan et al. (2004), Mohn, 
Gainetdinov, Caron, and 
Koller (1999), and Niewoehner 
et al. (2007)

Ultanir et al. (2007)

RELN Expression changes; 
hypermethylation of 
RELN promoter

PPI, executive function, fear  
conditioning (HRM)

Reduced spine density in 
hippocampal neurons (HRM)

Barr, Fish, Markou, and Honer 
(2008), Brigman, Padukiewicz, 
Sutherland, and Rothblat 
(2006), and Qiu et al. (2006)

Liu et al. (2001) and Niu, 
Yabut, and D’Arcangelo 
(2008)

DISC1 Translocations;  
mutations

Fear conditioning, working memory 
(Q31L/L100P); spatial memory 
(hDISC1); working memory 
(DISC1tmkara)

Reduced spine density in 
hippocampus and cortex (Q31L/
L100P and DISC1tmkara)

Clapcote et al. (2007), Kvajo 
et al. (2008), and Pletnikov 
et al. (2008)

Lee et al. (2011) and 
Lepagnol-Bestel, Kvajo, 
Karayiorgou, Simonneau, 
and Gogos (2013)

NRG1/
ERBB

SNPs Spatial working memory, reference 
memory (NRG1 hypermorph); novel 
object recognition, fear conditioning 
(NRG1 hypomorph)

Increased bifurcated-type spines in 
cortical layer V pyramidal neurons 
(NRG1 hypermorph); reduced spine 
density in hippocampus and cortex 
(ERBB2 KO, ERBB4 KO, ERBB4 
pyramidal cell-specific KO)

Duffy, Cappas, Lai, Boucher, 
and Karl (2010) and Yin, Chen, 
et al. (2013)

Agarwal et al. (2014), 
Barros et al. (2009), and 
Cooper and Koleske (2014)

KALRN Mutations; altered 
expression

Fear conditioning (pan-kalirin KO and 
kalirin-7 KO); working memory  
(pan-kalirin KO)

Reduced cortical (pan-kalirin KO) 
and hippocampal spine density 
(kalirin-7 KO)

Cahill et al. (2009), Ma et al. (2008), Xie, Cahill, and Penzes 
(2010), and Xie et al. (2011)

DTNBP1 SNPs, altered expression Working memory, spatial learning, 
contextual fear conditioning, novel  
object recognition, PPI, social  
interaction

Reduced hippocampal spine density Bhardwaj et al. (2009), Feng 
et al. (2008), Glen et al. (2014), 
Hattori et al. (2008), Karlsgodt 
et al. (2011), and Papaleo, 
Yang, et al. (2012)

Jia, Hu, Nordman, and Li 
(2014) and Jia, Zhao, Hu, 
Lindberg, and Li (2013)

PAK Altered expression; 
mutations; splicing 
variants; CNVs

No data Reduced cortical (PAK1 DN) and 
hippocampal (PAK1/3 KO) spine  
density; increased synapse size  
(PAK1 DN and PAK1/3 KO)

NA Hayashi et al. (2004)
and Huang et al. (2011)

CNV, copy number variation; HRM, heterozygous mice; KO, knockout; miR, microRNA; NA, not available; NMDAR, N-methyl-d-aspartate receptor; PPI, prepulse inhibition; PV, parvalbumin; SNP, single 
nucleotide polymorphism.
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The α-NRXN1-knockout mouse has imbalanced excit-
atory and inhibitory neurotransmission in the hippocam-
pus due to loss of presynaptic strength. These animals 
also exhibit decreased prepulse inhibition (PPI), but no 
changes in social behavior and normal spatial learning 
(Etherton et al., 2009). An α-NRXN double knockout 
model shows only slight reductions in total spine density 
in type II synapses, but no changes in the distribution of 
synaptic proteins (Dudanova et al., 2007). Overall, these 
data suggest the gene has only a limited contribution to 
spine formation and cognitive endophenotypes and is 
therefore not the most robust disease model. However, it 
may be useful for investigating particular cognitive defi-
cits, such as sensorimotor gating.

22Q11

The 22q11 microdeletion syndrome, also known as 
velocardiofacial/DiGeorge syndrome, is caused by a 
microdeletion ranging from 1.5 to 3 Mb of the long arm 
of chromosome 22. This microdeletion results in a spec-
trum of physical and cognitive abnormalities for carri-
ers, including increased risk for psychiatric disease, with 
30% of 22q11 microdeletion syndrome patients develop-
ing schizophrenia. It is also the most common CNV asso-
ciated with schizophrenia, accounting for up to 1–2% of 
total cases (Karayiorgou et al., 1995).

Mice engineered to carry a heterozygous deletion 
of the 1.3-Mb orthologous chromosomal region (Df(16)
A+/−) display cognitive deficits including deficits in spa-
tial working memory, fear conditioning, and PPI (Stark 
et al., 2008). Primary hippocampal neurons cultured 
from these mice showed reduced spine density and 
size (Mukai et al., 2008), although another 22q11 mouse 
model was unable to reproduce these results, likely 
because of different engineering strategies (Earls et al., 
2010). Interestingly, loss of either of two genes within this 
region, ZDHHC8 and DGCR8, was sufficient to impair 
spine morphology. ZDHHC8 is a palmitoyl transferase 
which palmitoylates PSD-95; its loss results in reduced 
spine density and simpler dendrites, and its replace-
ment into Df(16)A+/− neurons rescued spine deficiency 
(Mukai et al., 2008). DGCR8 is involved in microRNA 
(miRNA) processing, and its loss results in smaller spines 
and reduced short-term synaptic plasticity (Fenelon 
et al., 2011; Stark et al., 2008). Further investigation of 
DGCR8+/− mice revealed a dramatic downregulation of 
miR-185, which is located in the deletion region of 22q11. 
miR-185 is also reduced in the hippocampus and pre-
frontal cortex (PFC) of Df(16)A+/− mice (Xu, Hsu, Stark, 
Karayiorgou, & Gogos, 2013) and reduced in periph-
eral blood of 22q11 patients (de la Morena et al., 2013). 
In vitro culture experiments confirmed its role in spino-
genesis (Xu et al., 2013), and several validated miR-185 

targets have altered expression levels in schizophrenia 
(Liu et al., 2011). Hence, it is likely that microRNA regu-
lation of synaptic plasticity may be a primary contribu-
tor to the 22q11.2-related cognitive impairments.

However, given the breadth of the 22q11 deletion, 
this may only be but one pathological aspect, and 
other deleted genes (e.g., ZDHHC8) within the region 
may contribute to the overall phenotype via differ-
ent mechanisms (e.g., deficient palmitoylation). For 
example, haploinsufficiency of a 22q11 gene TBX1 
is sufficient to reduce PPI, implicating transcription 
as a possible disease pathway (Paylor et al., 2006). 
Moreover, PFC synaptic plasticity deficits are more 
widespread in Df(16)A+/− mice than in the DGCR8+/− 
model, but inclusive of the effects observed in the lat-
ter (Fenelon et al., 2013).

MIR137

miRNAs are small noncoding RNAs that modulate 
gene expression by either reducing translation efficiency 
or cleaving target messenger RNAs (mRNAs). Because 
of their short nucleotide length, miRNAs have the poten-
tial to posttranscriptionally influence thousands of genes 
and thus can have an enormous impact on many cellular 
mechanisms (Selbach et al., 2008). Dysregulation of a single 
miRNA can be sufficient to alter a cell’s gene–expression  
profile and influence its developmental trajectory (Lim 
et al., 2005).

A large genome-wide association study with more 
than 50,000 subjects revealed a genome-wide significant 
association of an MIR137 (the gene encoding miR-137) 
SNP with schizophrenia, whereas four other loci with 
statistical significance contained verified miR-137 targets 
(Schizophrenia Psychiatric Genome-Wide Association 
Study (GWAS) Consortium, 2011; Kwon, Wang, & Tsai, 
2013; Ripke et al., 2013). Recent studies also verified the 
role of miR-137 on other functional schizophrenia endo-
phenotypes (Cummings et al., 2013; Decoster et al., 2012; 
Green et al., 2013). Moreover, transcriptome analysis of 
miR-137 targets revealed genes responsible for synapto-
genesis and neuronal transmission, whereas sequence 
analysis of miR-137 in the schizophrenic brain discov-
ered two function variants that lead to lowered miR-137 
expression in SH-SY5Y cell lines (Strazisar et al., 2014). 
miR-137 has also been linked to regulation of adult neu-
rogenesis (Szulwach et al., 2010) and neuron maturation 
(Smrt et al., 2010), which is analogous to the phenotypes 
following knockdown of the schizophrenia-related gene 
DISC1 (Mao et al., 2009). This growing body of data 
suggest miR-137 may be a central modulator of mul-
tiple pathways involved with schizophrenia neurobiol-
ogy, such as synaptic signaling and neuron maturation, 
and hence may be essential for the disease’s pathology  
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(see the section describing 22q11 for more information 
on miRNAs).

Because the association of miR-137 with schizo-
phrenia is relatively novel, no mouse model has been 
developed yet. However, mouse models of miR-137 
downstream targets, such as schizophrenia risk genes 
CACNAC1 and TCF4, show schizophrenia-like behavior 
(Brzozka, Radyushkin, Wichert, Ehrenreich, & Rossner, 
2010; Lee et al., 2012). Furthermore, in situ hybridization 
showed an enhanced expression of miR-137 within the 
adult hippocampus, a region of the brain with significant 
plasticity and continuous production of new neurons. 
Overexpression of miR-137 via retroviral injection in this 
region led to decreased dendritic branching and spine 
density in adult mice, implicating its importance in adult 
neurogenesis (Smrt et al., 2010). Because many miR-137 
targets are involved with spinogenesis, miR-137 could 
have an active role in spine dynamics and signaling.

NR1

N-methyl-d-aspartate receptors (NMDARs) are iono-
tropic glutamate receptors essential for mediating ion 
flux and signaling. NMDARs exist as multiple sub-
types, are spatially and developmentally regulated, and 
are differentially distributed across neuronal subtypes 
(Paoletti, Bellone, & Zhou, 2013). This complex diversity, 
coupled with a subtype-dependent permeability to cal-
cium influx, make NMDARs the predominant molecular 
devices for controlling complex experience-dependent 
spine remodeling and long-lasting synaptic changes. 
Such enduring changes in synaptic strength are crucial 
for associative learning, working memory, behavioral 
flexibility, or attention (Lisman, Schulman, & Cline, 
2002).

Several lines of evidence implicate hypofunction-
ing NMDARs either in the cause of schizophrenia 
or in the pathophysiological manifestations of the 
disease. For example, administration of NMDAR 
antagonists, such as phencyclidine, MK-801, and 
ketamine, to normal subjects produces metabolic, 
neurochemical, and cognitive deficits almost iden-
tical to those seen in schizophrenia patients (Mor-
ris, Cochran, & Pratt, 2005). Postmortem studies 
report abnormalities in NMDAR density and sub-
unit composition in schizophrenia patients (Akbarian  
et al., 1996; Kristiansen, Beneyto, Haroutunian, &  
Meador-Woodruff, 2006). Genetic studies have 
reported several schizophrenia-specific polymor-
phisms in GRIN1 (Begni et al., 2003; Greenwood et al., 
2011; Zhao et al., 2006) and discovered several genes 
encoding for NMDAR-interacting proteins associated 
with the disease (Fromer et al., 2014; Kirov et al., 2012). 
These data have lent further support to the notion that 

NMDAR signaling could be a point of convergence for 
various schizophrenia-associated pathways.

Global GRIN1-knockdown mice, which reduced NR1 
levels to 10% of normal levels, have been generated as 
a model for NMDAR hypofunction. Cognitively, these 
mice exhibit reduced PPI and sociability, which can be 
normalized to some extent by administration of anti-
psychotic agents (Duncan et al., 2004; Mohn et al., 1999). 
Furthermore, selective disruption of GRIN1 in the hippo-
campus leads to reduced spatial memory (Niewoehner 
et al., 2007; Tsien, Huerta, & Tonegawa, 1996), whereas 
specific disruption of GRIN1 in parvalbumin (PV) inter-
neurons leads to deficits in habituation, working mem-
ory, and associative learning, but normal social activity 
(Carlen et al., 2012; Korotkova, Fuchs, Ponomarenko, 
von Engelhardt, & Monyer, 2010).

Characterization of a pyramidal cell-specific GRIN1-
knockdown mouse revealed decreased spine density, 
increased spine head size, and increased PSD size in 
layer 2/3 pyramidal neurons (Ultanir et al., 2007), sug-
gesting NMDARs regulate spine development and func-
tion in the developing cortex. This finding is consistent 
with the discovery that dendritic protrusions can be 
triggered by NMDAR-dependent long-term potentia-
tion stimuli (Engert & Bonhoeffer, 1999; Maletic-Savatic, 
Malinow, & Svoboda, 1999). Interestingly, pyramidal 
cells become hyperexcitable in a PV-specific GRIN1 
knockdown model (Belforte et al., 2010).

Taken together, this information suggests molecular 
and cognitive endophenotypes are affected by tempo-
rally and spatially diverse patterns of NMDAR signal-
ing, making cell-autonomous and systemic influences of 
NMDAR dysfunction difficult to dissect.

RELN

Reelin, coded for by the RELN gene, is a secreted gly-
coprotein that acts as a modulator of neuronal migra-
tion in the developing brain (Caviness, 1982) through its 
interaction with receptors ApoER2/VLDLR and subse-
quent downstream signaling to the adaptor protein Dab1 
(Niu, Renfro, Quattrocchi, Sheldon, & D’Arcangelo, 
2004). Postnatally, reelin has been linked—via the same 
mechanisms—to dendritic and axonal growth (Hies-
berger et al., 1999; Niu et al., 2004), spine plasticity (Chen 
et al., 2005; Rogers et al., 2011), and long-term potentia-
tion (Weeber et al., 2002).

Given its importance in neurodevelopment, synap-
togenesis, and plasticity, it is no surprise that several 
postmortem studies revealed decreased levels of reelin 
expression in regions of the schizophrenic brain involved 
in cognition, such as the hippocampus and frontal cor-
tices (Impagnatiello et al., 1998). These findings may 
be partially explained by the finding that the RELN  
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promoter is hypermethylated in the schizophrenic brain, 
which may lead to decreased reelin mRNA expression 
(Grayson et al., 2005), or by the fact that antipsychotic med-
ications can alter the levels of reelin (Fatemi, Reutiman, &  
Folsom, 2009). Moreover, decreased very low-density 
lipoprotein receptor (VLDLR) mRNA expression was 
associated with severity of schizophrenia (Suzuki et al., 
2008), also possibly underlining the role of reelin-ApoE2/
VLDLR pathway in pathogenesis of the disorder.

Homozygous null reelin mice have a characteristic 
reeling gait as well as severe cellular disorganization 
in cortical structures in the brain, particularly cellular 
ectopia that leads to an inverted cortical development 
pattern and impaired dendrite development (Niu et al., 
2004; Tissir & Goffinet, 2003). Heterozygous mice, which 
display a 50% reduction in reelin, appear grossly nor-
mal but exhibit schizophrenic-like neuroanatomical and 
behavioral characteristics. For instance, heterozygous 
mice have decreased cortical thickness and decreased 
GAD67 (Liu et al., 2001) as well as cognitive deficits in 
PPI, executive function, and contextual fear condition-
ing (Barr et al., 2008; Brigman et al., 2006; Qiu et al., 
2006). Unfortunately, such behavioral studies have not 
been consistently replicated, thus warranting further 
study before its validity as a schizophrenia model can be 
ensured (Podhorna & Didriksen, 2004).

Reelin loss leads to decreases of dendritic spine 
density in hippocampal pyramidal neurons (Liu et al., 
2001; Niu et al., 2008). This deficit can be rescued with 
recombinant reelin, suggesting a direct role of reelin 
in spinogenesis (Niu et al., 2008). Interesting, many 
gamma-aminobutyric acid–ergic cells synapsing onto 
dendritic spines (e.g., horizontal, bitufted, Martinotti 
cells) are reelin-immunopositive, whereas those that do 
not (e.g., basket and chandelier cells) are reelin-negative 
(Pesold, Liu, Guidotti, Costa, & Caruncho, 1999). Thus, 
it is likely reelin is secreted from dendritic spine synaps-
ing interneurons, adheres to dendritic spines (Niu et al., 
2008; Rodriguez et al., 2000) through ApoE2/VLDLR 
(Niu et al., 2008) or integrins (Rodriguez et al., 2000), and 
signals to downstream postsynaptic proteins.

DISC1

DISC1 was first identified as a risk factor for schizo-
phrenia when it was shown that a chromosomal trans-
location in the DISC1 locus segregated with the disease 
in a Scottish pedigree (Millar et al., 2000). In addition to 
this variant, exon sequencing revealed that both rare and 
common missense variants in DISC1 elevate the risk for 
schizophrenia (Song et al., 2008).

DISC1 is a scaffolding protein found abundantly at 
the spines (Kirkpatrick et al., 2006), where it interacts 
with several proteins involved in intracellular signaling, 

neurite outgrowth (e.g., PDE4, GSK3beta), and synaptic 
function (e.g., kalirin-7, TNIK) (Bradshaw & Porteous, 
2012). Several DISC1 mutations have been introduced to 
mice, including truncations (Lepagnol-Bestel et al., 2013; 
Pletnikov et al., 2008), dominant-negative constructs 
(Hikida et al., 2007), and point mutations (Clapcote et al., 
2007; Lee et al., 2011). The truncation designs are based 
on the assumption that the Scottish pedigree transloca-
tion produces a truncated DISC1 protein that interferes 
with the intact copy’s function in a dominant-negative 
manner or results in a haplosufficiency, whereas the 
point mutations are thought to be rare variants with high 
penetrances. Although the exact mechanisms through 
which these manipulations impair neuronal function is 
unknown, mice carrying them display both behavioral 
and neuromorphological phenotypes similar to those 
seen in schizophrenia.

A carboxy-terminal truncated DISC1 construct was 
shown to act in a dominant negative fashion to stunt 
neurite outgrowth in cortical layer 2/3 pyramidal neu-
rons when expressed via in utero electroporation; inter-
estingly, the same phenotype occurs when a DISC1 short 
hairpin RNA construct was used (Kamiya et al., 2005). 
Similarly, primary cortical neurons from transgenic mice 
overexpressing a C-terminal truncated version of human 
DISC1 display reductions in neurite outgrowth as well 
as reduced levels of the presynaptic marker SNAP-25 
(Pletnikov et al., 2008). Animals carrying human DISC1 
mutations also display deficiencies in spatial memory, 
as assessed via the Morris water maze. Furthermore, a 
mouse model harboring two terminating codons near 
the Scottish translocation site in the DISC1 gene (DISC1T-

m1Kara) resulted in abolished expression of several major 
endogenous DISC1 isoforms and a decrease in PFC vol-
ume, which the authors hypothesized was due in part to 
an attenuation of apical dendrite length in layer 5 pyra-
midal neurons (Kvajo et al., 2008). DISC1Tm1Kara animals 
also have working memory deficits (Kvajo et al., 2008) and 
primary hippocampal and cortical neurons derived from 
this model display reductions in dendritic complexity 
and dendritic spine density (Lepagnol-Bestel et al., 2013).  
Finally, mice carrying either of two ENU-induced point 
mutations (Q31L and L100P) known to cause schizophrenia- 
related behavioral phenotypes have been shown to have 
reduced spine density in cortical and hippocampal pyra-
midal neurons (Lee et al., 2011). These Q31L and L100P 
models also had similar, but not identical, cognitive defi-
ciencies when subjected to tests of latent inhibition of 
fear conditioning and working memory via the T-maze 
(Clapcote et al., 2007). Taken together, these data suggest  
that although DISC1 mice have cognitive and physiologi-
cal differences (possibly because of variable method-
ological approaches), their accurate recapitulation of 
several schizophrenia endophenotypes highlights the 
utility of studying DISC1 hypofunction.
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NRG1/ERRB

Among the more well-characterized schizophrenia 
susceptibility alleles are those that code for neuregulin 
1 (NRG1), and its receptor, the epidermal growth factor 
receptor ErbB4 (Law, Kleinman, Weinberger, & Weickert, 
2007; Stefansson et al., 2002), although the directionality of 
the expression of these proteins in the schizophrenic brain 
is still debated (Geddes, Huang, & Newell, 2011; Mei &  
Xiong, 2008). There are several subtypes of NRG1 protein, 
generated by both alternative splicing and multiple pro-
moters. Nevertheless, all are transmembrane proteins 
that are cleaved by extracellular peptidases, allowing 
for the extracellular epidermal growth factor–like motif 
to bind to either ErbB3 or ErbB4. Upon binding, these 
receptors form dimers with each other or with ErbB1/
ErbB2; this dimerization elicits signaling through the 
mitogen-activated protein kinase and phosphatidylinosi-
tol 3-kinase pathways, resulting, among other things, 
in the regulation of functional NMDARs (Bjarnadottir  
et al., 2007; Hahn et al., 2006; Pitcher et al., 2011). Although 
it has been repeatedly established that ErbB4 signaling  
plays a pivotal role in the function of PV-expressing inter-
neurons (Fazzari et al., 2010; Shamir & Buonanno, 2010; 
Yin, Sun, et al., 2013), there is also evidence for its localiza-
tion and direct role in spines on pyramidal neurons (Gar-
cia, Vasudevan, & Buonanno, 2000; Huang et al., 2000).

As homozygous deletion of NRG1, ERBB2, or ERBB4 
results in embryonic lethality in mice, several groups 
have examined the function of these genes in organo-
typic slices, heterozygous models, or conditional knock-
outs. RNA interference–mediated knockdown of ErbB4 
expression has been shown to result in decreased spine 
area in both hippocampal slices and primary cortical 
neurons (Cahill et al., 2013; Li, Woo, Mei, & Malinow, 
2007). Conversely, treatment of primary cortical neurons 
with recombinant NRG1 leads to an increase in dendritic 
spine area and density (Cahill et al., 2013), whereas a 
transgenic mouse overexpressing NRG1 leads to a three-
fold increase in bifurcated spines on cortical layer V pro-
jection neurons (Agarwal et al., 2014). MK-801 binding 
studies of forebrain homogenates from NRG1+/− mice 
revealed significantly reduced levels of functional fore-
brain NMDARs (Stefansson et al., 2002), keeping with 
observations of NMDAR hypofunction in schizophrenia 
patients (Goff & Coyle, 2001). Similarly, mice lacking 
the full complement of ERBB alleles also display mor-
phological deficits in pyramidal neurons. Knockingout 
ERBB2 and ERBB4 specifically in the central nervous 
system causes a reduction in spines both in the CA1 hip-
pocampus and PFC by postnatal day 26 (Barros et al., 
2009). Other mouse lines carrying either a brain-specific 
or a more restricted principal neuron-specific knock-
out of ERBB4 exhibited reduced mushroom-shaped 
spine density in layer 5 dorsomedial PFC neurons at 

postnatal day 21 and persisted through postnatal day 63, 
despite being unchanged at postnatal day 16 (Cooper & 
Koleske, 2014). These data highlight the importance of 
the NRG1-ErbB4 signaling pathway for dendritic spine 
maintenance throughout forebrain development and 
into adulthood, possibly through non–cell-autonomous 
interactions with ErbB4-positive PV interneurons (Faz-
zari et al., 2010; Yin, Sun, et al., 2013).

Although behavioral abnormalities have been 
reported in mice with altered NRG/ErbB signaling, 
these models have not fully elucidated how increases 
or decreases in this pathway’s activity might be related 
to cognitive symptoms in patients. Mice that condition-
ally overexpress type I NRG1β in forebrain glutamater-
gic neurons have deficits in the radial arm maze and the 
Morris water maze, indicating impaired spatial working 
memory and reference memory (Yin, Chen, et al., 2013). 
In contrast to mice with increased levels of NRG1, those 
carrying only a single copy of the gene have no deficits 
in these tasks, but are deficient in the novel object recog-
nition task and in a fear conditioning paradigm (Duffy 
et al., 2010).

KALRN

The gene encoding the guanine nucleotide exchange 
factor kalirin, KALRN, has recently emerged as another 
factor contributing to several neuropsychiatric disor-
ders, particularly schizophrenia (Penzes & Remmers, 
2012). KALRN encodes a large number of isoforms, the 
most abundant being kalirin-7, -9, and -12. In postmor-
tem studies, kalirin mRNA and kalirin-7 protein levels 
were reduced in the prefrontal cortex of schizophre-
nia patients (Hill, Hashimoto, & Lewis, 2006; Rubio, 
Haroutunian, & Meador-Woodruff, 2012). On the other 
hand, kalirin-9 was upregulated in the auditory cortex 
in schizophrenia (Deo et al., 2012). Several rare mis-
sense mutations in the human KALRN gene have been 
identified and were shown to be enriched in patients 
with schizophrenia (Kushima et al., 2012). Because of 
the presence of a PDZ interacting domain not found in 
other isoforms, kalirin-7 is highly abundant in spines, 
where it plays a key role in plasticity by activating Rac1 
and its downstream effector, p21-activate kinase (PAK), 
and ultimately facilitating remodeling of the actin cyto-
skeleton (Penzes et al., 2003). In spines, kalirin-7 func-
tions as a signaling hub receiving upstream signals 
from NMDARs, ephrinB/EphB, neuregulin1/ErbB, 
cadherins, and the 5-HT2A serotonin receptor (Penzes 
& Jones, 2008). It also binds DISC1 and the NR2B sub-
unit of the NMDAR, further suggesting its importance 
in spine structure and function in both normal and 
pathological states (Hayashi-Takagi et al., 2010; Kiraly, 
Lemtiri-Chlieh, Levine, Mains, & Eipper, 2011).
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While the kalirin-7 specific and pan-kalirin knockout 
mice both exhibit fear conditioning impairments, only 
the latter has working memory deficits (Cahill et al., 
2009; Ma et al., 2008; Xie et al., 2011). Although more 
work is needed to reconcile the discrepancies between 
the cognitive endophenotypes of these mice, these find-
ings indicate that the complete absence of kalirin versus 
the targeted deletion of kalirin-7 produce some nonover-
lapping deficits.

In addition to displaying cognitive phenotypes 
related to schizophrenia, cortical neurons from pan-kali-
rin mice exhibit reduced spine density (Xie et al., 2010). 
These neurons also fail to undergo the usual increases in 
spine size and AMPA receptor content seen in wild-type 
neurons following chemically induced long-term poten-
tiation. Additionally, pan-kalirin knockout mice display 
reduced dendritic spine density on cortical pyramidal 
neurons at 12 weeks of age, but not at 3 weeks of age 
(Cahill et al., 2009); this age-dependent spine loss resem-
bles the time course of the progression of schizophrenia 
symptomatology. Neurons cultured from kalirin-7–spe-
cific knockouts show spine dysfunction as well, having 
diminished spine density in hippocampal CA1 pyrami-
dal neurons (Ma et al., 2008).

DTNBP1

Dysbindin, encoded by the DTNBP1 (dystrobrevin 
binding protein) gene, was first identified as a schizophre-
nia risk allele in a study of 270 Irish families in 2002 (Straub 
et al., 2002). Subsequent meta-analyses have confirmed a 
positive association between DTNBP1 and schizophre-
nia (Allen et al., 2008), and several DTNBP1 risk variants 
appear to correlate with the severity of cognitive symp-
toms in patients (Rethelyi et al., 2010). Postmortem stud-
ies of patients show a decrease of dysbindin protein levels 
in several brain regions, notably the dorsolateral prefron-
tal cortex, superior temporal gyrus, and hippocampus 
(Talbot, 2009), with specific isoforms showing decreased 
levels in postsynaptic densities of the superior temporal 
gyrus and hippocampus (Talbot et al., 2011).

The mouse model most commonly used in studies 
of dysbindin function was derived from animals car-
rying a spontaneous mutation affecting coat color—the 
so-called sandy (sdy) mice (Swank, Sweet, Davisson, 
Reddington, & Novak, 1991). Surprisingly, these mice 
were found to have two exon deletions in the DTNBP1 
gene that results in reduction and elimination of protein 
expression in heterozygotes and homozygotes, respec-
tively, making it an accurate model for dysbindin-1 
function (Li et al., 2003). Cognitively, homozygous sdy 
mice displayed clear deficits in spatial working memory, 
contextual fear conditioning, and novel object recogni-
tion (Bhardwaj et al., 2009; Glen et al., 2014; Karlsgodt 

et al., 2011); additional tests revealed changes in PPI and 
social interaction (Feng et al., 2008; Hattori et al., 2008; 
Papaleo, Yang, et al., 2012). However, there are also some 
inconsistencies in the published results, likely because 
of strain-specific backgrounds differences (DBA/2J vs 
C57BL) (Talbot, 2009).

Primary hippocampal neurons prepared from the sdy 
mouse display reduced spine densities due to the decline 
of mushroom and thin spines, whereas filopodia appear 
at higher levels. This effect is mediated by hyperactiva-
tion of the D2 dopamine receptor (Jia et al., 2013) and 
hypoactivation of CaMKIIα (Jia et al., 2014). At the func-
tional level, dysbindin plays a role in NMDAR function 
because sdy hippocampal neurons exhibit an upregula-
tion of NR2A subunits and enhanced long-term poten-
tiation (Tang et al., 2009). Dysbindin is a component 
of the multisubunit BLOC-1 (biogenesis of lysosome-
related organelles complex 1) (Ghiani & Dell’Angelica, 
2011), which through its interaction with the cytoskeletal 
WAVE complex, is capable of altering the degree of actin 
filament branching in the dendritic spines—a process 
necessary for the regulation of spine dynamics (Ito et al., 
2010). Moreover, BLOC-1 is thought to regulate pro-
tein sorting from early endosomes to lysosome-related 
organelles; deficiency in dysbindin likely decreases traf-
ficking from endosomes to lysomes. As a secondary 
effect, receptors that are preferentially recycled via the 
endosome–lysosome pathway, such as NR2A and D2 
(Bartlett et al., 2005; Lavezzari, McCallum, Dewey, & 
Roche, 2004), may be diverted to the recycling endosome 
pathway, leading to an increase in the incorporation into 
the plasma membrane.

PAK

PAK is a downstream effector of kalirin-7 and Rac1 
(Penzes et al., 2003) and a key regulator of actin remod-
eling. Missense and splicing variants in PAK3 have 
been associated with intellectual disability as well as 
with schizophrenia with premorbid mental retardation 
(Gedeon, Nelson, Gecz, & Mulley, 2003; Morrow, Kane, 
Goff, & Walsh, 2008; Rejeb et al., 2008). Microdeletions 
that encompass PAK2 (3q29) have also been found to 
have a strong association with schizophrenia (Mulle 
et al., 2010). In addition, PAK1 expression and phosphor-
ylation are altered in the prefrontal cortex in schizophre-
nia patients (Rubio et al., 2012).

Although mouse models of PAK dysfunction have not 
been used for investigations of schizophrenia pathogen-
esis per se, they may hold potential for future studies. For 
instance, although no behavioral paradigms have been 
performed on PAK knockout mice, inhibition of PAK has 
been shown to rescue symptoms in other schizophrenia 
disease models such DISC1 (Hayashi-Takagi et al., 2014), 
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hence implicating the PAK pathway as important in the 
etiology of cognitive endophenotypes.

Cortical neurons in forebrain-specific dominant nega-
tive PAK1 transgenic mice show reduced spine density 
and larger individual synapses (Hayashi et al., 2004). 
In contrast to this model, fixed hippocampal sections of 
PAK1 knockout mice show normal synapse and spine 
density and primary hippocampal cultures derived from 
these animals had significantly reduced levels of fila-
mentous actin on spines, coinciding with higher levels 
of the active form of the actin depolymerization factor 
cofilin (Asrar et al., 2009). The authors account for the 
discrepancy between dominant negative and knock-out 
PAK models by highlighting that a dominant negative 
PAK1 protein may suppress the activity of other PAK 
isoforms, particularly PAK3. Indeed, expression of some, 
but not all, mental retardation–associated PAK3 mis-
sense mutations leads to reductions in spine density in 
cultured hippocampal neurons, and an overabundance 
of immature filopodia-like spines (Kreis et al., 2007). 
Similarly, a double knockout PAK1/3 model exhibited 
markedly reduced hippocampal synapse density and 
enlarged individual synapses (Huang et al., 2011). How-
ever, future studies are needed to directly elucidate the 
effect of these changes in spine function on cognition 
and behavior.

CONCLUSION

The ineffectiveness of current therapeutics in 
improving clinical outcomes in schizophrenia has been 
partially from focus on reversing positive symptoms, as 
opposed to ameliorating core cognitive deficits. How-
ever, the greatest impediments to therapeutic develop-
ment in this area are the lack of understanding of the 
neurobiology of cognition and the unreliable predictive 
power of animal models for testing cognitive traits. 
On the other hand, the continuous development and 
research into genetic mouse models of schizophrenia, 
as well as the establishment of the standardized MAT-
RICS program to compartmentalize cognition into mea-
surable endophenotypic domains, have allowed for 
detailed illumination of how genetic insults can affect 
the relationship between spine dynamics and cognitive 
dysfunction in mental illness. Nevertheless, there are 
many inconsistencies, missing tests, and difficulties in 
interpretation that cloud the available literature, as is 
evident from the models discussed here. From labora-
tory to laboratory, animals are not typically subjected 
to standard batteries of behavioral tests, and spine 
pathologies in schizophrenia models are not always 
investigated in the same brain region or neuron type, 
if at all. These factors have severely limited researchers’ 
abilities to interpret mechanisms of pathogenesis, and 

make it difficult, if not impossible, to make valid gener-
alizations and/or comparisons between one model and 
another. Moreover, the absence of a consensus cogni-
tive battery has hampered standardized evaluation of 
new treatments targeting cognitive deficits in schizo-
phrenia. The next step, therefore, lies in implementing 
uniform behavioral paradigms and organized molecu-
lar characterization of affected brain regions.
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INTRODUCTION

One of the biggest obstacles in studying schizophrenia 
(SCZ) is the lack of live brain tissue from patients with 
which to study the cellular mechanism underlying the 
disorder. Postmortem material, when available, is con-
founded by variables such as patient treatment history, 
poverty, drug and alcohol abuse, and cause of death. 
Although postmortem studies can reveal a lot about the 
state of the brain at the end of a long illness, it teaches us 
very little about disease initiation or progression. Fur-
thermore, the heterogenic genetic contribution to SCZ 
risk is inadequately captured in even the best mouse 
models, which tend to investigate the effect of single 
highly penetrant risk alleles (such as DISC1 or NRG1 
(Brandon & Sawa, 2011; Jaaro-Peled et al., 2010; Mei & 
Xiong, 2008)) in isolation. Furthermore, these animal 
models recapitulate some symptoms (such as anxiety, 
depression, and some cognitive deficits), but not all of 
the most relevant characteristics (such as hallucinations, 
delusions) associated with this very human condition.

The use of human-induced pluripotent stem cells 
(hiPSCs) in scientific research and medicine immediately 
bypassed the ethical issues associated with using human 
embryonic stem cells (hESCs). Ultimately, there are two 
obvious applications for induced pluripotent stem cells 
(iPSCs) in human medicine. First, hiPSCs should be use-
ful as a source of cells for transplantation in any medi-
cal condition that is characterized by the loss of specific 
population of cells, such as dopaminergic neurons in 
Parkinson’s disease (Ganat et al., 2012; Kriks et al., 2011), 
motor neurons in amyotrophic lateral sclerosis (Kondo 
et al., 2014), retinal cells in retinitis pigmentosa (Lamba, 
Karl, Ware, & Reh, 2006; Zhong et al., 2014), and insulin-
producing β cells in diabetes (Pagliuca et al., 2014). It is 

hoped that the use of cells that are genetically identical to 
those of the patient will reduce the risk for tissue rejection 
(Kiskinis & Eggan, 2010); clinical trials for the treatment 
of retinitis pigmentosa, diabetes, and spinal cord injury 
have already begun. Second, hiPSCs can also be used as 
a source of patient-derived cells for developing in vitro 
disease models (reviewed by Han, Williams, & Eggan, 
2011; Sandoe & Eggan, 2013). Because these hiPSC-based 
studies recapitulate all of the (known and unknown) 
genetic factors interacting to produce the disease state, 
they can be developed not only for simple Mendelian 
disorders, but also for complex genetic disorders such 
as SCZ. These hiPSC-based studies will be useful to elu-
cidate the molecular and cellular factors contributing to 
disease initiation and progression, but may also serve as 
a platform one day for high-throughput drug screening 
to identify novel therapeutic compounds for the treat-
ment of this common and debilitating disease (Egawa 
et al., 2012).

EXISTING CELL-BASED MODELS

Nonneural Cell-Based Models (Lymphocytes  
and Fibroblasts)

Early attempts to generate cell-based models of SCZ 
relied on nonneuronal cells obtained from patients, such 
as lymphocytes and fibroblasts. A primary objective of 
these studies was to elucidate biomarkers with which 
to either improve diagnosis or predict patient drug 
responsiveness. Although the first reports focused on 
single traits, such as elevated dopamine antagonist [3H]-
spiperone binding (Bondy, Ackenheil, Birzle, Elbers, 
& Frohler, 1984) and increased levels of D3 dopamine 
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receptor messenger RNA (mRNA) in SCZ patient lym-
phocytes (Ilani et al., 2001), more recent studies have 
focused on developing multiplex assays. Though several 
serum-based analyte signatures, comprising primarily 
cytokines, chemokines, and neurotrophins, are capable 
of distinguishing SCZ from healthy control subjects with 
high sensitivity and specificity (Domenici et al., 2010; 
Schwarz et al., 2010), unfortunately, to date, these assays 
show little specificity of this signature for SCZ relative to 
other psychiatric conditions (Schwarz et al., 2012). Stud-
ies of SCZ patient-derived fibroblast cultures have iden-
tified aberrations in growth and morphology (Mahadik, 
Mukherjee, Laev, Reddy, & Schnur, 1991), decreased cel-
lular adhesion (Mahadik et al., 1994), and altered apop-
totic pathways (Catts et al., 2006), many of which were 
subsequently confirmed by transcriptomic and pro-
teomic approaches (Wang et al., 2010). Although these 
nonneuronal strategies have revealed abnormalities 
in peripheral tissues of SCZ patients that may one day 
serve as diagnostic tools for clinicians, to understand the 
mechanism that underlays the abnormal mental state, 
one must have an access to central nervous system tis-
sues, including neurons and glia cells.

Neural Cell-Based Models (Olfactory Neural 
Progenitor Cells)

Neural tissue is not accessible from living SCZ patients 
(or healthy controls, as a point of comparison) unless the 
patient requires a surgical procedure to remove brain tis-
sue, as in the case of severe epilepsy (Nunes et al., 2003; 
Oliver-De La Cruz et al., 2014) or brain tumors (Pavon 
et al., 2014). Nonetheless, viable neural progenitor cells 
(NPCs) have been successfully obtained during autop-
sies, which have been shown capable of further differen-
tiation into mature neurons and glia in vitro (Nunes et al., 
2003; Palmer, Schwartz, Taupin, Kaspar, & Stein, 2001). 
A similar study of postmortem obtained NPCs revealed 
that Alzheimer’s disease patients have significantly 
fewer viable precursor cells in the hippocampus relative 
to age-matched healthy controls, and that Alzheimer’s 
disease NPCs reach senescence earlier than NPCs iso-
lated from aged-matched healthy controls (Lovell, Geiger,  
Van Zant, Lynn, & Markesbery, 2006).

A more accessible source of patient NPCs is the olfac-
tory epithelium of the nasal cavity, which can be biopsied 
under local anesthesia (Feron, Perry, Hirning, McGrath, & 
Mackay-Sim, 1999). The olfactory epithelium comprises 
sensory neurons and supporting cells, including a popu-
lation of NPCs (Mackay-Sima & Chuahb, 2000). Olfactory 
neural progenitor cells (ONPs) can be cultured and subse-
quently differentiated into neurons (Murrell et al., 2005). 
Several molecular and cellular phenotypic differences in 
SCZ patient ONPs have now been well-characterized, 
although such studies need to be carefully controlled 

for such confounding variables and patient age, medica-
tion, and, most notably, smoking habits. The first such 
study found that SCZ ONPs show reduced adhesion, 
elevated mitosis, and altered response to dopamine rela-
tive to healthy controls (Feron et al., 1999). A subsequent 
study across a larger cohort of SCZ and bipolar disorder 
(BD) patients confirmed increased mitosis in SCZ ONPs 
(and further demonstrated increased cellular death in 
BD ONPs), and also found altered expression of genes 
involved in cell-cycle and vesicle transport (McCurdy 
et al., 2006). Recent insights now better explain increased 
replication and reduced adhesion in SCZ ONPs: increased 
mitosis occurs as a result of a larger pool of proliferating 
progenitors replicating with a reduced cell-cycle period 
(Fan, Abrahamsen, McGrath, & Mackay-Sim, 2012), 
whereas reduced adhesion in SCZ ONPs occurs as a 
direct consequence of significantly dysregulated focal 
adhesion kinase signaling (Fan et al., 2013). Gene expres-
sion and protein levels in SCZ ONPs show dysregulation 
in neurodevelopmental cell signaling pathways that are 
not detected in patient-matched fibroblasts (Matigian 
et al., 2010), in conjunction with reduced overall variabil-
ity in gene expression relative to healthy controls (Mar 
et al., 2011). Although ONPs can differentiate to neurons 
and astrocytes, demonstrated by immunostaining for the 
neuronal marker βIII-TUBULIN and the astrocyte marker 
GFAP, respectively (Murrell et al., 2005), no ONP study 
has yet reported functional differences in ONP-derived 
neurons from SCZ patient relative to those from healthy 
controls, which we expect will be a critical area of interest 
in the future.

REPROGRAMMING OVERVIEW

Based on the notion that fully differentiated cells can 
be reprogrammed to a fully pluripotent state and give 
rise to a viable animal (Campbell, McWhir, Ritchie, & 
Wilmut, 1996; Gurdon, Elsdale, & Fischberg, 1958; 
Wilmut, Schnieke, McWhir, Kind, & Campbell, 1997), 
Takahashi and Yamanaka screened for factors that can 
revert the differentiation status of somatic cells. They 
found that transient overexpression of just four fac-
tors—SOX2, OCT3/4, c-MYC, and KLF4—were suf-
ficient to reprogram mouse or human fibroblasts into 
iPSCs (Figure 1) (Okita, Ichisaka, & Yamanaka, 2007; 
Takahashi et al., 2007; Takahashi & Yamanaka, 2006). 
Whether derived from mice or humans, iPSCs have 
markedly similar morphology, proliferation, propen-
sity to differentiate to all three germ layers, and abil-
ity to contribute to germline transmission (tested in 
mice only), as ESCs. These pioneering studies led to 
a burst of investigations into the generation of iPSCs 
from different tissues using different delivery methods 
and under different conditions (reviewed by Gonzalez, 
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Boue, & Izpisua Belmonte, 2011), all of which will be 
discussed at length in this section.

Source of Cells for hiPSCs

The somatic origin of the reprogrammed cells affects 
the efficiency of the reprogramming process, for review 
see (Li, Song, Pan, & Zhou, 2014), but may also influ-
ence the epigenetic status of the resultant iPSCs. The 
first hiPSCs were generated from fibroblasts, and this is 
still the preferred source of patient somatic cells in many 
laboratories because of both the ease of the expansion 
and cryostorage as primary cells. The reprogramming 
efficiency from fibroblasts varies, from 0.001% to 6.2% 
(Li et al., 2014), but is robust methodology, even from 
elderly patients’ samples (Israel et al., 2012). Because 
skin biopsies, from which fibroblasts are obtained, 
require local anesthesia and have an associated risk of 
bleeding or infection (Villegas & McPhaul, 2005), meth-
odologies have been developed to reprogram a variety 
of other primary cell types.

Many groups have robustly demonstrated that it is pos-
sible to generate hiPSCs from a variety of arguably more 
accessible tissues. One of the first such reports demonstrated 
that generation of hiPSCs from hair follicle keratinocytes 
can be 100-fold more efficient and twofold faster relative to 
fibroblasts (Aasen et al., 2008), although this methodology 
was never widely adopted. Other groups have shown that 

hiPSCs can be generated from dental pulp, a strategy par-
ticularly amenable to the study of pediatric developmental 
disorders (Beltrao-Braga et al., 2011) and from human urine 
(Zhou et al., 2011). Though early reports of reprogram-
ming from primary blood cells were exceedingly inefficient 
(Loh et al., 2009), this methodology has now been greatly 
improved and is widely used (Dowey, Huang, Chou, Ye, 
& Cheng, 2012). To date, few studies have compared the 
effect of the tissue of origin on the genetic mutation load 
and epigenetic status of the resultant hiPSCs.

Method of Reprogramming to Generate hiPSCs

Two critical aspects of the reprogramming process are 
the precise factors used and their method of delivery into 
the somatic cell. One of the major disadvantages of the 
original methodologies was that they relied on introduc-
ing the reprogramming factors using retroviral and len-
tiviral vectors, which results in stable integration of the 
exogenous factors into the genome (Takahashi et al., 2007;  
Yu et al., 2007). On average, every factor integrated into 
three to six different genomic loci; each site represented not 
just a novel mutation but additional loci with the poten-
tial to be reactivated during the differentiation process  
(Takahashi et al., 2007). In the context of transplantation 
studies, an additional concern was the potential to reacti-
vate the oncogene c-MYC. Attempts centered on improv-
ing reprogramming efficiency in the absence of c-MYC 

FIGURE 1 Derivation of hiPSCs from human fibroblasts. Typical morphology of (A) human fibroblasts and (B) hESC colony. (C) Morphology 
of an established hiPSC colony at passage number 6. Immunostaining of hiPSC colony demonstrating expression of pluripotency markers (D) 
TRA-1-60 (red), (E) SSEA-4 (green), and (F) NANOG (green), all counterstained with DAPI. hESC, human embryonic stem cell; hiPSC, human-
induced pluripotent stem cell. Adapted from Takahasi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent 
stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.
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demonstrated that it is possible to generate hiPSCs from 
fibroblasts using OCT3/4, SOX2, NANOG, and LIN28 
without c-Myc (Yu et al., 2007). In addition, it was shown 
that hiPSCs can be generated using just OCT3/4, SOX2, 
and KLF4, although the reprogramming efficiency falls 
drastically to less than 0.001% (Nakagawa et al., 2008). 
The addition of valproic acid improves this process (to 
1% efficiency) even permitting hiPSC generation with just 
OCT3/4 and SOX2 alone, though, again reducing effi-
ciency below 0.001% (Huangfu et al., 2008). Given their 
endogenous SOX2 expression, human keratinocytes can be 
reprogrammed with just OCT4 and KLF4, if treated with a 
glycogen synthase kinase 3 beta inhibitor and an inhibitor 
of lysine specific demethylase 1 (Li et al., 2009).

The next advance was to permit tetracycline inducible 
expression of the reprogramming factors, either as mul-
tiple lentiviral vectors (Maherali et al., 2008) or as a single 
polycistronic vector encoding all four classic reprogram-
ming factors (Carey et al., 2009). To completely eliminate 
the possibility of exogenous factor reactivation, floxed-
reprogramming cassettes permitted transgene excision 
by Cre recombinase after the reprogramming procedure 
(Soldner et al., 2009; Sommer et al., 2009), though the loxP 
site was not excised from the genome. A similar strat-
egy relied upon transposons carrying the polycistronic 
reprogramming cassette. The PiggyBac transposase can 
insert and remove DNA fragments flanked by defined 
terminal repeats without leaving a footprint (Ding et al., 
2005) and can be used to generate hiPSCs free of exog-
enous reprogramming factors (Woltjen et al., 2009).

Ultimately, these strategies were abandoned in favor 
of integration free methods. Though it is possible to gen-
erate hiPSCs using plasmids (Okita et al., 2011), episomes 
(Yu, Chau, Vodyanik, Jiang, & Jiang, 2011), artificial chro-
mosomes (Song, Chung, & Xu, 2010), and direct delivery 
of recombinant proteins (Kim et al., 2009), application 
of these methods has been constrained by their rela-
tively low efficiencies. At this time, the two most com-
monly used reprogramming methods involve the use of 
modified mRNAs or sendai viruses (SeV) to transiently 
express the reprogramming factors. For mRNA-based 
reprogramming, the five factors (SOX2, OCT3/4, c-MYC 
KLF4, and LIN28) must be encoded by synthetic mRNAs 
designed to overcome the innate antiviral responses and 
repeatedly transfected into human fibroblasts (Warren 
et al., 2010). The addition of the microRNAs miR302/367 
has further improved efficiencies (Anokye-Danso et al., 
2011), and this platform has been successfully adopted 
to an automated high-throughput format (Paull et al., 
2014). SeV-based reprogramming is highly efficient, 
owing to the ability of SeV to robustly infect most mam-
malian cells and mediate high levels of gene expression 
(Fusaki, Ban, Nishiyama, Saeki, & Hasegawa, 2009). SeV 
is a single-stranded RNA virus with an exclusively cyto-
plasmic replication cycle, making this virus incapable 

of integrating its genetic information into the host cell 
genome (Faisca & Desmecht, 2007). SeV reprogramming 
typically relies on F-protein deficient, nontransmissible 
SeV (Fusaki et al., 2009), although complete removal of 
the SeV factors can be improved by using a temperature-
sensitive SeV strain that can be deactivated by elevating 
the culture temperature (Ban et al., 2011). Both mRNA- 
and SeV-based reprogramming reagents are now com-
mercially available and capable of reprogramming 
primary patient fibroblast or blood samples, allowing 
higher throughput hiPSC generation from larger patient 
cohorts than previously envisioned possible.

Genetic and Epigenetic Status of hiPSCs

It has been widely reported that spontaneous genomic 
mutations can and do occur during the reprogramming 
process. Although de novo genetic mutations could cer-
tainly confer increased risk in the context of cell replace-
ment therapies, the negative implications of genomic 
stability in hiPSC-based disease models are less profound. 
Most hiPSCs lines appear to carry a handful of chromo-
somal aberrations (Mayshar et al., 2010), copy number 
variations (Hussein et al., 2011), and point mutations in 
coding regions (Gore et al., 2011). Although substantial 
subsets of reprogramming-associated mutations seem 
to preexist in fibroblasts at low frequencies (Gore et al., 
2011), the rate of protein coding mutation is comparable 
regardless of the somatic cell source (Ruiz et al., 2013). 
Of those genetic lesions that occurred during or after the 
reprogramming process, there is a functional association 
between reorganization of DNA replication timing and 
the copy number variant copy number variant landscape 
that emerges during reprogramming (Lu et al., 2014). Pas-
sage number is a major contributor to genomic structural 
variations (Lu et al., 2014); significantly more copy num-
ber variants are present in early-passage hiPSCs than are 
found in either the source fibroblasts or intermediate pas-
sage hiPSCs (Hussein et al., 2011). Intriguingly, most novel 
copy number variants are a selective disadvantage and 
expansion of hiPSCs appears to drive the lines towards a 
less mutated state (Hussein et al., 2011).

The epigenetic status of hiPSCs relative to human ESCs 
remains unclear; hiPSCs show significant reprogram-
ming variability, including somatic memory and aberrant 
reprogramming of DNA methylation. Investigators now 
recognize that there is some extent of residual DNA meth-
ylation signatures characteristic of the tissue of origin (Doi 
et al., 2009). Donor cell type (in this case, patient-matched 
cord blood cells and neonatal keratinocytes) results in 
distinct genome-wide DNA methylation and variable dif-
ferentiation potential of the resultant hiPSCs (Kim, Zhao, 
et al., 2011). For example, pancreatic insulin-producing β 
cell–derived hiPSCs maintained open chromatin struc-
ture and unique DNA methylation signature at key β-cell 
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genes, ultimately contributing to an increased ability 
to differentiate into insulin-producing β cells (Bar-Nur, 
Russ, Efrat, & Benvenisty, 2011). Because of this, hiPSC-
based disease modeling experiments should be carefully 
designed to control for donor cell type.

The first evidence of incomplete epigenetic remod-
eling of (many, if not all) hiPSCs was that hiPSCs tend 
to undergo neuronal differentiation with significantly 
reduced efficiency and increased variability relative to 
hESCs (Hu et al., 2010). Epigenetic aberrations occur in 
hiPSCs regardless of the somatic cell type of origin, and 
aberrant methylation is maintained through hiPSC dif-
ferentiation (Ruiz et al., 2012). hiPSCs show large (mega-
base-scale) differentially methylated regions, particularly 
close to centromeres and telomeres (Lister et al., 2011), 
and reprogramming efficiency inversely correlates with 
the percentage of epigenetic modifications observed after 
reprogramming (Ruiz et al., 2012). Furthermore, there is 
a loss of dosage compensation with passage in hiPSCs; 
although low-passage female hiPSCs retain the inactive 
X chromosome of the somatic cell they are derived from, 
over time in culture they undergo an “erosion” of X chro-
mosome inactivation (Mekhoubad et al., 2012; Nazor 
et al., 2012). These epigenetic differences in hiPSCs may 
reflect errors in the reprogramming process: although both 
nuclear transfer–derived hESCs and hiPSCs derived from 
the same somatic cells contained comparable numbers of 
de novo CNVs, the DNA methylation and transcriptome 
profiles of nuclear transfer hESCs corresponded more 
closely to traditional hESCs (Ma et al., 2014).

Although it is important to be mindful of the genetic 
and epigenetic differences that may distinguish hiPSC 
lines from the same individual, the relative differences 
between hiPSCs and ESCs tend to be a distraction in the 
larger context of hiPSC-based disease modeling. Though 
both genetic and epigenetic mutations do occur, the fre-
quency of these events is not believed to differ between 
patients and controls. With markedly improved repro-
gramming efficiencies by recent methodologies, hiPSC-
based studies can now be designed from larger cohorts 
and include multiple hiPSCs from each individual. 
Although ideally each hiPSC line might one day be fully 
genotyped and epigenetically profiled, for now, includ-
ing multiple hiPSC lines for each of multiple patients 
will allow careful comparisons of SCZ and control 
hiPSC-derived neurons to proceed.

OVERVIEW OF NEURONAL 
DIFFERENTIATION

The ability of human pluripotent stem cells (PSCs, 
both human ESCs and hiPSCs) to self-renew also dif-
ferentiate into (theoretically) all of the somatic cell types 
present in the adult human make them an attractive cell 

source for both research and clinical applications. For the 
in vitro modeling of neuropsychiatric diseases, such as 
SCZ, the derivation of NPCs and neurons is required. 
Neuronal differentiation protocols attempt to mimic 
in vivo neurodevelopment, whereby extrinsic cytokines 
iteratively activate specific signaling pathways, first to 
induce neural commitment, and subsequently to specify 
neuronal phenotypes.

Over the years, many protocols have been established 
to direct PSCs toward neural lineages. Initial approaches 
used embryoid bodies (EBs), a three-dimensional struc-
ture resulting from the culture of PSCs in suspension 
(Bain, Kitchens, Yao, Huettner, & Gottlieb, 1995). In the 
EB protocol, neural induction results from the propen-
sity of PSCs to default to a neural identity in the absence 
of specification cues, such as bone morphogenetic pro-
teins; however, traditional EBs encompass multicellular 
multidifferentiated structures, of which neuronal deriv-
atives are present only in limited amounts (Bain et al., 
1995). To address this, a modified EB-based protocol was 
developed (Lee, Lumelsky, Studer, Auerbach, & McKay, 
2000), in which neural precursors are preferentially 
selected from EBs using a chemically defined media. 
These precursors form organized structures known as 
neural rosettes, and express markers of the develop-
ing neural tube (Figure 2) (Elkabetz et al., 2008). Neu-
ral rosettes can be robustly expanded and differentiated 
into neurons (Elkabetz et al., 2008). The efficiency of neu-
ral rosette derivation can be increased by the addition of 
Noggin and/or fibroblast growth factor (FGF) 2, which 
act to antagonize bone morphogenetic protein signaling 
or inhibit nonneural differentiation (Tropepe et al., 2001; 
Ying, Nichols, Chambers, & Smith, 2003; Zhang, Wernig,  
Duncan, Brustle, & Thomson, 2001). Neural rosettes 
can be either manually or enzymatically harvested and 
propagated for numerous passages (Zhang et al., 2001). 
Although growth factor withdrawal results in the differ-
entiation of NPCs into astrocytes and neurons (Zhang 
et al., 2001), investigators have little control over the 
ratio of particular phenotypes.

An alternative methodology is the coculture of PSCs 
with a monolayer of bone marrow stromal cells, such as 
PA6 or MS5 cells. When cultured at a low density, PSCs 
readily colonize and undergo efficient neural induc-
tion (Kawasaki et al., 2000). Moreover, specific neuronal 
phenotypes such as midbrain dopaminergic neurons 
are spontaneously differentiated. Because known mid-
brain dopaminergic neuron patterning factors, such as 
sonic hedgehog (SHH), FGF8, retinoic acid, or members 
of the wingless-type MMTV integration family (WNT) 
(Nefzger et al., 2012) are not added to cultures during 
differentiation, the inference has been made that stro-
mal cells secrete/express their own patterning factors 
(Kawasaki et al., 2000; Perrier et al., 2004), an effect now 
known as stromal-derived inducing activity (Kawasaki 
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et al., 2000). Stromal coculture systems can also be used 
to derive other neurotransmitter subtypes. By alter-
ing the timing, concentration and type of morphogens 
added to an MS5 coculture of human PSCs, gamma-ami-
nobutyric acid (GABA)ergic, serotoninergic, cholinergic, 
and motor neurons as well as astrocytes and oligoden-
drocytes, could be selectively generated (Barberi et al., 
2003). Although this technique derives subtype specific 
neural cell types, the presence of undifferentiated PSCs, 
the difficulty separating PSC-derived cells from the 
stromal cell layer, and the undefined nature of stromal-
derived inducing activity represent major drawbacks in 
the utilization of the stromal coculture method.

Consequently, Ying and Smith (2003) developed 
an adherent monolayer differentiation protocol using 
serum-free neural basal media together with a support-
ive extracellular matrix (Ying, Stavridis, Griffiths, Li, 
& Smith, 2003). A key feature of this protocol is that it 
allowed the observation, analysis, and manipulation of 
neural specification independent of multicellular aggre-
gates, coculture, serum, uncharacterized media constit-
uents, or cell selection methods (Ying, Stavridis, et al., 
2003). Using this adherent monolayer protocol, mouse 
PSCs can be efficiently converted into neural precursors 
in the absence of any additional extrinsic factors and 
subsequently differentiated into neurons (Nefzger et al., 
2012; Ying, Stavridis, et al., 2003).

Initially, differentiation of human PSCs was limited 
by the lack of viability after single cell dissociation 
(Watanabe et al., 2007), the heterogeneous nature of 
EB differentiation (Itskovitz-Eldor et al., 2000), and 
the low yield of neural phenotypes following selective 
survival strategies. The discovery of that Rho-associ-
ated protein kinase inhibition promoted the survival 
of human PSCs after single cell dissociation (Watanabe 
et al., 2007), together with the observation that neu-
ralization of human PSCs via dual SMAD inhibition 
(bone morphogenetic proteins and activin/nodal sig-
nals inhibition) (Chambers et al., 2009), has resulted in 

improved protocols using monolayer differentiation 
that yield more efficient and synchronized neural pro-
genitors cultures (Figure 3).

Using monolayer-based differentiation, it is now pos-
sible to derive specific regional and neurotransmitter 
phenotypes. Midbrain dopaminergic neurons, arguably 
the most well-studied cell type in the differentiation 
of hiPSCs into subtype specific neurons, can be effi-
ciently generated by mimicking early signaling cues 
that arise in the developing floor plate of the prospec-
tive ventral midbrain, such as SHH and WNT (Fasano, 
Chambers, Lee, Tomishima, & Studer, 2010; Kriks et al., 
2011; Miller et al., 2013) (Table 1). Through the inhibi-
tion of WNT signaling, either via protein (DKK1) or 
chemical (XAV939) antagonism, and timed exposure to 
SHH, forebrain GABAergic neurons, implicated in SCZ 
(Lewis, Hashimoto, & Volk, 2005) can be now be gener-
ated with high efficiency (Maroof et al., 2013; Nicholas 
et al., 2013) (Table 1). However, because of the paucity 
of information regarding GABAergic subtype specifica-
tion, the selective derivation of parvalbumin, somatosta-
tin, cholecystokinin, or vasoactive intestinal polypeptide 
positive cell subtypes remains unobtainable to date. For 
the major excitatory cell type of the mammalian brain, 
differentiation protocols that rely on default anterior 
patterning and/or the inhibition of SHH signaling via 
a smoothed receptor antagonist can yield glutamatergic 
neurons, though considerable variability exists in the 
ratios of the final subtype generated (Espuny-Camacho 
et al., 2013; Mariani et al., 2012; Shi, Kirwan, Smith, Rob-
inson, & Livesey, 2012) (Table 1).

A more recent potential source of cells for experi-
mental disease modeling, which negates the need to 
generate a pluripotent intermediate, is via the transdif-
ferentiation directly from the source fibroblast popula-
tion into the desired cell type. This method can yield 
neurons (induced neurons, iNs) via the forced expres-
sion of neural specific genes (Ambasudhan et al., 2011; 
Ladewig et al., 2012; Liu et al., 2012; Marro et al., 2011; 

FIGURE 2 Derivation of NPCs from human PS cells. (A) Seven days postplating of EBs, rosettes appear (arrows). Inset: A rosette stained with 
toluidine blue, demonstrating columnar cells arranged in a tubular structure. (B) Immunostaining of a rosette. Cells are positive for the neural 
progenitor markers Nestin (green) and Musashi-1 (red). Counterstained with DAPI. NPC, neural progenitor cell; PS, pluripotent stem. Adapted 
from Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human 
embryonic stem cells. Nature Biotechnology, 19, 1129–1133.
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Meng et al., 2012; Pang et al., 2011; Pfisterer et al., 2011; 
Son et al., 2011; Vierbuchen et al., 2010; Xue et al., 2013) 
(Figure 4). Early reports demonstrated that the transdif-
ferentiation approach was rapid, but highly inefficient, 
yielding functionally immature neurons with highly 

heterogeneous identities (Pang et al., 2011; Vierbuchen  
et al., 2010) (Table 1). This technique has now been 
refined, with reports of iN cells with functional syn-
apses (Yoo et al., 2011) or the derivation of specific 
neuronal subtypes by the overexpression of particular 

FIGURE 3 Dual SMAD monolayer neural induction from human PS cells. (A) Dual SMAD inhibition (N, Noggin, and SB, SB431542) 
improves neural induction as demonstrated by lack of OCT4 (red) and significant PAX6 expression (green), third panel. Low neural conversion 
is observed when either factor is used alone, first two panels. (B) Immunostaining for OCT4 (red) and PAX6 (green) indicates that rapid neural 
induction has occurred by day 7 of differentiation. All counterstained with DAPI. Adapted from Chambers, S. M., Fasano, C. A., Papaetrou, E. P., 
Tomishima, M., Sadelain, M., & Studer, L. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature 
Biotechnology, 27, 275–280.

TABLE 1 Summary of the Protocols employed to Derive neuronal Subtypes Relevant to the in vitro Modeling of SCZ

Cell Source Target Cell Type Purity Protocol Characterization References

hiPSCs Cortical neurons 70% Glut/30% 
GABA

Dual SMAD, FGF2/
cyclopamine/retinoids

Grafting, electrophysiology, 
protein and transcript expression

Espuny-Camacho et al. 
(2013), Mariani et al. (2012), 
and Shi et al. (2012)

hiPSCs Midbrain 
dopaminergic 
neurons

∼80% Dual SMAD, SHH, WNT 
mimetic

Grafting, electrophysiology, 
protein and transcript expression

Chambers et al. (2009), 
Kriks et al. (2011), and 
Miller et al. (2013)

hiPSCs Excitatory 
cortical neurons

100% NGN2 overexpression Grafting, electrophysiology, 
protein and transcript expression

Zhang et al. (2013)

hiPSCs GABAergic 
interneurons

∼80% Dual SMAD, WNT 
antagonism, SHH

Grafting, electrophysiology, 
protein and transcript expression

Maroof et al. (2013) and 
Nicholas et al. (2013)

HEFs Neurons ∼70% BRN2, ASCL1, MTYL1 and 
NEUROD1 overexpression

Electrophysiology, protein and 
transcript expression

Pang et al. (2011)

Hefs Midbrain 
dopaminergic 
neurons

15–30% BRN2, ASCL1, MTYL1, 
LMX1A, FOXA2/NURR1 
overexpression

Grafting, electrophysiology, 
protein and transcript expression

Caiazzo et al. (2011) and 
Pfisterer et al. (2011)

HEFs*/MEFs NPCs Overexpression of different 
factors

Electrophysiology, protein and 
transcript expression

Han et al. (2012), Lujan et al. 
(2012), Ring et al. (2012), and 
Thier et al. (2012)

Abbreviations: HEFs, human embryonic fibroblasts; MEFs, mouse embryonic fibroblasts; Glut, glutamatergic. * Means associated study.
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lineage-specific transcription factors (Caiazzo et al., 
2011; Pfisterer et al., 2011; Son et al., 2011) (Table 1). As 
advantageous as this strategy appears to be, the limited 
proliferation of the source fibroblasts, when combined 
with the nonproliferative nature of iN cells, leads to an 
inability to generate sufficient cell numbers for experi-
mental applications. To this end, several groups have 
now shown that it is possible to transdifferentiate to self-
renewing tri-potent neural progenitor cell populations, 
which can be expanded and differentiated into neurons, 
astrocytes, and oligodendrocytes (Han et al., 2012; Lujan, 
Chanda, Ahlenius, Sudhof, & Wernig, 2012; Ring et al., 
2012; Thier et al., 2012) (Figure 4; Table 1).

Even the most robust differentiation protocols, whether 
based on growth factor addition or overexpression of 
lineage-specific transcription factors, yield cultures that 
comprise a myriad of neuronal subtypes as well as neural 
progenitors, astrocytes, oligodendrocytes, and nonneural 
cells. Additionally, the protracted differentiation time-
line required to derive neuronal cultures with functional 
synapses severely impedes the use of PSC-derived neu-
ronal cultures for disease modeling or cell replacement 
therapy. A recent paper has addressed such caveats by 
demonstrating that it is possible to induce neurons from 
renewable human PSC sources, rather than fibroblasts. 
Strikingly, the forced expression of only one lineage-
specific transcription factor is required to derive neu-
rons with robust synapses formation capabilities within 
21 days (Zhang et al., 2001). Moreover, the inclusion of a 
puromycin selection results in cultures approaching 100% 
pure excitatory neurons with expression profiles similar 
to layer 2/3 neurons of the cortex (Zhang et al., 2013) 
(Figure 4; Table 1). These neurons can be used for electro-
physiological or large-scale signaling analysis (e.g., Ca2+), 
or the study of human genetic disorders through loss-of-
function studies (Zhang et al., 2013). Given such high 

purity, this approach may permit the study of the role of 
glutamatergic neurons in SCZ etiology. However, a criti-
cism of this approach is that induction, which bypasses 
neuronal development, may mask developmental cellu-
lar phenotypes that contribute to disease initiation.

Etiologically, most cases of SCZ are thought to result 
from the complex interplay of environmental risk factors 
and contributions of different genomic loci that converge 
onto distinct developmental neurocircuitry (Gulsuner 
et al., 2013). At the cellular level, a growing body of evi-
dence links the abnormal functioning of glutamatergic, 
GABAergic, and midbrain dopaminergic neurons with 
SCZ. Although pharmacological modulation of dopamine 
transmission helps manage the positive symptoms of SCZ 
for some patients (Demjaha et al., 2014), emerging evidence 
indicates that aberrant dopamine transmission is most 
likely downstream from dysfunctional GABA or GLUT 
neurons of the prefrontal cortex (Schwartz, Sachdeva, & 
Stahl, 2012). As mentioned previously, hiPSCs can be dif-
ferentiated into several neuronal populations as well as 
astrocytes, thus hiPSC-based studies might be help to 
identify the specific neuronal subtype(s) whose aberrant 
activity contributes to SCZ initiation and progression. Thus 
the next section will focus on studies to date that have used 
hiPSC sources to model cellular phenotypes of SCZ under 
in vitro conditions.

HUMAN-INDUCED PLURIPOTENT  
STEM CELL MODELS OF SCZ

Numerous successful reprogramming based mod-
els of neuronal diseases have been established to date 
(for review, see Marchetto, Brennand, Boyer, & Gage, 
2011). These hiPSC-based models aim to capture the 
inherited component of disease to elucidate the genetic 

FIGURE 4 Derivation of NPCs and neurons from human cells. Fibroblast cells obtained from SCZ patients can be used to generate live human 
neurons. Fibroblasts can be reprogrammed to hiPSCs by transient expression of OCT4, SOX2, KLF4, and c-MYC and then subsequently differentiated 
into NPCs and mature neurons. Alternatively, fibroblasts can be directly converted to tri-potent neural progenitor cells (iNPCs) by transient expres-
sion of SOX2 and then subsequently differentiated to neurons. Fibroblasts can be directly converted into a neuronal fate by transient expression of 
ASCL1, BRN2, MYT1L, and NEUROD. Alternatively, the use of NGN2 overexpression can drive the induction of neurons from PSCs. hiPSC, human-
induced pluripotent stem cell; NPC, neural progenitor cell; SCZ, schizophrenia. Adapted from Tran, N. N., Ladran, I. G., & Brennand, K. J. (2013) Modeling 
schizophrenia using induced pluripotent stem cell-derived and fibroblast-induced neurons. Schizophrenia Bulletin, 39(1), 4–10.



HuMan-inDuCeD PluRiPotent SteM Cell MoDelS of SCZ 399

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

contribution to disease initiation and progression as well 
as provide a platform for therapeutic target discovery. 
Because twin and family studies consistently demon-
strate the risk of developing SCZ has a highly heritable 
component (Cross-Disorder Group of the Psychiatric 
Genomics et al., 2013), hiPSC-based models of SCZ rep-
resent an invaluable tool to model specific cellular phe-
notypes of SCZ and to validate causal genes or genomic 
loci that have been implicated by a current genome-wide 
association study (Schizophrenia Working Group of the 
Psychiatric Genomics, 2014).

Numerous groups, including our own, have pub-
lished reports on the use of SCZ patient-derived hiPSC in 
the modeling of specific aspects of SCZ (Table 2). Given 
the nature of SCZ being a neuropsychiatric disorder, it 
is not possible to model the disease as a whole; rather, 
investigators attempt to model cellular phenotypes that 
arise from genotypic defects. The first report of SCZ hiP-
SCs were from patients genotyped for a DISC1 mutation 
(Chiang et al., 2011) (Table 2); however, hiPSC-derived 
neuronal cell types were not described. Later, our group 
reported aberrant gene expression profiles, in addition to 
reduced neuronal connectivity, neurite number, and syn-
aptic maturation from a group of patients with complex 
genetic forms of SCZ (Brennand et al., 2011) (Table 2).  

A third report, focused on cellular functional pheno-
types, demonstrated elevated levels of reactive oxygen 
species and aberrant mitochondrial oxygen consump-
tion in NPCs derived from one patient suffering from 
SCZ (Paulsen Bda et al., 2012). Such observations have 
been independently verified by a third group, reporting 
both impaired synaptic maturation and mitochondrial 
dysfunction in SCZ patient-derived hiPSCs (Robicsek 
et al., 2013) (Table 2). This group also reported that the 
differentiation of dopaminergic neurons from SCZ–
hiPSC was also impaired, whereas a contrary publication 
demonstrated increased levels of tyrosine hydroxylase 
positive neurons as well as elevated levels of secreted 
catecholaminergic neurotransmitters, dopamine, norepi-
nephrine, and epinephrine (Hook et al., 2014) (Table 2). 
However, these two groups used vastly different neural 
differentiation protocols. Hook et al. relied on EB for-
mation and subsequent default anterior neural pattern-
ing, which generates neurons with expression profiles 
similar to that of fetal forebrain tissue (Brennand et al., 
2014) (Table 2), whereas Robicsek et al. used the mono-
layer differentiation protocol, via dual SMAD inhibition, 
and dopamine patterning with SHH and FGF8, which 
is thought to generate hypothalamic DA neurons (Kriks 
et al., 2011); thus, it is difficult to compare the results 

TABLE 2 Reported Cellular Phenotypes from hiPSC Models of SCZ

hiPSC Source Cell Type Modeled Phenotype Reported References

2 Patients, DISC1 mutation,  
chronic undifferentiated SCZ and 
chronic paranoid SCZ

hiPSC only None Chiang et al. (2011)

4 Patients, SCZ and schizoaffective 
disorder diagnosis; paranoid

Forebrain neurons, mix  
of Glut and GABA

Aberrant gene expression, reduced neuronal 
connectivity

Brennand et al. (2011)

1 Patient, SCZ diagnosis NPCs Elevated levels of reactive oxygen species, aberrant 
mitochondrial oxygen consumption

Paulsen Bda et al. (2012)

3 Patients, paranoid SCZ  
diagnosis

Glut and DAergic 
neurons

Differentiation into DAergic neurons inhibited, 
lack of maturity for GLUT neurons

Robicsek et al. (2013)

Brennand et al. (2011) NPCs Aberrant gene and protein expression related 
to cytoskeletal remodeling and oxidative stress, 
aberrant migration and increased oxidative stress

Brennand et al. (2014)

Brennand et al. (2011) Forebrain neurons, mix  
of Glut and GABA

Elevated levels of secreted DA, NE, and Epi; 
increased TH positive neurons

Hook et al. (2014)

Brennand et al. (2011) Forebrain neurons, mix  
of Glut and GABA

Deficits in the generation of DG granule neurons, 
lower levels of NEUROD1, PROX1, and TBR1, 
reduced neuronal activity, and reduced levels of 
spontaneous neurotransmitter release

Yu et al. (2014)

3 Patients, child-onset SCZ,  
15q11.2 deletion

NPCs Deficits in adherents junctions and apical polarity Yoon et al. (2014)

4 Patients, DISC1 mutation Forebrain neurons, mix  
of Glut and GABA

Aberrant gene regulation using RNA-seq, 
demonstrated synaptic vesicle release deficits, 
corrected using gene editing

Wen et al. (2014)

DA, dopamine; DAergic, dopaminergic; Epi, epinephrine; GABA, GABAergic, Glut, glutamatergic; NE, norepinephrine; NPCs, neural progenitor cells; TH, tyrosine 
hydroxylase.
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from these studies. Focusing on a more refined differ-
entiation protocol that enriches for a population of neu-
rons expressing markers of hippocampal dentate gyral 
neurons, deficits were observed in neuronal activity and 
levels of spontaneous neurotransmitter (Yu et al., 2014) 
(Table 2).

In an attempt to model predisposition of SCZ, two 
studies have recently focused on studying NPCs rather 
than neurons. Using unbiased discovery approaches, 
microarray gene expression and stable isotope labeling by 
amino acids in cell culture quantitative proteomic mass 
spectrometry, we were able to identify abnormal gene 
and protein expression related to cytoskeletal remodel-
ing and oxidative stress (Brennand et al., 2014) (Table 2). 
The translation of this discovery was demonstrated by 
aberrant migration and oxidative stress in SCZ NPCS in 
scalable phenotypic assays (Brennand et al., 2014) (Table 
2; Figure 5). The other, using an SCZ-associated copy 
number variant cohort, confirmed deficits in cell migra-
tion while also demonstrating defects with apical polar-
ity and adherent junctions in NPCs derived from 15q11.2 

patients (Yoon et al., 2014) (Table 2). Through biochemi-
cal analysis, the authors were able to demonstrate that 
the observed phenotypes result from haploinsufficiency 
of CYFIP1, a component of the WAVE signaling com-
plex, which regulates cytoskeletal dynamics (Yoon et al., 
2014). Building on this discovery, in SCZ hiPSC-derived 
NPCs, the authors demonstrated that CYFP1 deficiency 
in the developing mouse cortex leads to ectopic place-
ment of radial glial cells outside of the ventricular zone 
(Yoon et al., 2014), reinforcing the utility of hiPSC-based 
models in the discovery of phenotypes relevant to SCZ. 
Most recently, it was demonstrated that neurons derived 
from hiPSC patients with a DISC1 frameshift mutation 
exhibit synaptic vesicle release deficits as well as aber-
rant gene expression by RNA-seq, which could correct 
following repair of the DISC1 frameshift using genomic 
editing technology (Wen et al., 2014) (Table 2).

Together, these studies validate hiPSC-based in vitro 
modeling of SCZ because many of the genes that exhib-
ited altered expression had previously been implicated 
in genetic, postmortem, or animal models of SCZ. 

FIGURE 5 Reported cellular phenotypes in hiPSC-based modeling of SCZ. (A) Aberrant migration in SCZ-hiPSC–derived NPCs. Repre-
sentative images of an NPC neurosphere outgrowth assay. The average distance between the radius of the inner neurosphere (dense aggregate 
of nuclei) and outer circumference of the neurosphere (white dashed line). Quantified for all cell lines in the right-hand panel. Cells stained with 
DAPI. (B) Mitochondrial damage and increased oxidative stress in SCZ–NPCs. Representative fluorescence-activated cell sorting (FACS) plots for 
JC-1 red/green fluorescence in control and SCZ hiPSC NPCs, quantified for all cell lines in the right-hand panel. hiPSC, human-induced pluripo-
tent stem cell; NPC, neural progenitor cell; SCZ, schizophrenia. Adapted from Brennand, K. J., Savas, J. N., Kim, Y., Tran, N. N., Simone, A., Hashimoto-
Torii, K., et al. (2014). Phenotypic differences in hiPSC NPs derived from patients with. Molecular Psychiatry, 1–8.
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Moreover, the demonstration that cellular phenotypes 
can be replicated across numerous hiPSC-based studies, 
comprising independent patient cohorts, further vali-
dating and extending the promise of this technology in 
understanding the etiology behind SCZ disease initia-
tion and progression.

Moving forward, regardless of whether they are directly 
differentiated from hiPSCs or induced, future in vitro cell-
based models of SCZ will require cultures with improved 
regional patterning, cell-type specificity, and functional 
maturity. As mentioned previously, a recent protocol has 
been established that can yield pure cultures of excitatory 
neurons; it will be of utmost importance for similar proto-
cols to come online for generating other neurotransmitter 
cell types in high purity to facilitate the understanding 
the role that particular neural subtypes have in SCZ dis-
ease initiation and progression. Moreover, because cur-
rent hiPSC-based in vitro models of SCZ are small relative 
to genetic studies, either more genetically or clinically 
homogenous cohorts will be required. Additionally, to 
address issues of interpatient as well as intraexperiment 
variability, larger cohorts as well as scalable assays, are 
necessary. The next section will discuss steps required to 
move toward adapting in vitro based modeling of SCZ 
cellular phenotypes to a high-throughput arena.

ADAPTATION TO HIGH-THROUGHPUT 
TECHNOLOGIES

The sample size of current hiPSC-based models of 
SCZ remain extremely limited with respect to the size 
of other methodologies used to study etiology and dis-
ease risk, such as genome-wide association studies. 
Currently, numerous bottlenecks exist that greatly limit 
moving hiPSC-based cellular modeling toward realizing 
its full potential for cellular phenotyping and drug dis-
covery. Technical constraints (listed in order of increas-
ing difficulty) include patient identification and consent, 
derivation of hiPSC lines, differentiation of hiPSCs into 
NPCs, and neurons and cellular phenotyping; all affect 
the scalability of hiPSC based studies. As a consequence, 
published reports to date use small sample sizes, usually 
on the order of one to four SCZ patients, and thus raise 
a concern as to whether the findings translate to larger 
SCZ patient population.

The use of blood samples as an alternative somatic 
cell source in addition to fibroblasts, together with the 
improved efficacy of SeV or synthetic mRNA-based 
reprogramming, address the first bottleneck because 
these advances provide a more readily obtainable source 
of cells, although also permitting the adaptation of the 
reprogramming process to a high-throughput manner, as 
has been shown (Paull et al., 2014). This is not only impor-
tant for expanding the repertoire of patient cell lines, but 

also for expanding the number of control cell lines that are 
included in future studies to address issues of intrapatient 
and interpatient variability. Intrapatient variability arises 
because of the variation, either genetically or epigeneti-
cally, in individual hiPSC lines from the same person (Kim, 
Lee, et al., 2011). This type of variability might be unavoid-
able until the field better understands the effects on the 
epigenome that occur during the reprogramming process. 
Interpatient variability, on the other hand, is a result of 
the heterogeneity between patients with SCZ (or between 
healthy controls). Possible strategies for addressing inter-
patient variability include choosing a patient cohort on 
the basis of a shared clinical phenotype (e.g., child-onset 
schizophrenia), which would then be compared with age-
matched individuals without the phenotype. Another, 
more focused approach relies on the use of genetically 
homogenous cohorts (e.g., patient with DISC1, NRG1, or 
NRNX1 lesions), whereby comparisons can be made to 
isogenic cell lines corrected by gene-targeting strategies 
such as CRISPR/Cas9 or TALEN based approaches (as 
demonstrated for DISC1 frameshift mutations (Wen et al., 
2014)); this strategy limits “background genetic” effects 
that cannot currently be accounted for otherwise. The lat-
ter approach shares commonalties with traditional ani-
mal-based studies, which investigate the effects of rare but 
highly penetrant loci, although the former experimental 
design harnesses the full potential of hiPSC-based stud-
ies because it can investigate complex genetic disorders 
where the full knowledge of all loci involved is not anno-
tated a priori. Regardless of the approach taken, either the 
use of clinically or genetically homogenous cohorts, the 
adaption of hiPSC derivation to a high-throughput setting 
will greatly facilitate this endeavor.

With respect to which neural subtype to model, no 
current differentiation protocols yield pure terminal cul-
tures of particular neural subtypes. For adaptation to 
high-throughput screening, the use of a rapid induction 
protocol would be extremely advantageous because of 
its low cost and ease of use. The use of antibodies, or 
reporter-based systems, would facilitate either the puri-
fication or labeling of live human neurons or NPCs with 
particular regional or neurotransmitter phenotypes. 
Such an approach has already been demonstrated in a 
high-throughput–based study of familial dysautonomia, 
where neural crest progenitors where enriched before 
being adapted to a large-scale small molecule screen 
(Lee et al., 2012).

Cellular phenotyping on a large scale represents 
a novel challenge. Typically, investigators have used 
biased hypothesis driven approaches where one read 
out is usually undertaken per experiment, as has been 
the case for cell signaling assays in pharmacological 
studies. The past decade has witnessed the explosion of 
“omic” approaches that produce large volumes of data, 
and the study of cellular function both in normal and 
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disease states has begun to move away from such tradi-
tional methodology. The application of unbiased DNA 
and RNA sequencing, together with higher throughput 
protein analysis and powerful biocomputation, is begin-
ning to reveal information about some of the disease 
processes behind SCZ. As an example, both stable iso-
tope labeling by amino acids in cell culture and microar-
ray was able to predict aberrant cytoskeletal remodeling 
and oxidative stress in NPCs derived from SCZ hiPSC 
(Brennand et al., 2014). These predictions were sub-
sequently confirmed in scalable assay, which demon-
strates the amenability of hiPSC cellular models of SCZ 
to a high-throughput setting. With the advent of high 
throughput screening (HTS) systems, it is now possible 
to conduct assays on a multitude of samples, however 
typically the endpoint still consists of one read out of 
activity. Over recent years manufactures have begun to 
address the demand for high content screening systems, 
which in contrast to HTS allow investigators to mea-
sure many characteristics or features of individual cells 
within a culture at once. Such technology advances the 
ability to manipulate many variables in an experiment 
simultaneously in a highly controlled environment. 
With respect to SCZ in vitro modeling, one conceivable 
experiment would to study the effects of drugs on mul-
tiple therapeutic endpoints concurrently. For example, 
following the automation of hiPSC derivation and dif-
ferentiation, assays could be conducted across several 
biological parameters, including the migration of neu-
rons, the degree and morphology of axon and dendritic 
branching, as well as synaptic number and morphology, 
in response to particular drugs or dosages. Moreover, as 
the repertoire of genetically encoded biosensors expands 
the capabilities of these technologies, it will permit the 
ability to track many cellular endpoints in the same 
experiment across hundreds of cells in a well.

The adaptation of hiPSC derivation and differentia-
tion as well as large-scale cellular phenotyping and drug 
library screening will allow hiPSC-based SCZ modeling 
to be conducted at unprecedented levels of complexity. 
Moreover, because this HTS space will require coopera-
tion from across academic and industrial partners, we 
hope that the translational potential of hiPSC based 
in vitro studies of SCZ will more rapidly move thera-
peutics out of the discovery space and into patients.

References
Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, 

F., et al. (2008). Efficient and rapid generation of induced pluripo-
tent stem cells from human keratinocytes. Nature Biotechnology, 26, 
1276–1284.

Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, 
S. A., et al. (2011). Direct reprogramming of adult human fibroblasts 
to functional neurons under defined conditions. Cell Stem Cell, 9, 
113–118.

Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., 
et al. (2011). Highly efficient miRNA-mediated reprogramming of 
mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 
376–388.

Bain, G., Kitchens, D., Yao, M., Huettner, J. E., & Gottlieb, D. I. (1995). 
Embryonic stem cells express neuronal properties in vitro. Develop-
mental Biology, 168, 342–357.

Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., 
et al. (2011). Efficient generation of transgene-free human induced 
pluripotent stem cells (iPSCs) by temperature-sensitive sendai 
virus vectors. Proceedings of the National Academy of Sciences of the 
United States of America, 108, 14234–14239.

Bar-Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic 
memory and preferential lineage-specific differentiation in induced 
pluripotent stem cells derived from human pancreatic islet beta 
cells. Cell Stem Cell, 9, 17–23.

Barberi, T., Klivenyi, P., Calingasan, N. Y., Lee, H., Kawamata, H., 
Loonam, K., et al. (2003). Neural subtype specification of fertiliza-
tion and nuclear transfer embryonic stem cells and application in 
parkinsonian mice. Nature Biotechnology, 21, 1200–1207.

Beltrao-Braga, P. C., Pignatari, G. C., Maiorka, P. C., Oliveira, N. A., 
Lizier, N. F., Wenceslau, C. V., et al. (2011). Feeder-free derivation of 
induced pluripotent stem cells from human immature dental pulp 
stem cells. Cell Transplantation, 20, 1707–1719.

Bondy, B., Ackenheil, M., Birzle, W., Elbers, R., & Frohler, M. (1984). 
Catecholamines and their receptors in blood: evidence for altera-
tions in schizophrenia. Biological Psychiatry, 19, 1377–1393.

Brandon, N. J., & Sawa, A. (2011). Linking neurodevelopmental and 
synaptic theories of mental illness through DISC1. Nature Reviews 
Neuroscience, 12(12), 707–722.

Brennand, K., Savas, J. N., Kim, Y., Tran, N., Simone, A., Hashimoto-
Torii, K., et al. (2014). Phenotypic differences in hiPSC NPCs 
derived from patients with schizophrenia. Molecular Psychiatry.

Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., 
Sangar, S., et al. (2011). Modelling schizophrenia using human 
induced pluripotent stem cells. Nature, 473, 221–225.

Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, 
S., Leo, D., et al. (2011). Direct generation of functional dopami-
nergic neurons from mouse and human fibroblasts. Nature, 476, 
224–227.

Campbell, K. H., McWhir, J., Ritchie, W. A., & Wilmut, I. (1996). Sheep 
cloned by nuclear transfer from a cultured cell line. Nature, 380, 
64–66.

Carey, B. W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, 
M., et al. (2009). Reprogramming of murine and human somatic 
cells using a single polycistronic vector. Proceedings of the National 
Academy of Sciences of the United States of America, 106, 157–162.

Catts, V. S., Catts, S. V., McGrath, J. J., Feron, F., McLean, D., Coulson,  
E. J., et al. (2006). Apoptosis and schizophrenia: a pilot study based 
on dermal fibroblast cell lines. Schizophrenia Research, 84, 20–28.

Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., 
Sadelain, M., & Studer, L. (2009). Highly efficient neural conver-
sion of human ES and iPS cells by dual inhibition of SMAD signal-
ing. Nature Biotechnology, 27, 275–280.

Chiang, C. H., Su, Y., Wen, Z., Yoritomo, N., Ross, C. A., Margolis, 
R. L., et al. (2011). Integration-free induced pluripotent stem cells 
derived from schizophrenia patients with a DISC1 mutation. 
Molecular Psychiatry, 16, 358–360.

Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee,  
S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., 
et al. (2013). Genetic relationship between five psychiatric disorders 
estimated from genome-wide SNPs. Nature Genetics, 45, 984–994.

Demjaha, A., Egerton, A., Murray, R. M., Kapur, S., Howes, O. D., Stone, 
J. M., et al. (2014). Antipsychotic treatment resistance in schizophre-
nia associated with elevated glutamate levels but normal dopamine 
function. Biological Psychiatry, 75, e11–13.



RefeRenCeS 403

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y., & Xu, T. (2005). Efficient 
transposition of the piggyBac (PB) transposon in mammalian cells 
and mice. Cell, 122, 473–483.

Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., 
et al. (2009). Differential methylation of tissue- and cancer-specific 
CpG island shores distinguishes human induced pluripotent stem 
cells, embryonic stem cells and fibroblasts. Nature Genetics, 41, 
1350–1353.

Domenici, E., Wille, D. R., Tozzi, F., Prokopenko, I., Miller, S., McKeown, 
A., et al. (2010). Plasma protein biomarkers for depression and schizo-
phrenia by multi analyte profiling of case-control collections. PLoS 
One, 5, e9166.

Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., & Cheng, L. (2012). Gen-
eration of integration-free human induced pluripotent stem cells 
from postnatal blood mononuclear cells by plasmid vector expres-
sion. Nature Protocols, 7, 2013–2021.

Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto,  
T., et al. (2012). Drug screening for ALS using patient-specific 
induced pluripotent stem cells. Science Translational Medicine 4, 
145ra104.

Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N. D., Tabar, V., & 
Studer, L. (2008). Human ES cell-derived neural rosettes reveal a 
functionally distinct early neural stem cell stage. Genes & Develop-
ment, 22, 152–165.

Espuny-Camacho, I., Michelsen, K. A., Gall, D., Linaro, D., Hasche, A., 
Bonnefont, J., et al. (2013). Pyramidal neurons derived from human 
pluripotent stem cells integrate efficiently into mouse brain circuits 
in vivo. Neuron, 77, 440–456.

Faisca, P., & Desmecht, D. (2007). Sendai virus, the mouse parainflu-
enza type 1: a longstanding pathogen that remains up-to-date. 
Research in Veterinary Science, 82, 115–125.

Fan, Y., Abrahamsen, G., McGrath, J. J., & Mackay-Sim, A. (2012). 
Altered cell cycle dynamics in schizophrenia. Biological Psychiatry, 
71, 129–135.

Fan, Y., Abrahamsen, G., Mills, R., Calderon, C. C., Tee, J. Y., Leyton, L., 
et al. (2013). Focal adhesion dynamics are altered in schizophrenia. 
Biological Psychiatry, 74, 418–426.

Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., & Studer, 
L. (2010). Efficient derivation of functional floor plate tissue from 
human embryonic stem cells. Cell Stem Cell, 6, 336–347.

Feron, F., Perry, C., Hirning, M. H., McGrath, J., & Mackay-Sim, A. 
(1999). Altered adhesion, proliferation and death in neural cul-
tures from adults with schizophrenia. Schizophrenia Research, 40, 
211–218.

Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). 
Efficient induction of transgene-free human pluripotent stem cells 
using a vector based on sendai virus, an RNA virus that does not 
integrate into the host genome. Proceedings of the Japan Academy 
Series B: Physical and Biological Sciences, 85, 348–362.

Ganat, Y. M., Calder, E. L., Kriks, S., Nelander, J., Tu, E. Y., Jia, F., et al. 
(2012). Identification of embryonic stem cell-derived midbrain 
dopaminergic neurons for engraftment. Journal of Clinical Investiga-
tion, 122, 2928–2939.

Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for 
making induced pluripotent stem cells: reprogramming a la carte. 
Nature Reviews Genetics, 12, 231–242.

Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-
Bourget, J., et al. (2011). Somatic coding mutations in human 
induced pluripotent stem cells. Nature, 471, 63–67.

Gulsuner, S., Walsh, T., Watts, A. C., Lee, M. K., Thornton, A. M., 
Casadei, S., et al. (2013). Spatial and temporal mapping of de novo 
mutations in schizophrenia to a fetal prefrontal cortical network. 
Cell, 154, 518–529.

Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature 
individuals of Xenopus laevis from the transplantation of single 
somatic nuclei. Nature, 182, 64–65.

Han, D. W., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., Arauzo-
Bravo, M. J., et al. (2012). Direct reprogramming of fibroblasts into 
neural stem cells by defined factors. Cell Stem Cell, 10, 465–472.

Han, S. S., Williams, L. A., & Eggan, K. C. (2011). Constructing and 
deconstructing stem cell models of neurological disease. Neuron, 70, 
626–644.

Hook, V., Brennand, K. J., Kim, Y., Toneff, T., Funkelstein, L., Lee, K. C., 
et al. (2014). Human iPSC neurons display activity-dependent neu-
rotransmitter secretion: aberrant catecholamine levels in schizo-
phrenia neurons. Stem Cell Reports, 3, 531–538.

Hu, B. Y., Weick, J. P., Yu, J., Ma, L. X., Zhang, X. Q., Thomson, J. A., 
et al. (2010). Neural differentiation of human induced pluripotent 
stem cells follows developmental principles but with variable 
potency. Proceedings of the National Academy of Sciences of the United 
States of America, 107, 4335–4340.

Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, 
S., et al. (2008). Induction of pluripotent stem cells from primary 
human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 
26, 1269–1275.

Hussein, S. M., Batada, N. N., Vuoristo, S., Ching, R. W., Autio, R., 
Narva, E., et al. (2011). Copy number variation and selection during 
reprogramming to pluripotency. Nature, 471, 58–62.

Ilani, T., Ben-Shachar, D., Strous, R. D., Mazor, M., Sheinkman, A., 
Kotler, M., et al. (2001). A peripheral marker for schizophrenia: 
increased levels of D3 dopamine receptor mRNA in blood lym-
phocytes. Proceedings of the National Academy of Sciences of the United 
States of America, 98, 625–628.

Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., 
et al. (2012). Probing sporadic and familial Alzheimer’s disease 
using induced pluripotent stem cells. Nature, 482, 216–220.

Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., 
Amit, M., et al. (2000). Differentiation of human embryonic stem 
cells into embryoid bodies compromising the three embryonic 
germ layers. Molecular Medicine, 6, 88–95.

Jaaro-Peled, H., Ayhan, Y., Pletnikov, M. V., & Sawa, A. (2010). Review 
of pathological hallmarks of schizophrenia: comparison of genetic 
models with patients and nongenetic models. Schizophrenia Bulletin, 
36(2), 301–313.

Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., 
Nakanishi, S., et al. (2000). Induction of midbrain dopaminergic 
neurons from ES cells by stromal cell-derived inducing activity. 
Neuron, 28, 31–40.

Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., 
et al. (2009). Generation of human induced pluripotent stem cells 
by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 
472–476.

Kim, H., Lee, G., Ganat, Y., Papapetrou, E. P., Lipchina, I., Socci, N. D., 
et al. (2011). miR-371-3 expression predicts neural differentiation pro-
pensity in human pluripotent stem cells. Cell Stem Cell, 8, 695–706.

Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., et al. 
(2011). Donor cell type can influence the epigenome and differen-
tiation potential of human induced pluripotent stem cells. Nature 
Biotechnology, 29, 1117–1119.

Kiskinis, E., & Eggan, K. (2010). Progress toward the clinical appli-
cation of patient-specific pluripotent stem cells. Journal of Clinical 
Investigation, 120, 51–59.

Kondo, T., Funayama, M., Tsukita, K., Hotta, A., Yasuda, A., Nori, S., 
et al. (2014). Focal transplantation of human iPSC-derived glial-
rich neural progenitors improves lifespan of ALS mice. Stem Cell 
Reports, 3, 242–249.

Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. 
(2011). Dopamine neurons derived from human ES cells efficiently 
engraft in animal models of Parkinson’s disease. Nature, 480, 547–551.

Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., et al. 
(2012). Small molecules enable highly efficient neuronal conversion 
of human fibroblasts. Nature Methods, 9, 575–578.



23. hiPSC MODELS RELEVANT TO SCHIZOPHRENIA404

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Lamba, D. A., Karl, M. O., Ware, C. B., & Reh, T. A. (2006). Efficient 
generation of retinal progenitor cells from human embryonic stem 
cells. Proceedings of the National Academy of Sciences of the United 
States of America, 103, 12769–12774.

Lee, G., Ramirez, C. N., Kim, H., Zeltner, N., Liu, B., Radu, C., et al. 
(2012). Large-scale screening using familial dysautonomia induced 
pluripotent stem cells identifies compounds that rescue IKBKAP 
expression. Nature Biotechnology, 30, 1244–1248.

Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. 
(2000). Efficient generation of midbrain and hindbrain neurons 
from mouse embryonic stem cells. Nature Biotechnology, 18, 675–679.

Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory 
neurons and schizophrenia. Nature Reviews Neuroscience, 6, 312–324.

Li, J., Song, W., Pan, G., & Zhou, J. (2014). Advances in understanding 
the cell types and approaches used for generating induced pluripo-
tent stem cells. Journal of Hematology & Oncology, 7, 50.

Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., et al. 
(2009). Generation of human-induced pluripotent stem cells in the 
absence of exogenous Sox2. Stem Cells, 27, 2992–3000.

Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., 
et al. (2011). Hotspots of aberrant epigenomic reprogramming in 
human induced pluripotent stem cells. Nature, 471, 68–73.

Liu, X., Li, F., Stubblefield, E. A., Blanchard, B., Richards, T. L., Larson, 
G. A., et al. (2012). Direct reprogramming of human fibroblasts into 
dopaminergic neuron-like cells. Cell Research, 22, 321–332.

Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, 
G. C., et al. (2009). Generation of induced pluripotent stem cells 
from human blood. Blood, 113, 5476–5479.

Lovell, M. A., Geiger, H., Van Zant, G. E., Lynn, B. C., & Markesbery, 
W. R. (2006). Isolation of neural precursor cells from Alzheimer’s 
disease and aged control postmortem brain. Neurobiology of Aging, 
27, 909–917.

Lu, J., Li, H., Hu, M., Sasaki, T., Baccei, A., Gilbert, D. M., et al. (2014). 
The distribution of genomic variations in human iPSCs is related 
to replication-timing reorganization during reprogramming. Cell 
Reports, 7, 70–78.

Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). 
Direct conversion of mouse fibroblasts to self-renewing, tripotent 
neural precursor cells. Proceedings of the National Academy of Sciences 
of the United States of America, 109, 2527–2532.

Ma, H., Morey, R., O’Neil, R. C., He, Y., Daughtry, B., Schultz, M. D., 
et al. (2014). Abnormalities in human pluripotent cells due to repro-
gramming mechanisms. Nature, 511, 177–183.

Mackay-Sima, A., & Chuahb, M. I. (2000). Neurotrophic factors in the 
primary olfactory pathway. Progress in Neurobiology, 62, 527–559.

Mahadik, S. P., Mukherjee, S., Laev, H., Reddy, R., & Schnur, D. B. 
(1991). Abnormal growth of skin fibroblasts from schizophrenic 
patients. Psychiatry Research, 37, 309–320.

Mahadik, S. P., Mukherjee, S., Wakade, C. G., Laev, H., Reddy, R. R., 
& Schnur, D. B. (1994). Decreased adhesiveness and altered cel-
lular distribution of fibronectin in fibroblasts from schizophrenic 
patients. Psychiatry Research, 53, 87–97.

Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & 
Hochedlinger, K. (2008). A high-efficiency system for the genera-
tion and study of human induced pluripotent stem cells. Cell Stem 
Cell, 3, 340–345.

Mar, J. C., Matigian, N. A., Mackay-Sim, A., Mellick, G. D., Sue, C. M., 
Silburn, P. A., et al. (2011). Variance of gene expression identifies 
altered network constraints in neurological disease. PLoS Genetics, 
7, e1002207.

Marchetto, M. C., Brennand, K. J., Boyer, L. F., & Gage, F. H. (2011). Induced 
pluripotent stem cells (iPSCs) and neurological disease modeling: 
progress and promises. Human Molecular Genetics, 20, R109–R115.

Mariani, J., Simonini, M. V., Palejev, D., Tomasini, L., Coppola, G., Szekely, 
A. M., et al. (2012). Modeling human cortical development in vitro 
using induced pluripotent stem cells. Proceedings of the National Acad-
emy of Sciences of the United States of America, 109, 12770–12775.

Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, 
F. T., et al. (2013). Directed differentiation and functional matura-
tion of cortical interneurons from human embryonic stem cells. Cell 
Stem Cell, 12, 559–572.

Marro, S., Pang, Z. P., Yang, N., Tsai, M. C., Qu, K., Chang, H. Y., et al. 
(2011). Direct lineage conversion of terminally differentiated hepa-
tocytes to functional neurons. Cell Stem Cell, 9, 374–382.

Matigian, N., Abrahamsen, G., Sutharsan, R., Cook, A. L., Vitale, A. M., 
Nouwens, A., et al. (2010). Disease-specific, neurosphere-derived 
cells as models for brain disorders. Disease Models & Mechanisms, 
3, 785–798.

Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, 
A. T., et al. (2010). Identification and classification of chromosomal 
aberrations in human induced pluripotent stem cells. Cell Stem Cell, 
7, 521–531.

McCurdy, R. D., Feron, F., Perry, C., Chant, D. C., McLean, D., Matigian, N.,  
et al. (2006). Cell cycle alterations in biopsied olfactory neuro-
epithelium in schizophrenia and bipolar I disorder using cell 
culture and gene expression analyses. Schizophrenia Research, 82, 
163–173.

Mei, L., & Xiong, W.-C. (2008). Neuregulin 1 in neural development, 
synaptic plasticity and schizophrenia. Nature Reviews Neuroscience, 
9(6), 437–452.

Mekhoubad, S., Bock, C., de Boer, A. S., Kiskinis, E., Meissner, A., & 
Eggan, K. (2012). Erosion of dosage compensation impacts human 
iPSC disease modeling. Cell Stem Cell, 10, 595–609.

Meng, F., Chen, S., Miao, Q., Zhou, K., Lao, Q., Zhang, X., et al. (2012). 
Induction of fibroblasts to neurons through adenoviral gene deliv-
ery. Cell Research, 22, 436–440.

Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, 
E. Y., et al. (2013). Human iPSC-based modeling of late-onset dis-
ease via progerin-induced aging. Cell Stem Cell, 13, 691–705.

Murrell, W., Feron, F., Wetzig, A., Cameron, N., Splatt, K., Bellette, B., 
et al. (2005). Multipotent stem cells from adult olfactory mucosa. 
Developmental Dynamics, 233, 496–515.

Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., 
Aoi, T., et al. (2008). Generation of induced pluripotent stem cells 
without Myc from mouse and human fibroblasts. Nature Biotechnol-
ogy, 26, 101–106.

Nazor, K. L., Altun, G., Lynch, C., Tran, H., Harness, J. V., Slavin, I., 
et al. (2012). Recurrent variations in DNA methylation in human 
pluripotent stem cells and their differentiated derivatives. Cell Stem 
Cell, 10, 620–634.

Nefzger, C. M., Su, C. T., Fabb, S. A., Hartley, B. J., Beh, S. J., Zeng, W. R., 
et al. (2012). Lmx1a allows context-specific isolation of progenitors 
of GABAergic or dopaminergic neurons during neural differentia-
tion of embryonic stem cells. Stem Cells, 30, 1349–1361.

Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, 
D., et al. (2013). Functional maturation of hPSC-derived forebrain 
interneurons requires an extended timeline and mimics human 
neural development. Cell Stem Cell, 12, 573–586.

Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, 
G., 2nd, Jiang, L., et al. (2003). Identification and isolation of multi-
potential neural progenitor cells from the subcortical white matter 
of the adult human brain. Nature Medicine, 9, 439–447.

Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-
competent induced pluripotent stem cells. Nature, 448, 313–317.

Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, 
S., et al. (2011). A more efficient method to generate integration-free 
human iPS cells. Nature Methods, 8, 409–412.

Oliver-De La Cruz, J., Carrion-Navarro, J., Garcia-Romero, N., Gutierrez- 
Martin, A., Lazaro-Ibanez, E., Escobedo-Lucea, C., et al. (2014). 
SOX2+ cell population from normal human brain white matter 
is able to generate mature oligodendrocytes. PLoS One, 9, e99253.

Pagliuca, F. W., Millman, J. R., Gurtler, M., Segel, M., Van Dervort, A., 
Ryu, J. H., et al. (2014). Generation of functional human pancreatic 
beta cells in vitro. Cell, 159, 428–439.



RefeRenCeS 405

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Palmer, T. D., Schwartz, P. H., Taupin, P., Kaspar, B., Stein, S. A., & 
Gage, F. H. (2001). Cell culture. Progenitor cells from human brain 
after death. Nature, 411, 42–43.

Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., 
Yang, T. Q., et al. (2011). Induction of human neuronal cells by 
defined transcription factors. Nature, 476, 220–223.

Paull, D., Sevilla-Hernandez, A., Zhou, M., Hahn, A., Kim, H., Napolitano,  
C., et al. (2014). A fully automated system for large-scale induced 
pluripotent stem cell production and differentiation. ISSCR Poster 
Abstracts 12th Annual, 83.

Paulsen Bda, S., de Moraes Maciel, R., Galina, A., Souza da Silveira, M., 
dos Santos Souza, C., Drummond, H., et al. (2012). Altered oxygen 
metabolism associated to neurogenesis of induced pluripotent stem 
cells derived from a schizophrenic patient. Cell Transplantation, 21, 
1547–1559.

Pavon, L. F., Marti, L. C., Sibov, T. T., Malheiros, S. M., Brandt,  
R. A., Cavalheiro, S., et al. (2014). In vitro analysis of neurospheres 
derived from glioblastoma primary culture: a novel methodology 
paradigm. Frontiers in Neurology, 4, 214.

Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., 
et al. (2004). Derivation of midbrain dopamine neurons from 
human embryonic stem cells. Proceedings of the National Academy of 
Sciences of the United States of America, 101, 12543–12548.

Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, 
A., et al. (2011). Direct conversion of human fibroblasts to dopami-
nergic neurons. Proceedings of the National Academy of Sciences of the 
United States of America, 108, 10343–10348.

Ring, K. L., Tong, L. M., Balestra, M. E., Javier, R., Andrews-Zwilling, 
Y., Li, G., et al. (2012). Direct reprogramming of mouse and human 
fibroblasts into multipotent neural stem cells with a single factor. 
Cell Stem Cell, 11, 100–109.

Robicsek, O., Karry, R., Petit, I., Salman-Kesner, N., Muller, F. J., Klein, 
E., et al. (2013). Abnormal neuronal differentiation and mitochon-
drial dysfunction in hair follicle-derived induced pluripotent stem 
cells of schizophrenia patients. Molecular Psychiatry, 18, 1067–1076.

Ruiz, S., Diep, D., Gore, A., Panopoulos, A. D., Montserrat, N., 
Plongthongkum, N., et al. (2012). Identification of a specific repro-
gramming-associated epigenetic signature in human induced plu-
ripotent stem cells. Proceedings of the National Academy of Sciences of 
the United States of America, 109, 16196–16201.

Ruiz, S., Gore, A., Li, Z., Panopoulos, A. D., Montserrat, N., Fung, 
H. L., et al. (2013). Analysis of protein-coding mutations in hiP-
SCs and their possible role during somatic cell reprogramming. 
Nature Communications, 4, 1382.

Sandoe, J., & Eggan, K. (2013). Opportunities and challenges of 
pluripotent stem cell neurodegenerative disease models. Nature 
Neuroscience, 16, 780–789.

Schizophrenia Working Group of the Psychiatric Genomics Consor-
tium. (2014). Biological insights from 108 schizophrenia-associated 
genetic loci. Nature, 511, 421–427.

Schwartz, T. L., Sachdeva, S., & Stahl, S. M. (2012). Glutamate neuro-
circuitry: theoretical underpinnings in schizophrenia. Frontiers in 
Pharmacology, 3, 195.

Schwarz, E., Guest, P. C., Rahmoune, H., Harris, L. W., Wang, L., 
Leweke, F. M., et al. (2012). Identification of a biological signature 
for schizophrenia in serum. Molecular Psychiatry, 17, 494–502.

Schwarz, E., Izmailov, R., Spain, M., Barnes, A., Mapes, J. P., Guest, 
P. C., et al. (2010). Validation of a blood-based laboratory test to 
aid in the confirmation of a diagnosis of schizophrenia. Biomarker 
Insights, 5, 39–47.

Shi, Y., Kirwan, P., Smith, J., Robinson, H. P., & Livesey, F. J. (2012). 
Human cerebral cortex development from pluripotent stem cells to 
functional excitatory synapses. Nature Neuroscience 15, 477–486, S471.

Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, 
E. G., et al. (2009). Parkinson’s disease patient-derived induced 
pluripotent stem cells free of viral reprogramming factors. Cell, 
136, 964–977.

Sommer, C. A., Sommer, A. G., Longmire, T. A., Christodoulou, C., 
Thomas, D. D., Gostissa, M., et al. (2009). Excision of reprogram-
ming transgenes improves the differentiation potential of iPS cells 
generated with a single excisable vector. Stem Cells, 28, 64–74.

Son, E. Y., Ichida, J. K., Wainger, B. J., Toma, J. S., Rafuse, V. F., Woolf, 
C. J., et al. (2011). Conversion of mouse and human fibroblasts into 
functional spinal motor neurons. Cell Stem Cell, 9, 205–218.

Song, H., Chung, S. K., & Xu, Y. (2010). Modeling disease in human 
ESCs using an efficient BAC-based homologous recombination sys-
tem. Cell Stem Cell, 6, 80–89.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, 
K., et al. (2007). Induction of pluripotent stem cells from adult 
human fibroblasts by defined factors. Cell, 131, 861–872.

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem 
cells from mouse embryonic and adult fibroblast cultures by 
defined factors. Cell, 126, 663–676.

Thier, M., Worsdorfer, P., Lakes, Y. B., Gorris, R., Herms, S., Opitz, T., 
et al. (2012). Direct conversion of fibroblasts into stably expandable 
neural stem cells. Cell Stem Cell, 10, 473–479.

Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., & van der 
Kooy, D. (2001). Direct neural fate specification from embryonic 
stem cells: a primitive mammalian neural stem cell stage acquired 
through a default mechanism. Neuron, 30, 65–78.

Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., 
& Wernig, M. (2010). Direct conversion of fibroblasts to functional 
neurons by defined factors. Nature, 463, 1035–1041.

Villegas, J., & McPhaul, M. (2005). Establishment and culture of human 
skin fibroblasts. In F. M. Ausubel, et al. (Ed.), Current protocols in 
molecular biology. Chapter 28, Unit 28.23.

Wang, L., Lockstone, H. E., Guest, P. C., Levin, Y., Palotas, A., Pietsch, 
S., et al. (2010). Expression profiling of fibroblasts identifies cell 
cycle abnormalities in schizophrenia. Journal of Proteome Research, 
9, 521–527.

Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. 
(2010). Highly efficient reprogramming to pluripotency and 
directed differentiation of human cells with synthetic modified 
mRNA. Cell Stem Cell, 7, 618–630.

Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., 
Wataya, T., et al. (2007). A ROCK inhibitor permits survival of dis-
sociated human embryonic stem cells. Nature Biotechnology, 25, 
681–686.

Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., et al. 
(2014). Synaptic dysregulation in a human iPS cell model of mental 
disorders. Nature, 515(7527), 414–418.

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. 
(1997). Viable offspring derived from fetal and adult mammalian 
cells. Nature, 385, 810–813.

Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., 
Hamalainen, R., et al. (2009). piggyBac transposition reprograms 
fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770.

Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., et al. 
(2013). Direct conversion of fibroblasts to neurons by reprogram-
ming PTB-regulated microRNA circuits. Cell, 152, 82–96.

Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induc-
tion of Id proteins suppresses differentiation and sustains embry-
onic stem cell self-renewal in collaboration with STAT3. Cell, 115, 
281–292.

Ying, Q. L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Con-
version of embryonic stem cells into neuroectodermal precursors in 
adherent monoculture. Nature Biotechnology, 21, 183–186.

Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., 
et al. (2011). MicroRNA-mediated conversion of human fibroblasts 
to neurons. Nature, 476, 228–231.

Yoon, K.-J., Nguyen, H. N., Ursini, G., Zhang, F., Kim, N.-S., Wen, Z., 
et al. (2014). Modeling a genetic risk for schizophrenia in iPSCs and 
mice reveals neural stem cell deficits associated with adherens junc-
tions and polarity. Cell Stem Cell, 15, 79–91.



23. hiPSC MODELS RELEVANT TO SCHIZOPHRENIA406

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

Yu, D. X., Di Giorgio, F. P., Yao, J., Marchetto, M. C., Brennand, K., 
Wright, R., et al. (2014). Modeling hippocampal neurogenesis using 
human pluripotent stem cells. Stem Cell Reports, 2, 295–310.

Yu, J., Chau, K. F., Vodyanik, M. A., Jiang, J., & Jiang, Y. (2011). Efficient 
feeder-free episomal reprogramming with small molecules. PLoS 
One, 6, e17557.

Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., 
Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines 
derived from human somatic cells. Science, 318, 1917–1920.

Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson,  
J. A. (2001). In vitro differentiation of transplantable neural precur-
sors from human embryonic stem cells. Nature Biotechnology, 19, 
1129–1133.

Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. 
(2013). Rapid single-step induction of functional neurons from 
human pluripotent stem cells. Neuron, 78, 785–798.

Zhong, X., Gutierrez, C., Xue, T., Hampton, C., Vergara, M. N., Cao,  
L. H., et al. (2014). Generation of three-dimensional retinal tissue 
with functional photoreceptors from human iPSCs. Nature Commu-
nications, 5, 4047.

Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X., Li, Y., et al. (2011). 
Generation of induced pluripotent stem cells from urine. Journal of 
the American Society of Nephrology, 22, 1221–1228.



Handbook of Behavioral Neuroscience
http://dx.doi.org/10.1016/B978-0-12-800981-9.00024-9 © 2016 Elsevier B.V. All rights reserved.

407

INTRODUCTION

The ultimate goal of research on neuropsychiatric 
disorders is to understand the clinical and pathological 
features of disorders and to develop novel therapeu-
tic strategies. Because the brain is the primary organ 
affected in these disorders, investigating human brains 
is essential to achieve this goal. Indeed, studies on 
patient postmortem brain samples have revealed key 
pathological changes in schizophrenia, such as synaptic 
deficits in cortical pyramidal neurons, decreased lev-
els of parvalbumin expression in cortical interneurons, 
and altered expression of myelin-related genes (Benes 
& Berretta, 2001; Davis et al., 2003; Jarskog, Miyamoto, 
& Lieberman, 2007; Lewis, Glantz, Pierri, & Sweet, 2003; 
Tkachev et al., 2003). Recent advances in genetics stud-
ies have also provided valuable information about com-
mon and rare genetic variations potentially involved 
in the pathology of schizophrenia (Fromer et al., 2014; 
International Schizophrenia et al., 2009; Purcell et al., 
2014; Ripke et al., 2013; Schizophrenia Working Group 
of the Psychiatric Genomics, 2014; Shi et al., 2009; Ste-
fansson et al., 2014, 2009). Furthermore, brain imaging 
studies, such as magnetic resonance imaging and posi-
tron emission tomography, have revealed both struc-
tural and functional alterations in the brains of patients 
with schizophrenia and related disorders (Fitzsimmons, 
Kubicki, & Shenton, 2013; Poels et al., 2014; Vita, De Peri, 

Deste, & Sacchetti, 2012; Wong, Grunder, & Brasic, 2007). 
Nonetheless, none of these approaches possesses the 
capacity to address the molecular and functional altera-
tions of live patient brain cells at the cell-level resolution.

Although studies on postmortem brains have pro-
vided many key findings in schizophrenia and related 
disorders, they have several major limitations (Lewis, 
2002; McCullumsmith & Meador-Woodruff, 2011). First, 
cells in postmortem brains are not alive and thus func-
tional alterations of brain cells cannot be addressed. 
Second, long-term use of medication may have modi-
fied the primary pathological changes because patients 
usually suffer from schizophrenia for many years before 
they die. Third, smoking habits or use of illicit drugs 
may have caused additional changes in the brain. Finally, 
postmortem changes by themselves may have masked 
or altered pathological changes that exist in live brains. 
To complement these limitations, rodent models have 
been extensively used to examine the roles of genes and 
neural circuits responsible for schizophrenia and related 
disorders (Arguello & Gogos, 2006; Insel, 2007). It needs 
to be acknowledged, however, that there is a huge gap 
between human and rodent brains both at the structural 
and functional levels (Geschwind & Rakic, 2013; Insel & 
Landis, 2013; Lui, Hansen, & Kriegstein, 2011). Research 
on primates has shown some promise as an alternative 
methodology that could be used in the future (Sasaki 
et al., 2009; Simen, DiLeone, & Arnsten, 2009), but it may 
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take years for primate studies on mental illness to reach 
its premier stage (Garbarini, 2010). Thus, many experts 
in the field turn to in vitro human cell culture as a method 
to investigate the phenotypes of live human brain cells 
relevant for neuropsychiatric disorders.

The idea of using human cell culture as a model to 
understand brain disorders is not at all new. It is challeng-
ing, however, to obtain a brain biopsy from living individ-
uals except in certain diseases in which surgical treatments 
are feasible (e.g., epilepsy). Thus, many researchers sought 
for alternative resources from which neuronal cells can be 
generated. These efforts have recently culminated in sev-
eral culture protocols to generate patient-derived neuro-
nal cells from tissues such as olfactory epithelium (OE) 
(Hahn, Han, et al., 2005; Kano et al., 2013; Morrison & 
Costanzo, 1990; Murrell et al., 2005; Roisen et al., 2001).

Meanwhile, a breakthrough in the field of stem cells 
and regenerative medicine has enabled researchers to 
generate pluripotent stem cells, called induced pluripo-
tent stem (iPS) cells, from peripheral tissues such as skin 
fibroblasts (Takahashi et al., 2007; Takahashi & Yamanaka, 
2006; Yu et al., 2007). As described in the previous chapter, 
iPS cells are generated from fibroblasts or other peripheral 
cells by forced expression of several sets of transcription 
factors (e.g., Oct3/4, Sox2, Klf4, c-Myc). The approach is 
reminiscent of earlier studies on cell fate conversion using 
transcription factors, such as changing fibroblasts into 
myoblasts by forced expression of the transcription factor 
MyoD (Davis, Weintraub, & Lassar, 1987; Lassar, Paterson, 
& Weintraub, 1986; Tapscott et al., 1988). Inspired by the 
success of iPS cell technology, some stem cell researchers 
and disease-oriented neurobiologists subsequently estab-
lished methods to generate neuronal cells using cell fate 
conversion (or direct reprogramming) methods (Caiazzo 
et al., 2011; Pang et al., 2011; Pfisterer et al., 2011; Vierbu-
chen et al., 2010; Yoo et al., 2011; Kano et al., 2015).

These efforts are reaching a stage where the applica-
tion to disease research is feasible. Together with iPS cell 
technology, cell models based on cell fate conversion (or 
direct reprogramming) and reprogramming-free meth-
ods (e.g., neuronal cells from OE) will serve as precious 
tools for research on neuropsychiatric disorders to gain 
insight directly from human cases. In the following sec-
tions, we will review the representative methodologies, 
applications to disease research, and limitations of these 
human cell models.

CELL MODELS BASED ON CELL FATE 
CONVERSION: INDUCED NEURONAL 

CELLS AND THEIR RELATIVES

Cell fate conversion is a phenomenon whereby cer-
tain cells such as fibroblasts are converted into another 
cell type. This same phenomenon is also called direct 

reprogramming or transdifferentiation. Cell fate con-
version can be experimentally induced by forced 
expression of one or several transcription factors in tar-
get cells. Thus, technologies to induce cell fate conver-
sion can serve as important tools to generate relevant 
brain cells from more accessible cells both in vitro and 
in vivo.

One of the pioneering efforts in which mamma-
lian cells were converted from one cell type to another 
through the modulation of expression levels of certain 
transcription factors was reported in the late 1980s when 
researchers successfully converted fibroblasts into myo-
blasts by forced expression of the transcription factor 
MyoD (Davis et al., 1987; Lassar et al., 1986; Tapscott 
et al., 1988). Since then, cell conversion using transcrip-
tion factors has been used as a technique to understand 
cell differentiation and development (Graf, 2011). The 
use of cell fate conversion, however, has not been high-
lighted as a methodology to generate brain-relevant cells 
from patients with brain disorders until recently.

Cell fate conversion with transcription factors has 
been revived by a breakthrough in the successful gen-
eration of iPS cells (Takahashi et al., 2007; Takahashi & 
Yamanaka, 2006; Yu et al., 2007). In this novel method, 
the idea of cell fate conversion using transcription fac-
tors was adopted to reprogram fibroblasts into pluripo-
tent stem cells through the overexpression of several 
transcription factors such as a combination of Oct3/4, 
Sox2, Klf4, and c-Myc (Takahashi et al., 2007). A series of 
subsequent studies that demonstrated the generation of 
functional neuronal cells from iPS cells have prompted 
many investigators to work on iPS cells to obtain human 
relevant cells for research on brain disorders such as 
neuropsychiatric disorders and neurodegenerative 
diseases (Dolmetsch & Geschwind, 2011; Marchetto,  
Brennand, Boyer, & Gage, 2011). Recently, the overex-
pression of three transcription factors, Ascl1, Brn2, and 
Myt1 was shown to successfully convert mouse fibro-
blasts into functional neurons, induced neuronal (iN) 
cells, in 2010 (Vierbuchen et al., 2010). This study opened 
a new window for cell fate conversion method to be used 
for disease-oriented studies. In this section, we review 
advances in cell fate conversion research in neurosci-
ence, including iN cells, induced neuronal stem (iNS) 
cells, and other central nervous system (CNS)-relevant 
induced cells, and discuss their utilities and limitations 
for neuropsychiatric research.

Methods

Induced Neuronal Cells
In 2010, it was reported that the expression of three 

transcription factors, Ascl1, Brn2, and Myt1, could con-
vert mouse embryonic fibroblasts into postmitotic func-
tional neurons, iN cells, without generating pluripotent 
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stem cells and neural stem cells (Figure 1) (Vierbuchen 
et al., 2010). It was also shown later that the expression 
of these transcription factors, together with other factors, 
converted human fibroblasts into functional iN cells, 
most of which showed features of glutamatergic neurons 
(Pang et al., 2011). At least four different types of neuro-
nal cells have been generated by iN cell techniques: glu-
tamatergic neurons, gamma-aminobutyric acid (GABA)
ergic interneurons, dopaminergic neurons, and spinal 
motor neurons (Table 1).

The overexpression of the transcription factors Ascl1, 
Brn2, and Myt1l was shown to successfully convert 
mouse fibroblasts or hepatocytes into functional neu-
rons, mostly glutamatergic excitatory neurons (Marro 
et al., 2011; Vierbuchen et al., 2010). These mouse iN 
cells could be produced in a few weeks and exhibited 
synaptic activity as well as action potential spikes. Sub-
sequently, the overexpression of a combination of either 
Asc11, Pouf3f2, and Myt1l or Ascl1, Pou3f2, Myt1l, and 
NeuroD1 was shown to successfully convert human 
fibroblasts into iN cells that express markers for gluta-
matergic neurons and cortical identities, and elicit action 
potential spikes and synaptic activity (Pang et al., 2011; 
Pfisterer et al., 2011). Other approaches to generate iN 
cells used microRNAs that are known to be involved in 
neuronal development (Ambasudhan et al., 2011; Yoo 
et al., 2011). The expression of miR-9/9* and miR-124, 
together with NeuroD2, Ascl1, and Myt1l, was shown 

to convert human fibroblasts into induced neurons with 
glutamatergic phenotypes (Yoo et al., 2011). Similarly, 
miR-124, together with Pou3f2 and Myt1l, successfully 
converted human fibroblast into glutamatergic iN cells 
(Ambasudhan et al., 2011).

Although there are no specific strategies currently 
available to directly generate GABAergic interneurons, 
most of the previously mentioned studies reported the 
presence of GABAergic interneurons in their converted 
cell lineages. For example, human iN cells generated 
by the overexpression of miR-9/9*, miR-124, NeuroD2, 
Ascl1, and Myt1l included neuronal cells expressing 
GABA and exhibited evoked inhibitory postsynaptic 
currents (Yoo et al., 2011). Although relatively small in 
population, other human iN cells generated by the over-
expression of either transcription factors or microRNA 
also contained GABA expressing neurons (Ambasudhan 
et al., 2011; Pang et al., 2011; Pfisterer et al., 2011).

For creating induced dopaminergic neurons, at least 
two methodologies have been used. The first method 
involved the expression of Asc11, Brn2, and Myt1l 
along with two genes, Lmx1a and FoxA2, or a set of 
10 transcription factors involved in midbrain pattern-
ing and dopaminergic lineage differentiation, in human 
fibroblasts (Pfisterer et al., 2011). The resulting iN cells 
expressed tyrosine hydroxylase and had electrophysi-
ological properties reminiscent of midbrain dopaminer-
gic neurons (Pfisterer et al., 2011). The second method 

Induced neuronal cells
(iN)

Induced neural stem cells
(iNSC)

Induced oligodendrocyte
precursor cells (iOPC)

Fibroblasts

iN induction factors
(e.g., Ascl1, Brn2, Myt1l)

iNSC induction factors
(e.g., Sox2)

iOPC induction factors
(e.g., Sox10, Olig2, Zfp536 )

Induced pluripotent 
stem cells (iPSC)

iPSC induction factors
(e.g., Oct4, Klf4, Sox2, c-Myc )

iNSC-derived
neurons

iNSC-derived
astrocytes

iNSC-derived
OPC

iPSC-derived
neural stem cells

iPSC-derived
neurons

iPSC-derived
astrocytes

iPSC-derived
OPC

iPSC-derived
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FIGURE 1 Methods to generate human neuronal/glial cells using cell fate conversion techniques. Red arrows indicate cell fate conversion 
steps; black arrows indicate in vitro differentiation steps. Shown above the arrows are representative sets of transcription factors that enable cell 
fate conversion. iN, induced neuronal; iNS cells, induced neural stem cells; iOPC, induced oligodendrocyte precursor cells.
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TABLE 1 Representative Reports on iN Cells and Other Induced CNs Cells

Type Species Exogenous Factors Original Cells Resulting Cells
Disease 
Application References

iN cells Mouse Ascl1, Pou3f2, Myt1l Fibroblasts Glutamatergic 
GABAergic neurons

None Vierbuchen et al. 
(2010)

Mouse Ascl1, Pou3f2, Myt1l Hepatocytes Glutamatergic 
neurons

None Marro et al. (2011)

Human Ascl1, Pouf3f2, Myt1l, 
NeuroD1

ES cells
Fibroblasts

Glutamatergic 
GABAergic neurons

None Pang et al. (2011)

Mouse
Human

miR-9/9*, miR-124,
NeuroD2, Ascl1, Myt1l

Fibroblasts Glutamatergic
GABAergic neurons

None Yoo et al. (2011)

Human miR-124, Pou3f2, Myt1l Fibroblasts Glutamatergic
GABAergic neurons

None Ambasudhan et al. 
(2011)

Human Asc1l, Pou3f2, Myt1ll Fibroblasts Glutamatergic 
neurons

Tay–Sachs disease, 
Dravet syndrome

Kano et al. (2015)

Human Ascl1, Pou3F2, Myt1l, 
Lmx1a, FoxA2

Fibroblasts Glutamatergic
GABAergic
Dopaminergic 
neurons

None Pfisterer et al. 
(2011)

Mouse Human Ascl1, Nurr1, Lmx1a Fibroblasts Dopaminergic 
neurons

Parkinson’s 
disease (no 
characterization)
L-ferritin 
deficiency

Caiazzo et al. 
(2011) and Cozzi 
et al. (2013)

Mouse Human Ascl1, Pou3f2, Myt1l, 
Lhx3, Hb9, Isl1, Ngn2

Fibroblasts Spinal motor 
neurons

None Son et al. (2011)

iNSCs Mouse Oct4, Sox2, Klf4, c-Myc Fibroblasts NSCs neurons, 
astrocytes

None Kim, Efe, et al. 
(2011)

Mouse Sox2, FoxG1, Pou3f2 Fibroblasts NSCs neurons, 
astrocytes 
oligodendrocytes

None Lujan et al. (2012)

Mouse Pou3f4, Sox2, Klf4, 
c-Myc, E47/Tcf3

Fibroblasts NSCs neurons, 
astrocytes 
oligodendrocytes

None Han et al. (2012)

Mouse Sox2, Klf4, c-Myc, Oct4 Fibroblasts NSCs neurons, 
astrocytes 
oligodendrocytes

None Thier et al. (2012)

Mouse Human Sox2 Fibroblasts NSCs neurons, 
astrocytes 
oligodendrocytes

None Ring et al. (2012)

Human Sox2, Klf4, Oct3/4, 
c-Myc

Fibroblasts NSC, astrocytes Amyotrophic 
lateral sclerosis

Meyer et al. (2014)

iOPCs Mouse Sox10, Olig2, Nkx6.2 Fibroblasts OPC, 
oligodendrocytes

Transplantation Najm et al. (2013)

Mouse
Rat

Sox10, Olig2, Zfp536 Fibroblasts OPC, 
oligodendrocytes

None Yang et al. (2013)

iPSC-iN 
cells

Human Ngn2 Pluripotent stem cells Glutamatergic 
neurons

None Zhang et al. (2013)

CNS, central nervous system; ES, embryonic stem; GABA, gamma-aminobutyric acid; iN, induced neuronal; iNSCs, induced neuronal stem cells; iPSC, induced 
pluripotent stem cell; NSCs, neuronal stem cells; OPC, oligodendrocyte precursor cell.
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involved using a different set of three transcription fac-
tors: Ascl1, Nurr1, and Lmx1a (Caiazzo et al., 2011). This 
method produced iN cells that released dopamine and 
had electrophysiological properties similar to normal 
mouse dopaminergic neurons.

In addition to these brain neurons, spinal motor 
neurons were generated through a slightly more com-
plicated conversion method—the expression of seven 
transcription factors: Ascl1, Brn2, Myt1l, Lhx3, Hb9, Isl1, 
and Ngn2 (Son et al., 2011). These motor neurons were 
characterized through electrophysiology tests and gene 
expression signatures, and were functionally similar to 
those motor neurons derived from embryos (Son et al., 
2011).

Despite these successful examples of cell fate conver-
sion, the underlying mechanisms have not been fully 
understood. Extensive gene expression and epigenetic 
profiling analysis during the course of direct conver-
sion of mouse embryonic fibroblasts into iN cells has 
been performed using RNA sequencing (RNA-seq) and 
chromatin immunoprecipitation sequencing (ChIP-seq) 
techniques (Wapinski et al., 2013). They revealed a hier-
archical mechanism in which Ascl1 acts as a pioneer tran-
scription factor to first access the chromatin through its 
cognate binding sites on the genome in fibroblasts and 
then recruits another factor Pou3f2 to the sites occupied 
by Ascl1. They also found a unique “trivalent” chroma-
tin signature comprising three different modifications 
for histone3 tails (H3K4me1, H3K27ac, and H3K9me3), 
which predicts permissiveness for Ascl1 occupancy and 
iN cell reprogramming among various nonneuronal cell 
types. Furthermore, the study identified critical down-
stream mediators that exert iN cell conversion down-
stream of Ascl1, Brn2, and Myt1l. Although this research 
has provided a systematic view on iN cell conversion at 
the molecular level for the first time, the core mechanisms 
that directly exert the conversion from nonneuronal to 
neuronal cells by changing the entire epigenetic status of 
the cells in different lineages, such as chromatin confor-
mational changes and addition/removal of DNA methyl-
ation, are still not clear. It is also not fully understood how 
these epigenetic and gene expression changes smoothly 
alter the expression patterns of various proteins in an 
entire cell in such a short period. It is currently unknown 
whether there are any deleterious side effects on a cell that 
has undergone a conversion process compared to cells 
that have gone through physiological differentiation. Fur-
ther research will be necessary to address these remaining 
issues and enable us to fully control specific cell fate con-
versions between two distinct cells.

Because the conversion of iN cells does not require 
an intermediate step, they have been successfully 
used in in vivo experiments as well (De la Rossa et al., 
2013; Rouaux & Arlotta, 2010, 2013; Torper et al., 2013). 
For example, one group used doxycycline-inducible 

lentiviruses encoding Ascl1, Pou3f2, and Myt1l  
(Torper et al., 2013). Mouse fibroblasts and astrocytes 
were infected with these lentiviruses and transplanted 
into the striatum of mice. Then, the presence of doxy-
cycline in the drinking water caused the activation of 
the encoded factors and resulted in cellular conversion 
into iN cells in living mice. This in vivo cell fate conver-
sion may be therapeutically important for brain inju-
ries or disorders such as Parkinson’s disease, in which 
transplantation is considered to be a viable option to 
attenuate symptoms (Torper et al., 2013). The activation 
of the transcription factor Fezf2 in vivo was also shown 
to reprogram postmitotic neurons in layer II/III into 
layer V/VI corticofugal projection neurons (Rouaux 
& Arlotta, 2013). It was also discovered that the func-
tion, morphology, and fate of layer IV neurons could be 
changed during the first week after mitosis; for example, 
the expression of Fezf2 could convert progenitors that 
were destined to become spiny neurons into corticofu-
gal neurons (De la Rossa et al., 2013; Rouaux & Arlotta, 
2010). Taken together, these results provide evidence 
that not only fibroblasts, but also neurons and astrocytes 
in vivo, can be phenotypically changed by cell conver-
sion (or direct reprogramming).

iNS cells
Beyond conversion into neurons, fibroblasts have also 

been able to be reprogrammed into iNS cells (Figure 1).  
iNS cells can self-renew and differentiate into more 
mature CNS cells such as neurons, astrocytes, or oligo-
dendrocytes. Compared with iPS cells that require both 
reprogramming and differentiation, iNS cells bypass the 
pluripotent state and thus offer a faster and simpler way 
to make relevant CNS cells (Kim, Efe, et al., 2011).

Until now, mouse and human fibroblasts have suc-
cessfully been converted into iNS cells through the 
expression of a variety of transcription factors and cul-
ture in specific media with various supplements (Table 
1). Initially, overexpression of Oct4, Sox2, Klf4, and 
c-Myc in mouse fibroblasts in a medium with specific 
external signaling conditions was shown to convert 
mouse fibroblasts into iNS cells, and eventually into 
neurons and astrocytes (Kim, Efe, et al., 2011). Subse-
quently, it was reported that the overexpression of Sox2, 
FoxG1, and Pou3f2 in mouse fibroblasts induced tripo-
tent iNS cells that can differentiate into neurons, astro-
cytes, and oligodendrocytes (Lujan, Chanda, Ahlenius, 
Sudhof, & Wernig, 2012). Although seemingly success-
ful, these iNS cells had limitations such as poor expan-
sion capacity or instability of cell fate. To overcome these 
limitations, additional efforts were made to generate iNS 
cells that are more similar to neural stem cells found in 
mice. First, the expression of Pou3f4, Sox2, Klf4, c-Myc, 
and E47/Tcf3 were able to convert mouse fibroblasts 
into iNS cells with a large capacity to differentiate into 
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neurons, astrocytes, and oligodendrocytes (Han et al., 
2012). Second, the expression of Sox2, Klf4, c-Myc, and 
the transient expression of Oct4 during the initial phase 
of reprogramming were also able to convert mouse fibro-
blasts into iNS cells with further differentiation capacity 
into neurons, astrocytes, and oligodendrocytes (Thier 
et al., 2012). Finally, the expression of only one transcrip-
tion factor, Sox2, was discovered to be sufficient to elicit 
the formation of iNS cells from both mouse and human 
fibroblasts (Ring et al., 2012). These iNS cells were differ-
entiated into neurons, astrocytes, and oligodendrocytes 
in vitro and also shown to differentiate into functioning 
neurons in vivo without generating tumors.

Induced Oligodendrocyte Precursor Cells
Oligodendrocyte precursor cells (OPCs) were also 

reported to be generated directly from fibroblasts by cell 
fate conversion in mice (Najm et al., 2013; Yang et al., 
2013). Mouse embryonic and lung fibroblasts can be 
reprogrammed into OPCs through the expression of a set 
of three transcription factors (Sox10, Olig2, and Nkx6.2) 
(Najm et al., 2013). Successful generation of OPCs from 
mouse and rat fibroblasts through the overexpression of 
Sox10, Olig2, and Zpf536 was also reported (Yang et al., 
2013). When such induced oligodendrocyte progenitor 
cells (iOPCs) were transplanted into the cortex of dys-
myelinated shiverer mice, they helped ensheath axons 
with myelin to improve the conduction of impulses 
(Najm et al., 2013; Yang et al., 2013). Thus, iOPCs can 
be very useful in diseases relating to myelin deficits. 
For example, the implementation and use of iOPCs may 
serve as possible therapeutic options to attenuate or 
recover myelin deficits underlying the disorders. iOPCs 
can also be used to investigate the mechanisms underly-
ing altered integrity in the white matter in patients with 
schizophrenia. Because oligodendrocytes form myelin 
sheaths around axons in the white matter, the altered 
function of oligodendrocytes can directly impact the 
axonal networks, which form the basis for various brain 
activities. Thus, biological understanding of such altera-
tions in patient-derived iOPCs may provide further 
insight into the mechanisms underlying schizophrenia 
and can lead to the development of new therapeutic 
strategies by which myelin deficits and white matter 
changes in the disease can be attenuated or recovered. 
Collectively, iOPCs may allow us to investigate the cell-
intrinsic pathology related to oligodendrocytes in neuro-
psychiatric disorders.

Disease Application

Induced cells obtained by cell fate conversion can be 
used for the characterization of the pathological pheno-
types of live neurons and glia in many brain disorders 
as well as for therapeutic autologous transplantation. 

Although technical advances in recent years are remark-
able, reports on the application of induced cells to dis-
ease characterization or therapeutic transplantation are 
still limited.

A recent report successfully showed that the use 
of iN cells could help to recapitulate key pathological 
phenotypes and discover novel pathological pheno-
types in several brain disorders (Kano et al., 2015). In 
this report, iN cells from patients with Tay–Sachs dis-
ease, a lysosomal storage disease mainly affecting the 
CNS, recapitulated a hallmark phenotype of the disease, 
accumulation of GM2 gangliosidosis. The study further 
showed that the GM2 accumulation phenotype was 
rescued pharmacologically by an inhibitor of GlyCer 
synthesis, suggesting the feasibility of using iN cells for 
the screening of therapeutic compounds. iN cells were 
also used to characterize electrophysiological properties 
of Dravet syndrome, leading to an unexpected finding 
that glutamatergic neuronal cells from patients have 
altered patterns of action potentials, which may add to 
the known phenotype of GABAergic interneurons in the 
disease. iN cells have also aided in characterizing the 
pathology and consequences of human l-ferritin defi-
ciency, which is a disease characterized by seizures and 
restless leg syndrome (Cozzi et al., 2013). Patient fibro-
blasts were reprogrammed into dopaminergic neurons 
through the overexpression of Ascl1, Nurr1, and Lmx1. 
These iron-deficient cells exhibited both higher reactive 
oxygen species and oxidized protein levels, but similar 
mitochondrial membrane resting potential compared 
with control neurons. This was one of the first studies to 
describe the phenotype and the biological consequences 
of l-ferritin deficiency in live human neuronal cells.

The use of iNS cells can further aid in the character-
ization of the pathology of neuropsychiatric disorders. 
By allowing for a variety of cell lines to be used and cre-
ated, each brain cell type can be analyzed through their 
developmental stages. A recent study converted fibro-
blasts from patients with amyotrophic lateral sclerosis 
into iNS cells, which were then further differentiated 
into astrocytes (Meyer et al., 2014). These amyotrophic 
lateral sclerosis patients’ iNS cell–derived astrocytes 
were shown to be toxic to cocultured motor neurons, 
illustrating an intrinsic defect of astrocytes obtained 
from amyotrophic lateral sclerosis patients (Meyer et al., 
2014). Unfortunately, beyond this study, there is still 
very limited research in the application of iNS cells in 
neuropsychiatric disorders.

The transplantation of induced cells into animals with 
certain diseases has been successful as a potential therapeu-
tic strategy. Parkinson’s disease, for example, is a disorder 
that causes dopaminergic neurons to degenerate, resulting 
in certain motor deficits. Dopaminergic iN cells have been 
successfully transplanted into a mouse model of Parkin-
son’s disease, and have resulted in functional recovery  
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(Kim, Su, et al., 2011). Although cell transplantation is 
currently not an option in therapeutic strategies against 
neuropsychiatric disorders such as schizophrenia, the 
concept of transplanting normal neurons or glia into the 
brain, or even in vivo cell fate conversion of defective cells 
into recovered cells may be used as potential solutions to 
alleviate problems caused by the altered functions of local 
neural circuits that underlie neuropsychiatric disorders.

Limitations

Although iN cells and iNS cells have shown some 
promise in their use for the characterization of brain dis-
orders, there are several limitations and challenges that 
need to be overcome.

First, iN cell methodologies resulted in a low repro-
gramming efficiency. One of the attempts to solve this 
problem has been through the use of small molecules, 
instead of transcription factors, in reprogramming cells. 
By using a set of small molecules that inhibit both gly-
cogen synthase kinase-3B and smad signaling, conver-
sion efficiency and purity can be drastically improved 
(Ladewig et al., 2012). Another solution may involve 
changing the oxygen concentration during cell fate con-
version. It was shown that iN cell conversion was more 
efficient and gave rise to more functional neurons under 
hypoxic conditions (Davila, Chanda, Ang,  Sudhof, & 
Wernig, 2013). Very recently, it has been shown that plu-
ripotent stem cells can be rapidly converted into neurons 
by cell fate conversion technique, without generating 
neuronal stem cells and differentiating them into neu-
rons (Zhang et al., 2013). The overexpression of one tran-
scription factor, Ngn2, in pluripotent stem cells resulted 
in the generation of iN cells with nearly a 100% yield and 
100% purity (Zhang et al., 2013). These newer methods 
may help improve the conversion rate and the repro-
gramming efficiency of cells.

Second, it must be taken into account that when-
ever overexpression of exogenous factors by lentivirus 
or retrovirus is used, there is a possibility of transgenic 
insertions into the genome, leading to gene disruption 
or silencing. Sendai virus has recently been used to solve 
this problem and generate integration-free iPS cell lines. 
Similar strategies can also be used in the generation of iN 
cells, iNS cells, and iOPCs by replacing lentivirus with 
Sendai virus. Another alternative may involve the devel-
opment of new conversion protocols using only small 
molecules. Indeed, a recent study successfully repro-
grammed mouse somatic cells into pluripotent stem 
cells through the use of seven small molecules in place of 
transcription factors (Hou et al., 2013). In the near future, 
the use of these small molecules may serve as a more 
efficient and safer alternative to transcription factors, 
and their use in cell fate conversion experiments may 
eventually contribute to genetic damage-free generation 

of brain-relevant cells for research on neuropsychiatric 
disorders.

Third, the number of original fibroblasts or unsuc-
cessfully converted cells present in culture may hamper 
in vitro disease characterization and therapeutic trans-
plantation by altering neuronal function or modifying 
the primary disease-associated phenotypes. This is 
particularly a problem for iN cells that cannot easily be 
separated from those original cells because iN cells are 
postmitotic. Further exploration of useful cell surface 
markers on neurons will help enrich iN cells from those 
unwanted contaminating cells in culture. It is also nec-
essary to determine the optimal combination of tran-
scription factors that will efficiently and successfully 
convert fibroblasts into neurons. Once very efficient 
conversion methods are established, the contamination 
of original fibroblasts or unsuccessfully converted cells 
may not hinder iN cell use.

Fourth, as with all transcription factor-based methods 
of reprogramming, there is still a risk for the formation 
of tumors. The overexpression or inactivation of certain 
transcription factors such as Oct-3/4 can result in the for-
mation of malignant tumors (Gidekel, Pizov,  Bergman, 
& Pikarsky, 2003). Sox2, one of the transcription fac-
tors necessary in the reprogramming of iNS cells, is a 
lineage-dependent oncogene (Bass et al., 2009). Beyond 
using transcription factors with oncogenic properties, 
the process of reprogramming cells using transcription 
factors can result in the formation of tumors. The cre-
ation of iPS cells, for example, is tumorigenic by nature 
as sequencing has showed that they contain approxi-
mately six point mutations per exome (Gore et al., 2011). 
Although, tumor formation may not be a primary con-
cern in the characterization of brain disorders, altera-
tions of genomic architecture resulting from tumorigenic 
changes can be a limitation to the detailed analysis of 
complex neuropsychiatric disorders.

Finally, limited knowledge is available for the mecha-
nisms underlying cell conversion. Indeed, most of the 
previously mentioned limitations are associated with 
our poor understanding of the biological mechanisms. 
It is important to note that this problem is not limited to 
induced cells, but is also a common problem in iPS cells 
and other transcription factor–based reprogramming 
methods. To efficiently use these cell fate conversion-
based methods, we have to focus our efforts on further 
understanding of the mechanisms.

OE AND DERIVED CELLS: CELL MODELS 
FREE FROM GENETIC MANIPULATION

OE is located in the nasal cavity and one of the few 
areas in the CNS where neurogenesis continues through-
out life. Human OE contains several cell types: olfactory 
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receptor neurons that sense odor and transmit signals to 
olfactory bulb, basal cells that contain putative neuronal 
precursors, sustentacular cells (supporting cells) that 
provide structural and functional support to olfactory 
sensory neurons, and microvillar cells (Figure 2) (Mor-
rison & Costanzo, 1990; Trojanowski, Newman, Hill, & 
Lee, 1991). Prior research in schizophrenia and other 
brain disorders revealed altered olfactory function that 
is widely involved from the level of olfactory receptor 
neurons in OE to higher order olfactory centers in the 
cortex (Sawa & Cascella, 2009; Turetsky, Hahn, Arnold, & 
Moberg, 2009). For example, in schizophrenia, olfactory 
deficits have been reported in odor detection threshold, 
sensitivity, odor identification, and odor memory (Dunn 
& Weller, 1989; Houlihan, Flaum, Arnold, Keshavan, & 
Alliger, 1994; Isseroff, Stoler, Ophir, Lancet, & Sirota, 
1987; Kopala, Clark, & Hurwitz, 1993; Kopala, Clark, 
& Bassett, 1991; Malaspina et al., 1994; Seidman et al., 
1991; Serby, Larson, & Kalkstein, 1990). Altered cellular 
and morphological characteristics of olfactory neurons 
were also reported in schizophrenia and Alzheimer’s 
disease by histological examinations (Arnold, Smutzer, 
Trojanowski, & Moberg, 1998). Notably, evidence for 
dysregulated development of olfactory receptor neurons 
was shown in research on OE tissues from patients with 
schizophrenia (Arnold et al., 2001). OE tissue was also 
studied in the context of regenerative medicine because 
the tissue was easily accessible by nasal biopsy in liv-
ing individuals. In particular, olfactory ensheathing cells 

were shown to have therapeutic potentials for cellular 
and functional recovery in CNS injuries of animal mod-
els (Barnett & Riddell, 2007). In this section, we review 
historical advances in the use of OE-derived cells/tis-
sues in neuropsychiatric research and discuss their utili-
ties and limitations.

Methods

Because OE tissue contains neural stem cells that give 
rise to neurons, efforts have been made to establish live 
neuronal cell cultures from OE tissues. Earlier stud-
ies used slice cultures from human OE to recapitulate 
neuronal differentiation in vitro (Féron, Perry, Hirning, 
McGrath, & Mackay-Sim, 1999; Féron, Perry, McGrath, 
& Mackay-Sim, 1998; Hahn, Han, et al., 2005; McCurdy 
et al., 2006; Murrell et al., 1996). These explant (slice) cul-
tures were used to examine cell adhesion capacity, cell 
proliferation and mitosis, and functional response to a 
neurotransmitter (Féron et al., 1999; Hahn, Han, et al., 
2005). OE tissue slice cultures were also used to investi-
gate changes in cell cycle by immunohistochemistry and 
microarray-based gene expression profiling (McCurdy 
et al., 2006).

In addition to OE slice cultures, dissociated cell cul-
tures were established by various ways to explore 
morphological and functional alterations of neuronal 
cells from patients with psychiatric disorders (Table 2).  
Sphere forming cells from human OE were shown 

Basal cell
Immature olfactory neuronal cell

Olfactory receptor neuron

Sustentacular cell
Microvillar cell

Axonal projections toward olfactory bulb 

(A) 

(B) 

Olfactory epithelium

Olfactory tissue

Slice culture

Spheres

Monolayered cells
(e.g., ONS cells, olfactory cells)

Endoscopic
nasal biopsy Differentiated cells

(e.g., dopaminergic)

FIGURE 2 Human olfactory epithelium (OE) and OE-derived cells/tissues. (A) Schematic drawings of human OE. (B) Generation of OE slice, 
spheres, and monolayer cells from a tissue piece of OE collected by an endoscopic nasal biopsy.
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to be useful for autologous transplantation therapies 
and in vitro modeling of neuropsychiatric disorders  
(Murrell et al., 2005). These OE-derived neurospheres 
proliferated and generated dopaminergic cells in vitro 
and in vivo upon transplantation into rodent brains 
(Murrell et al., 2005, 2008). Another group also described 
ex vivo expansion of heterogeneous cell populations, 
including neuronal and glial cells in the form of neuro-
spheres from OE tissues of cadavers (Roisen et al., 2001). 
They established a method to prepare neurospheres 
from OE tissues of living individuals and showed their 
characteristics as stem cells (Roisen et al., 2001; Xiao 
et al., 2007, 2005; Zhang, Cai, et al., 2006; Zhang, Klueber, 
et al., 2006; Zhang, Klueber, Guo, Lu, & Roisen, 2004). 
They also reported that application of retinoic acids, for-
skolin, and sonic hedgehog to neurosphere forming cells 
resulted in the expression of motoneuronal transcription 
factors, tyrosine hydroxylase, an indicator of dopamine 
production, and neurite formation (Zhang, Klueber, 
et al., 2006). These OE-derived neurospheres showed a 
promising potential as a resource for therapeutic trans-
plantation in animal models of brain disorders such as 
Parkinson’s disease (Murrell et al., 2008).

Monolayer cell cultures from OE tissues, derived by 
nasal biopsy, were also generated for functional and 
molecular characterization of neuropsychiatric disor-
ders (Borgmann-Winter et al., 2009; Hahn, Gomez, et al., 
2005; Hahn, Han, et al., 2005). Olfactory neurons recov-
ered in dissociated cell culture from OE tissue were first 
used to characterize functional response to a mixture of 
odorants by calcium imaging with Fura-2/AM indica-
tor (Hahn, Gomez, et al., 2005). Then, proliferating cells 

in dissociated culture from OE tissues were also shown 
to express functional N-methyl-d-aspartate receptors 
and were predicted as a useful tool to address the func-
tional and molecular features of neural cells in patients 
with neuropsychiatric disorders (Borgmann-Winter 
et al., 2009). Extensive molecular characterization of 
OE-derived dissociated cells by high-throughput pro-
filing methods has recently been demonstrated in sev-
eral studies (Kano et al., 2013; Matigian et al., 2010). In 
one study, olfactory neurospheres were dissociated and 
cultured in the presence of serum to expand as prolifer-
ating cells, olfactory neurosphere-derived (ONS) cells 
(Matigian et al., 2010). Flow cytometric analysis showed 
that the majority of these cells expressed CD105 and 
CD73, which are markers for mesenchymal stem cells. 
Fewer cells expressed Nestin (a marker for neural stem 
cells), OCT4 (a marker for ES cells), and β-tubulin III 
(a marker for neuronal cells) (Matigian et al., 2010). 
These cells were analyzed for messenger RNA and pro-
tein expression profiles by gene expression microarray 
and proteomic analysis using two-dimensional dye-in-
gel-electrophoresis (Matigian et al., 2010). In addition, 
various biochemical and functional measures such as 
glutathione content, Caspase-3/7 activity, and MTS 
metabolism were taken using these ONS cells (Mati-
gian et al., 2010). In another study, a protocol that can 
enrich cells with immature neuronal characteristics 
directly from OE tissue has been established. These 
olfactory cells showed homogeneous appearance and 
expressed β-tubulin III, a marker for neuronal cells. Sys-
tematic microarray gene expression profiling analysis 
of these olfactory cells with other resources including 

TABLE 2 Representative Reports on dissociated Cells derived from Human Olfactory Epithelium

Type Description Characteristics Disease Application References

OE-derived sphere 
forming cells

Neurosphere forming 
cells

Expression of both neuronal and 
glial markers
Capacity to differentiate 
into neuronal cells with 
dopaminergic and motoneuron 
markers

Transplantation (animal 
models of neuronal injury)

Roisen et al. (2001), Xiao 
et al. (2007), Xiao et al. 
(2005), Zhang, Cai, et al. 
(2006), Zhang, Klueber, 
et al. (2006), and Zhang 
et al. (2004)

Olfactory neurospheres Capacity to differentiate 
into neuronal cells with 
dopaminergic markers

Transplantation (animal 
models of Parkinson’s disease)

Murrell et al. (2005) and 
Murrell et al. (2008)

OE-derived 
monolayer cells

Olfactory cell culture Live olfactory neurons in 
heterogeneous cell populations

Bipolar disorder Borgmann-Winter et al. 
(2009) and Hahn, Gomez, 
et al. (2005)

ONS cells Similar to mesenchymal stem 
cells

Parkinson’s disease
Ataxia telangiectasia
Hereditary spastic paraplegia
Schizophrenia

Abrahamsen et al. (2013), 
Matigian et al. (2010), 
Murrell et al. (2008), and 
Stewart et al. (2013)

Olfactory cells Immature neuronal phenotype
Homogeneous populations

Schizophrenia Horiuchi et al. (2013) and 
Kano et al. (2013)

OE, olfactory epithelium; ONS, olfactory neurosphere derived.
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brains, peripheral blood–derived cells, and stem cells 
has revealed the close relationship between olfactory 
cells and mesenchymal stem cells as well as distinct 
features between olfactory cells and blood-derived cells 
(Horiuchi et al., 2013). These olfactory cells were used 
to explore epigenetic changes affecting gene expression 
by a combined analysis of ChIP-seq and gene expres-
sion microarray (Kano et al., 2013).

In parallel to the development of the live OE-derived 
cell/tissue culture method, a new technology was 
employed to explore the molecular signatures of olfac-
tory neurons in OE tissue. In particular, laser capture 
microdissection technique, which allows the enrichment 
of a certain portion of tissues, has been successfully 
used to enrich olfactory neuronal layers where olfactory 
neurons are located (Tajinda et al., 2010). Availability of 
these homogenous cell populations from living human 
individuals will help high-throughput profiling studies 
using gene expression microarray, RNA-seq and various 
epigenetic sequencing, in which cellular heterogeneity 
can undermine a detection threshold.

Disease Application

Because olfactory functional deficits were known 
from earlier studies, OE-derived cells/tissues have been 
widely used in research on psychiatric and neurological 
diseases. Studies using OE slice cultures observed a sig-
nificantly higher proportion of proliferating cells in cul-
tures from patients with schizophrenia compared with 
controls (Féron et al., 1999; McCurdy et al., 2006). They 
also observed opposite effects of dopamine on dying 
cells between cultures from patients with schizophre-
nia and controls; dopamine decreased the proportion 
of dying cells in patients’ cultures, whereas it increased 
the proportion in control cultures (Féron et al., 1999). In 
addition, OE slice cultures from patients with bipolar 
I disorder revealed significantly more cell death com-
pared with those from controls (McCurdy et al., 2006).

Dissociated OE-derived cells have also contributed a 
lot to research on psychiatric diseases. Olfactory neurons 
in dissociated cultures from patients with bipolar disor-
der showed altered functional responses to a mixture of 
odorants in calcium imaging with Fura-2/AM indicator 
(Hahn, Gomez, et al., 2005). High-throughput molecular 
approaches using gene expression, protein expression, 
and cell function in patients with neuropsychiatric dis-
orders have also been performed using dissociated OE-
derived cells (Kano et al., 2013; Matigian et al., 2010). A 
study using ONS cells has revealed dysregulated neu-
rodevelopmental pathways in schizophrenia and dys-
regulated mitochondrial function, oxidative stress, and 
xenobiotic metabolism in Parkinson’s disease, all of 
which are not observed in patient-derived fibroblasts  
(Matigian et al., 2010). Another study using homogenous 

olfactory cells with immature neuronal characteristics, 
which are directly derived from OE tissues, identified 
epigenetic alterations in schizophrenia including synap-
togenesis, inflammatory cytokine signaling, and cellular 
defense system against oxidative stress (Kano et al., 2013).

In addition to neuropsychiatric disorders, dissociated 
OE-derived cells, in particular ONS cells, have been used 
in research on other hereditary brain disorders includ-
ing ataxia telangiectasia (AT) and hereditary spastic 
paraplegia (Abrahamsen et al., 2013; Stewart et al., 2013). 
In AT, patient-derived ONS cells successfully modeled 
AT-relevant cellular phenotypes such as hypersensitiv-
ity to radiation, defects in radiation-induced signaling, 
and dysregulated cell cycle checkpoint regulation (Stew-
art et al., 2013). Notably, analysis of AT patient–derived 
ONS cells under a neuronal differentiation condition 
in vitro showed the reduced development of neurites, 
such as the number of neurites per cell and neurite 
length, suggesting that these cells have an impaired 
differentiation capacity in vitro into immature neuronal 
progenitors (Stewart et al., 2013). In hereditary spastic 
paraplegia, ONS cells showed changes in gene expres-
sion for microtubule dynamics, accompanied by altered 
intracellular distributions of peroxisomes and mitochon-
dria as well as slower moving peroxisomes (Abraham-
sen et al., 2013).

ONS cells have also been successfully used in trans-
plantation therapies for animal models of Parkinson’s 
disease (Murrell et al., 2008). When transplanted into 
the brain, ONS cells gave rise to dopaminergic cells and 
attenuated the behavioral asymmetry in the rat model of 
hemiparkinsonian induced by the injection of the selec-
tive neurotoxin, 6-hydroxydopamine, into the striatum  
(Murrell et al., 2008). Although psychiatric diseases are not 
generally accompanied by extensive loss of cells or tissues, 
the success in these transplantation therapies may pave the 
way for future consideration of functional correction by 
autologous transplantation of neuronal or glial cells into 
the brains of patients with psychiatric diseases.

Limitations

OE-derived cells have advantages over iPS cell–
derived neuronal cells or iN cells in that no genetic engi-
neering such as overexpression of complementary DNA 
by lentivirus vector is necessary. They can also be pre-
pared relatively easily compared with iPS or iN cells. In 
addition, OE tissues provide an opportunity to perform 
longitudinal studies of disease progression or the effects 
of medication. For example, by collecting OE tissues at 
multiple time points, it can be possible to address how 
neuronal or glial status (or differentiation) is affected by 
the disease progress or medication. Thus, OE-derived 
cells/tissues can be widely used in translational research 
on neuropsychiatric disorders.
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One major limitation in research using OE-derived 
cells/tissues is that few studies have comprehensively 
characterized postmitotic neurons obtained from olfac-
tory spheres or other OE-derived immature neuro-
nal cells. Indeed, apart from research studying human 
olfactory neurons in dissociated cell cultures by calcium 
imaging, there has been no clear demonstration that OE-
derived postmitotic neurons show functional responses 
to their cognate stimulation such as depolarization or 
odorants. Although many studies rely on molecular and 
cellular methods to characterize OE-derived cells such 
as gene expression or immunocytochemistry, further 
validation of neuronal characteristics by electrophysi-
ology is usually missing. Although OE-derived cells, in 
particular sphere-forming cells, are promising in that 
they may possess multipotency to be differentiated to a 
variety of neurons and glia, detailed functional charac-
terization should be performed before we discuss them 
as alternative approaches to iPS cell–derived neurons/
glia or iN cells/other induced brain cells.

Another limitation is the requirement of a nasal biopsy 
to obtain OE tissues. Although the surgical procedure is 
very simple and does not cause any side effects on olfactory 
function, it is more invasive than a simple blood draw. This 
is especially important when one designs a longitudinal 
collection of OE tissues. Notably, recent studies reported 
a method to collect OE tissue–derived cells by a simple 
brushing instead of performing an endoscopic nasal biopsy 
(Benitez-King et al., 2011). With the advance of culture tech-
niques to recover a small number of OE-derived cells, this 
limitation may be solved in the near future.

FUTURE PERSPECTIVES

Use of Different Human Cell Models

With the advances in cell-culture technologies, there 
are now several different human CNS cell models avail-
able for research on schizophrenia and related disorders. 
These CNS cell models offer an opportunity to directly 
address the phenotypes of neuronal and glial cells in 
patients with neuropsychiatric disorders, which was not 
possible with previously available cell models, such as 
blood-derived cells or fibroblasts. They can also comple-
ment postmortem brain studies by providing pheno-
typic information of live brain cells. How should we 
use these various cells models? Here we compare major 
advantages and disadvantages of iN cells, iNS cells, and 
OE-derived cells and discuss their utilities (Table 3).

A key advantage of iN cells is that functional post-
mitotic neurons are obtained in a very short period of 
2–3 weeks. Studies so far provided evidence that at least 
four types of neurons (glutamatergic, GABAergic, dopa-
minergic, and spinal motor neurons) can be directly 

generated from fibroblasts through cell fate conversion 
techniques using exogenous factors. Most of the studies 
also reported that these iN cells were electrophysiologi-
cally active and showed action potential spikes and, in 
some cases, synaptic activities. Although these features 
hold a high promise for iN cells’ potential to be used for 
a variety of experiments on neuropsychiatric disorders, 
there are several shortcomings that must be reconciled. 
First, iN cells cannot be expanded or stored in a freezer 
for future use because they are already postmitotic neu-
rons. Thus, iN cells need to be generated from fibroblasts 
for each experiment. Second, it is not clear at this moment 
whether iN cell techniques can be used to efficiently gen-
erate neuronal subtypes such as GABAergic interneurons 
or cholinergic neurons. Third, because iN cells bypass the 
developmental steps from neural stem cells, studies focus-
ing on developmental alterations may not be feasible.

Notably, iNS cells can complement some of the short-
comings of iN cells. iNS cells proliferate effectively in vitro 
and thus can be expanded and stored in a freezer for 
future use. iNS cells can generate not only neurons, but 
also glia such as astrocytes and oligodendrocytes, provid-
ing greater opportunities to study disease-associated phe-
notypes in a wide range of CNS cells. Because iNS cells can 
be differentiated into neurons and glia, studies on disease-
associated developmental alterations are also feasible. 
Another benefit is that iNS cells bypass the state of plu-
ripotent stem cells and can also reduce the total costs and 
time needed for the generation of relevant CNS cells. Cur-
rently, a major shortcoming of iNS cells is that limited data 
is currently available on the characterization of human 
diseases. Although iNS cell–derived astrocytes were suc-
cessfully used in a study on amyotrophic lateral sclerosis 
(Meyer et al., 2014), there have been no demonstrations 
that iNS cell–derived neurons or oligodendrocytes model 
the pathological features of human CNS disorders.

It is not completely understood yet whether cell fate 
conversion may leave any characteristics of original cells 
(e.g., fibroblasts) in iN cells and iNS cells. In fact, a very 
recent report has revealed that even iPS cells retain resid-
ual epigenetic patterns typical of original somatic cells 
(Ma et al., 2014). Thus, the effects of cell fate conversion 
should be carefully examined through cross compari-
son among iN cells, iNS cell–derived neurons, iPS cell–
derived neurons, embryonic stem cell–derived neurons, 
and brain-derived neurons.

OE-derived cells are unique compared with iN cells, 
iNS cells, and iPS cell–derived neurons/glia in that cell 
fate conversion is not required. Accumulating evidence 
demonstrates that OE-derived cells are useful for both 
molecular and functional assays. In addition, OE-derived 
cells can be expanded and stored for future use. Because 
of these advantages, OE-derived cells have been used 
widely in research on schizophrenia and related disor-
ders. A major drawback in OE-derived cell culture is that 
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neuronal cells may not reflect the phenotype of brain neu-
rons. Further efforts are essential to improve cell culture 
methods and extend the utilities of OE-derived cells as 
alternatives to cell fate conversion-based methods.

Based on the pros and cons for each cell model as 
mentioned above, we propose a two-step strategy to 
use human CNS cell models in research on psychiatric 
disorders. During the initial phase of exploring poten-
tial new phenotypes or mechanisms, rapid generation 
of neuronal and glial cells offers greater advantages and 
is a higher priority. Thus, direct generation of neurons, 
glia, and neural progenitors (e.g., iN cells, iOPCs, iNS 
cells) can serve as beneficial tools. OE-derived cells can 
also be used for this purpose. Once the phenotypes or 
mechanisms of interest are found, additional detailed 
characterization can be performed with well-character-
ized iPS cells, which can be differentiated into desired 
cell types. In a more clinical study in which the longi-
tudinal effects of medication or other interventions are 
tested, OE-derived cells may be a first choice because 
they can be collected multiple times during the course of 
study and quickly examined for any disease-associated 
phenotypes.

Back to the Brain

Although human cell models hold a promise for fur-
ther development of research on schizophrenia and 
related disorders, they are still merely “cells on a culture 
dish.” The behaviors of the cells on a dish may be totally 
different from those in intact brains. How should we fill 
this gap? There are multiple approaches. First, once cellu-
lar phenotypes are established in human cell models, new 
rodent models can be generated to find out the impact of 
such phenotypes on the brain. Analysis of such rodents 
will provide the opportunity to address the effects of cel-
lular phenotypes on the network and tissue-level pheno-
types of the brain. Second, brain imaging data from the 
individuals who provided the samples for human cell 
models can be analyzed to study the impact of cellular 
phenotypes on live brain activities. In particular, magnetic 
resonance spectroscopy or positron emission tomogra-
phy can provide molecule-specific information that may 
be linked to cellular dysfunction of those individuals 
(Lukas, 2014). Finally, in vivo transplantation of human 
cell models into rodent brains may be used as “human-
ized” rodent brains. “Humanized” mice generally refer 

TABLE 3 Basic Features of Currently Available Human Cell Models

Samples Advantages Disadvantages

iN cells Very rapid generation of postmitotic neuronal cells No expansion or storage

Feasible for functional assays Limited types of neurons can be generated

Reprogramming with exogenous transcription factors required

iNS cells Rapid generation of neural stem cells by bypassing iPS 
cell generation

Reprogramming with exogenous transcription factors 
required

Feasible for expansion and storage
Feasible for functional assays

Fewer data on applications to human diseases

Feasible for study on neuronal and glial development

iPS cells Feasible for expansion and storage
Feasible for functional assays

Requires long-term in vitro culture to generate neurons/glia

Feasible for study on neuronal and glial development Reprogramming with exogenous transcription factors required

Abundant data on application to human diseases

OE-derived cells/
tissues

No requirement of reprogramming with exogenous 
transcription factors

May not recapitulate brain neuronal cells

Feasible for expansion and storage
Feasible for functional assays

Fewer data on well-characterized postmitotic neurons

Blood-derived cells Easy to collect and analyze May not reflect neuronal phenotype

Feasible for expansion and storage
Feasible for functional assays

Postmortem brains Neurons and glia in intact brain structures No viable cells available
No functional assays available

Pathologies may be modified by medication, compensatory 
changes, substance abuse or smoking, and manner of death

iN, induced neuronal; iNS, induced neuronal stem; OE, olfactory epithelium.
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to the mice whose hematopoietic system is replaced with 
that of humans by bone marrow (or hematopoietic stem 
cell) transplantation after whole-body irradiation (Shultz, 
Ishikawa, & Greiner, 2007). Humanized mice have been 
widely used in research on blood disorders, immune 
diseases, and cancers. Although in vivo transplanta-
tion of human CNS cells have been attempted in many 
studies, its grafting efficiency is generally poor. As in the 
case of hematopoietic transplantation, removing target 
cell populations may increase grafting efficiency for the 
transplantation of human CNS cells into rodent brains. If 
successful, such approaches will bridge the gap of knowl-
edge between in vitro cultured cells and in vivo brain cells.

CONCLUSIONS

With recent technological advances in cell culture of 
human neuronal and glial cells, research on neuropsy-
chiatric disorders is entering a new era in which disease 
pathology can be directly studied in live patient cells. 
These new approaches have great potentials in identifying 
novel biological insights into brain disorders. Functional 
characterization of accumulating number of genetic varia-
tions associated with neuropsychiatric disorders will be 
facilitated by the use of those human cell models. In addi-
tion, combining human cell models with rodent models or 
brain imaging will enable us to address the impact of cel-
lular phenotypes on the changes at the brain level. In vivo 
transplantation of human CNS cell models may also serve 
as a platform for generating humanized rodent brains. It 
needs to be emphasized that no single model can fulfill all 
the necessity in the field. Rather, different human cell mod-
els need to be used in parallel to complement each other’s 
disadvantages and explore novel disease phenotypes. By 
integrating the findings from human cell models with 
other modalities such as genetics, neuropsychology, brain 
imaging, and model animal studies, we will be able to have 
a better picture of the pathological changes in the brains of 
patients with neuropsychiatric disorders and contribute to 
the development of novel therapeutic strategies.
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INTRODUCTION

Mounting evidence indicates that an imbalance in 
glutamatergic neurotransmission contributes to the 
pathophysiology of schizophrenia (SZ). The glutamate 
hypothesis originated from the observation that the psy-
chotomimetic drugs phencyclidine and ketamine, which 
induce positive and negative symptoms as well as cogni-
tive impairments reminiscent of SZ in healthy individ-
uals (Javitt & Zukin, 1991; Krystal et al., 1994), inhibit 
N-methyl-d-aspartate (NMDA) receptor function (Anis, 
Berry, Burton, & Lodge, 1983; Coyle, 2012), and that both 
drugs exacerbate psychotic symptoms in patients with SZ 
(Lahti, Koffel, LaPorte, & Tamminga, 1995; Luby, Cohen, 
Rosenbaum, Gottlieb, & Kelley, 1959). These clinical 
insights have since been corroborated using postmortem 
human brain tissue and by comparing healthy subjects 
and patients using a variety of in vivo imaging meth-
ods. Together with the identification of genetic links and 
numerous supportive studies in experimental animals, 
there is little doubt that glutamatergic abnormalities are 
indeed associated with disease symptoms and may play 
a role in the etiology of the disorder. Primary data, along 
with implications for disease progression and therapeu-
tic strategies, have recently been summarized and dis-
cussed in several authoritative review articles (Coyle, 
Basu, Benneyworth, Balu, & Konopaske, 2012; Gonzalez-
Burgos & Lewis, 2012; Poels et al., 2014).

Astrocytes, which are abundant in the mammalian 
brain, are increasingly understood to serve critical roles 
in brain function and dysfunction (Clarke & Barres, 
2013; Sofroniew & Vinters, 2010; Takahashi & Sakurai,  
2013), and, in particular, can influence and control a 
number of dynamic processes involved in glutamater-
gic neurotransmission (Bouzier-Sore & Pellerin, 2013; 
Schousboe, Bak, & Waagepetersen, 2013). Abnormal 
expression of astrocytic proteins that determine gluta-
mate function has been repeatedly reported in SZ, and 
these changes have been considered as causative factors 
in pathophysiology (Katsel et al., 2011; Matute, Melone, 
Vallejo-Illarramendi, & Conti, 2005; Steffek, McCullum-
smith, Haroutunian, & Meador-Woodruff, 2008). Nota-
bly, malfunction of astrocytes not only interferes with 
glutamatergic enzymes, receptors, and transporters 
directly, but is also associated with anomalous behavior 
of several small molecules, which have metabolic links 
to astrocytes and affect extracellular glutamate levels 
and/or glutamate receptors. This growing list of endog-
enous neuromodulators includes the dipeptide N-acety-
laspartylglutamate (Bergeron & Coyle, 2012; Gehl, Saab, 
Bzdega, Wroblewska, & Neale, 2004), the glycineB/
NMDA receptor agonist d-serine (Bergersen et al., 2012; 
Martineau et al., 2013), and kynurenic acid (KYNA), a 
product of tryptophan degradation. Because of KYNA’s 
unique neurobiological properties and demonstrated 
links to SZ, the following review and discussion will 
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focus specifically on the possible role of this metabolite 
in brain physiology and pathology, paying special atten-
tion to the possibility that inhibition of astrocytic KYNA 
synthesis may alleviate cognitive impairments in SZ 
and, perhaps, other major psychiatric diseases.

KYNURENIC ACID IN THE BRAIN: 
MULTIPLE RECEPTOR TARGETS

The neuroinhibitory properties of KYNA were first 
recognized in the early 1980s, when the compound was 
found to be a broad-spectrum, competitive antagonist 
of ionotropic glutamate receptors at high micromolar 
concentrations (Perkins & Stone, 1982). This ability to 
inhibit the activity of NMDA, kainate, and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
alike soon made KYNA a formidable and widely used 
tool in experimental situations that required elimination 
of glutamatergic neurotransmission. In line with this 
ability to neutralize the central effects of glutamate and 
other excitatory amino acids, KYNA was soon shown 
to have anticonvulsant and neuroprotective proper-
ties (Foster, Vezzani, French, & Schwarcz, 1984). It also 
turned out that KYNA has a preferential affinity to the 
NMDA receptor (Ganong, Lanthorn, & Cotman, 1983)—
especially to the obligatory glycine coagonist (glycineB) 
site of the receptor, which KYNA inhibits competitively 
with a median inhibition concentration (IC50) of approx-
imately 10 μM (Birch, Grossman, & Hayes, 1988; Kessler, 
Terramani, Lynch, & Baudry, 1989). Because the gly-
cineB receptor is not saturated by glycine or its endog-
enous congener d-serine under physiological conditions 
(Thomson, Walker, & Flynn, 1989; Wood, 1995), KYNA 
became recognized as an excellent agent for studying 
the role(s) of glycine and d-serine in central nervous 
system function experimentally. Interest in KYNA was 
further increased when it was realized that it is present 
in the mammalian brain, albeit at submicromolar con-
centrations (Moroni, Russi, Lombardi, Beni, & Carlà, 
1988; Turski et al., 1988). Unexpectedly, and for reasons 
that are still not understood, KYNA concentrations in 
the human brain are 20–50 times higher than in the 
rodent brain, and prenatal levels greatly exceed levels 
in adulthood (Beal, Swartz, & Isacson, 1992; Cannazza, 
Chiarugi, Parenti, Zanoli, & Baraldi, 2001; Ceresoli-
Borroni & Schwarcz, 2000; Pocivavsek, Thomas, Elmer, 
Bruno, & Schwarcz, 2014). These findings increased 
the likelihood that endogenous KYNA, by serving as a 
direct modulator of glutamatergic neurotransmission, is 
involved in myriads of brain functions at all stages of 
the life cycle (Schwarcz et al., 1992).

As demonstrated in numerous in vivo microdialy-
sis studies in rats and mice, KYNA is present in the 
brain’s extracellular milieu and therefore has ready 

access to membrane receptor targets on any of a 
variety of brain cells. Basal extracellular KYNA con-
centrations in the rodent brain are in the low nano-
molar range and do not vary substantially between 
brain regions (Swartz, During, Freese, & Beal, 1990; 
Wu et al., 2010; Wu, Ungerstedt, & Schwarcz, 1992). 
Although these concentrations may be sufficient to 
influence glycineB receptor function, especially when 
extracellular glycine or d-serine levels are low, endog-
enous KYNA probably targets other receptors prefer-
entially in vivo. These include the G protein–coupled 
receptor 35, which, when activated by KYNA (Wang 
et al., 2006), affects cyclic adenosine monophosphate 
production, Ca2+ fluxes in astrocytes and secondarily 
reduces glutamatergic neurotransmission (Berlinguer-
Palmini et al., 2013) and, as discovered more recently, 
the aryl hydrocarbon receptor (DiNatale et al., 2010).

Most evidence suggests, however, that the α7 nicotinic 
acetylcholine receptor (α7nAChR) is the preferred target 
of endogenous KYNA in the mammalian brain (Table 1).  
Originally observed in electrophysiological studies 
using cultured neurons and intact brain slices, KYNA 
inhibits the α7nAChR noncompetitively with an IC50 of 
approximately 10 μM (Hilmas et al., 2001). A number of 
subsequent studies, mostly using KYNA concentrations 
in the mid-nanomolar range, indicated that α7nAChRs 
are the likely initial sites of KYNA action in the brain 
in vivo, and that this α7nAChR inhibition causes a series 
of functionally relevant effects downstream. More spe-
cifically, KYNA acts as an antagonist of an allosteric site 
located in the extracellular domain of the α7nAChR, 
which, interestingly, overlaps with a site that is activated 
by the cognition-enhancing drug galantamine (Lopes 
et al., 2007).

THE KYNURENINE PATHWAY OF 
TRYPTOPHAN METABOLISM

Approximately 5% of dietary tryptophan is degraded 
to serotonin, whereas the kynurenine pathway  
(KP), which is responsible for the neosynthesis of KYNA, 
accounts for the vast majority of catabolism of this essen-
tial amino acid (Leklem, 1971) (Figure 1). For decades, 
while the individual enzymes of the KP were identified 
and the metabolic relationships between their enzymatic 
products (“kynurenines”) were established, tryptophan 
catabolism through the KP was regarded mainly as an 
endogenous route for vitamin B3 (nicotinic acid, nicotin-
amide, or niacin) production and a source of the coen-
zyme NAD+, which is critically involved in numerous 
essential cellular functions. However, probably because 
of the many remarkable discoveries related to the func-
tion and dysfunction of serotonin in the brain, only spo-
radic attention was paid to a possible role of cerebral 
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kynurenines until the end of the 1970s (Gál & Sherman, 
1978; Gál, Young, & Sherman, 1978; Green & Curzon, 
1970; Joseph, 1978).

The situation changed with the discovery of the con-
vulsant properties of the KP metabolite quinolinic acid 
(QUIN) (Lapin, 1978) and, soon thereafter, the demon-
stration that QUIN can function as an NMDA receptor 

agonist in the rat cerebral cortex (Stone & Perkins, 
1981). In relatively rapid succession, with evidence for 
the neuroactive properties of KYNA (see previous sec-
tion) and the demonstration that both QUIN and KYNA 
are normally present in the mammalian brain (Moroni 
et al., 1988; Turski et al., 1988; Wolfensberger et al., 1983), 
it became apparent that endogenous kynurenines may 

TABLE 1 receptors and Targets for the Actions of KynA

Receptor or Binding 
Site Site on Receptor Action EC50 (μM) References

AMPA/NMDA/Kainate Glutamate Antagonism 
(competitive)

100–400 Perkins and Stone (1982) and Ganong et al. (1983)

NMDA Glycine Antagonism 
(competitive)

10–30 Birch et al. (1988) and Kessler et al. (1989)

NMDA autoreceptor Glutamate/glycine Antagonism 
(competitive)

0.01–1 Luccini, Musante, Neri, Raiteri, and Pittaluga (2007)

α7nAChR Allosteric potentiating 
site

Antagonism 
(noncompetitive)

1–8 Hilmas et al. (2001)

AMPA Glutamate Agonism 10 Prescott, Weeks, Staley, and Partin (2006)

G protein–coupled 
receptor 35

Unknown Agonism 0.1–30 Wang et al. (2006)

Aryl hydrocarbon 
receptor

Unknown Agonism 1–2 DiNatale et al. (2010)

References are limited to original and early publications. α7nAChR, α7 nicotinic acetylcholine receptor; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid; EC50, half maximal effective concentration; KYNA, kynurenic acid; NMDA, N-methyl-D-aspartate.

FIGURE 1 Kynurenine pathway of tryptophan degradation in mammalian cells.
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participate actively in a variety of brain functions. This 
insight and the realization that dysfunctions in brain 
QUIN or KYNA may play a causative role in neuro-
degenerative and seizure disorders (Schwarcz, Foster, 
French, Whetsell, & Köhler, 1984) and in neuroviro-
logical diseases such as AIDS dementia (Heyes, Brew, 
et al., 1992; Heyes, Saito, et al., 1992) stimulated a large 
number of studies, which were designed to uncover the 
features of cerebral KP metabolism in greater detail. 
Because the results of these investigations have been 
thoroughly reviewed in recent years (Schwarcz, Bruno, 
Muchowski, & Wu, 2012; Stone, Stoy, & Darlington, 
2013; Vécsei, Szalardy, Fülop, & Toldi, 2013), we will 
limit our comments here mainly to the fundamental 
principles that govern the formation and function of 
brain kynurenines under physiological conditions.

As illustrated schematically in Figure 1, the KP is ini-
tiated by the oxidative opening of tryptophan’s indole 
ring by indoleamine-2,3-dioxygenase (IDO) 1 and 2, and 
tryptophan-2,3-dioxygenase (TDO). All three of these 
enzymes, which are readily upregulated by various cyto-
kines and hormones, produce N-formylkynurenine. This 
labile intermediate, the substrate of formamidase, is then 
rapidly converted to l-kynurenine (“kynurenine”), the 
pivotal metabolite of the KP, which is further degraded 
by either of three catabolic enzymes: (1) kynureninase, 
which forms anthranilic acid; (2) kynurenine 3-mono-
oxygenase (KMO), which produces 3-hydroxykyn-
urenine (3-HK); and (3) kynurenine aminotransferases 
(KATs), which synthesize KYNA. Of these three primary 
breakdown products of kynurenine, only 3-HK is situ-
ated in a major branch of the KP, successively yielding 
3-hydroxyanthranilic acid via kynureninase and QUIN 
via 3-hydroxyanthranilic acid 3,4-dioxygenase, and 
eventually forming NAD+.

Whereas, the biochemical characteristics of most indi-
vidual KP enzymes are well-understood and their crys-
tal structure has been elucidated in some cases (Amaral 
et al., 2013; Han, Robinson, & Li, 2008; Malik, Patter-
son, Ncube, & Toth, 2014; Meng et al., 2014; Phillips, 
2014; Rafice, Chauhan, Efimov, Basran, & Raven, 2009; 
Rossi, Han, Li, Li, & Rizzi, 2004; Rossi et al., 2010), the 
complexity of the KP as a whole is staggering. Thus, as 
noted previously, three different enzymes are capable 
of catalyzing identical reactions at the beginning of the 
cascade, kynurenine can serve as a substrate of multiple 
KP enzymes, and several enzymes (kynureninase, KATs) 
recognize more than one KP metabolite as substrates. 
Translating isolated in vitro findings to a comprehen-
sive in vivo scenario has therefore remained a challeng-
ing task, especially when considering the often dramatic 
changes seen under pathological conditions.

Although no major qualitative differences appear 
to exist between individual KP enzymes in periph-
eral organs and the brain, neurobiologists studying 

the KP face another major challenge because events in 
the periphery do not necessarily reflect or predict phe-
nomena that occur in the central nervous system. The 
problem is at least two-pronged. First, only some KP 
metabolites, namely kynurenine and 3-HK, enter the 
brain readily from the circulation, whereas others, such 
as QUIN and KYNA (i.e., the most prominent neuroac-
tive compounds) do not (Fukui, Schwarcz, Rapoport, 
Takada, & Smith, 1991). Under physiological conditions, 
cerebral IDO and TDO activity are very low, so that only 
very little kynurenine is produced locally from trypto-
phan. It follows that brain KP metabolism, including 
the neosynthesis of neuroactive kynurenines, is mainly 
driven by peripherally derived kynurenine and, possi-
bly, 3-HK (Gál & Sherman, 1978; Reinhard, Erickson, & 
Flanagan, 1994; Swartz et al., 1990). Peripheral changes 
in KP metabolism downstream of kynurenine and 3-HK 
may therefore not be a good indicator of changes occur-
ring in the brain.

Second, KP metabolism within the brain is segregated 
between various cell types. Notably, although neurons 
do have the ability to synthesize kynurenines (Guillemin 
et al., 2007), the local production of kynurenines in the 
mammalian brain takes place largely in nonneuronal 
cells. Of these, microglial cells, which lack KATs but con-
tain all enzymes that are involved in the successive con-
version of kynurenine to QUIN, are believed to normally 
account for the local neosynthesis of 3-HK, 3-hydroxy-
anthranilic acid, and QUIN. Moreover, microglia are 
responsible for the substantial upregulation of this major 
KP branch that is observed when the immune system is 
stimulated (Saito, Markey, & Heyes, 1992). KYNA syn-
thesis, on the other hand, appears to occur almost exclu-
sively in astrocytes, which lack KMO (Guillemin et al., 
2001).

BRAIN KYNURENIC ACID SYNTHESIS: 
FOCUS ON ASTROCYTES AND KAT II

Competing with tryptophan and other neutral amino 
acids such as phenylalanine and leucine, blood-derived 
kynurenine enters the brain through the large neutral 
amino acid transporter (Fukui et al., 1991). Within the brain, 
kynurenine is then rapidly, and sodium-independently,  
taken up by astrocytes for further sequestration (Speciale,  
Hares, Schwarcz, & Brookes, 1989) and, though this has 
not been tested directly so far, is likely also actively trans-
ported into microglial cells. Moreover, kynurenine can 
enter neurons through a comparatively slow, sodium-
dependent process (Speciale & Schwarcz, 1990). Intra-
cellularly, kynurenine is then enzymatically degraded 
to KYNA, 3-HK, or anthranilic acid (Figure 1). Notably, 
in the mammalian brain the irreversible transamina-
tion of kynurenine to KYNA can be catalyzed by several 
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enzymes. These enzymes were originally named for their 
ability to use glutamine, α-aminoadipate, and aspartate, 
respectively, as their primary substrate, but have been 
renamed KATs in the context of KP biology (Cooper, 
2004; Guidetti, Hoffman, Melendez-Ferro, Albuquerque, 
& Schwarcz, 2007; Han, Cai, Tagle, Robinson, & Li, 2008; 
Okuno, Nakamura, & Schwarcz, 1991). Although the 
relative contributions of these KATs to cerebral KYNA 
biosynthesis have not been rigorously elaborated to 
date and may vary with physiological requirements and 
under pathological conditions, studies from our labora-
tories have provided evidence for a major role of KAT 
II. This was initially proposed theoretically on the basis 
that the enzyme’s classic substrate, the lysine metabolite 
α-aminoadipate, is present in the brain at relatively low 
concentrations (Guidetti & Schwarcz, 2003), and that no 
competing endogenous substrate other than kynurenine 
had been described. In marked contrast, other KATs rec-
ognize and use far more abundant amino acids as their 
substrate and, in the case of KAT I and KAT III, have 
a pH optimum in the alkaline range (∼9.0–9.5; Guidetti, 
Okuno, & Schwarcz, 1997; Han, Cai, et al., 2008). Direct 
support for a functionally significant role of KAT II in 
cerebral KYNA formation has come from mice with a 
targeted deletion of KAT II (Yu et al., 2004). These knock-
out mice display a variety of phenotypic and molecular 
alterations as a result of decreased KYNA formation in 
the brain, including increased α7nAChR function in the 
hippocampus (Alkondon et al., 2004), enhanced cogni-
tion (Potter et al., 2010), and increased vulnerability to 
QUIN-induced excitotoxicity (Sapko et al., 2006). These 
findings, together with the more recent advent and use 
of selective KAT II inhibitors, show that functional dis-
inhibition occurs in the brain when KAT II activity is 
compromised.

KAT II, which is primarily expressed in astrocytes 
(Guidetti, Hoffman, et al., 2007), has a high Km for kyn-
urenine (Guidetti, Amori, Sapko, Okuno, & Schwarcz, 
2007) (i.e., KYNA production increases linearly until the 
concentration of its bioprecursor, kynurenine, reaches 
millimolar concentrations). This is in line with other 
KATs but in marked contrast to other kynurenine-metab-
olizing enzymes, namely KMO and kynureninase (Figure 
1), which have much lower Km values (Bender & McCre-
anor, 1982) and are therefore much easier saturated when 
kynurenine concentrations rise. These biochemical con-
siderations are of functional significance under condi-
tions that favor brain influx of kynurenine, but appear 
to be less relevant when kynurenine synthesis from 
tryptophan is upregulated within microglia or in other 
brain cells that are involved in local neuroinflammatory 
phenomena (Heyes et al., 1996; Saito et al., 1993). Nota-
bly, the close apposition of KYNA-producing astrocytes 
to capillary walls and to pericytes of the blood–brain 
barrier places these glial cells in an excellent position 

to accumulate kynurenine from the circulation and to 
respond preferentially to fluctuations in peripheral kyn-
urenine concentrations (Gál & Sherman, 1978; Gál et al., 
1978; Owe-Young et al., 2008; Swartz et al., 1990).

Brain KYNA levels are reliably increased when cir-
culating kynurenine concentrations are elevated, for 
example, by non-brain-penetrant KMO inhibitors. By 
attenuating degradation along the QUIN branch of the 
KP, systemic administration of these pharmacological 
agents cause the accumulation of blood kynurenine. 
This results in enhanced brain influx of kynurenine and, 
in turn, prompts astrocytes to produce more KYNA (see 
previous section). Interestingly, such a shift in KP metab-
olism is less evident in the early stages following an 
intracerebral injection of a selective KMO inhibitor, indi-
cating a degree of functional, in addition to the anatomi-
cal, segregation of the two KP branches within the brain 
(Amori, Guidetti, Pellicciari, Kajii, & Schwarcz, 2009).

Mice with a targeted deletion of the Kmo gene have 
recently provided additional valuable information 
regarding the effects of selective KMO manipulation 
on KYNA (Giorgini et al., 2013). Extensive biochemi-
cal analysis of homozygous knockout mice confirmed 
the absence of KMO activity in both brain and periph-
eral organs, demonstrating that a single gene/enzyme 
accounts for the conversion of kynurenine to 3-HK. In 
these animals, 3-HK levels were dramatically reduced in 
all tissues, with the remaining amounts probably origi-
nating from food or bacterial sources. In line with the 
results obtained following the acute, systemic admin-
istration of selective KMO inhibitors (Carpenedo et al., 
1994; Röver, Cesura, Huguenin, Kettler, & Szente, 1997; 
Speciale et al., 1996), mutant mice showed sustained ele-
vations of KYNA levels. Importantly, the KYNA increase 
in the brain’s extracellular compartment, assessed by 
in vivo microdialysis, was approximately five-fold com-
pared with wild-type animals.

CAUSES AND EFFECTS OF KYNA 
FLUCTUATIONS IN THE BRAIN

Although critically relevant, increases or reductions 
in kynurenine levels are not the only mechanisms that 
determine the disposition of endogenous KYNA in the 
brain. Because catabolic enzymes for KYNA are not 
present in the mammalian brain (Turski & Schwarcz, 
1988)—and in fact have only been observed to exist in 
prokaryotic organisms (Taniuchi & Hayaishi, 1963)—and 
because the metabolite is remarkably stable chemically 
speaking, no specific processes are available to degrade 
cerebral KYNA intracellularly or extracellularly under 
biological conditions. Thus, in the extracellular compart-
ment, KYNA must compete with other acidic endogenous 
compounds for reuptake by organic anion transporters 
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(Uwai, Honjo, & Iwamoto, 2012) or for removal from the 
brain by a probenecid-sensitive process (Moroni et al., 
1988). Of note, newly formed KYNA enters the extracel-
lular milieu very rapidly (i.e., its release is not controlled 
by Ca2+ or other conventional mechanisms) (Turski, 
Gramsbergen, Traitler, & Schwarcz, 1989). To assure cere-
bral KYNA homeostasis in vivo as needed, several dis-
tinct mechanisms regulate the formation of endogenous 
KYNA from kynurenine. Although none of those mecha-
nisms is believed to affect KYNA levels specifically, their 
ability to control KYNA neosynthesis may have signifi-
cant ramifications for brain physiology and pathology.

Some of these regulatory processes are readily under-
stood and have been verified in experimental paradigms 
ranging from cell-free preparations to in vivo protocols. 
This includes the ability of endogenous 2-oxoacids like 
pyruvate and 2-oxoglutarate, which act as cosubstrates/
amino acceptors of the aminotransferase reaction, to 
stimulate KAT activity (Hodgkins & Schwarcz, 1998; 
Hodgkins, Wu, Zielke, & Schwarcz, 1999), and the abil-
ity of endogenous pro-oxidants (e.g., peroxynitrite and 
hydroxyl radicals) to promote the nonenzymatic con-
version of kynurenine to KYNA (Lugo-Huitron et al., 
2011; Blanco-Ayala et al., 2015). Moreover, by compet-
ing with kynurenine for transamination by KAT II, 
α-aminoadipate interferes readily with the production 
of KYNA, thus possibly linking lysine and tryptophan 
metabolism to KYNA function and dysfunction (Fuku-
watari, Sekine, Higashiyama, Sano, & Shibata, 2013; Wu 
& Schwarcz, 1996). Notably, because of their simple and 
straightforward action, all these processes can operate in 
every tissue, even though they may have special conse-
quences in the brain.

Other regulatory mechanisms are brain-specific, are 
only observed in intact tissue (i.e., in slice preparations 
or in vivo), and are less well-understood. For example, 
and apparently irrespective of the brain area, KYNA 
formation from kynurenine is greatly reduced under 
depolarizing conditions induced by veratridine or high 
concentrations of potassium (Turski et al., 1989; Wu et al., 
1992). This effect is dependent on the presence of intact 
neurons because it is abolished when neurons are ablated 
experimentally (Gramsbergen et al., 1997; Wu et al., 1992). 
Interestingly, de novo synthesis of KYNA in the brain is 
also strongly influenced by cellular energy metabolism. 
Specifically, KYNA formation is substantially lower in 
the absence of glucose, perhaps because of the reduction 
in pyruvate formation (Gramsbergen et al., 1997; Turski 
et al., 1989), and this effect can be neutralized by lactate, 
which does not affect KYNA synthesis on its own (Hodg-
kins & Schwarcz, 1998). These and similar findings, 
including the substantial decline in extracellular KYNA 
levels following selective astrocytic poisoning with  
fluorocitrate (Wu, Rassoulpour, & Schwarcz, 2007), con-
firm that astrocytes play a central role in cerebral KYNA 

production. At the same time, these studies highlight the 
complexity of KYNA neurobiology and, in particular, 
demonstrate that neuronal activity plays an active role 
in glial KYNA synthesis in the brain. Alone or together, 
impairments in any of these regulatory mechanisms may 
be responsible for the very rapid increases in extracellular 
KYNA, which occur in response to an excitotoxic insult 
(Wu et al., 1992) or seizure activity (Wu & Schwarcz, 
1996). Moreover, they may underlie the slow dysregu-
lation of cerebral KYNA levels, which is seen in several 
major human brain diseases and their animal models (see 
also the following section) (Schwarcz et al., 2012).

Fluctuations in brain KYNA levels have remarkable 
consequences on classic neurotransmitters, supporting 
the classification of the metabolite as an endogenous neu-
romodulator (Table 2). Thus, local perfusion of nanomo-
lar concentrations of KYNA itself, or relatively modest 
stimulation of cerebral KYNA neosynthesis by kynuren-
ine administration or systemic KMO inhibition, reliably 
result in substantial (30–50%) reductions in extracellular 
glutamate levels in several brain areas, including the stri-
atum, the hippocampus, and the prefrontal cortex. Nota-
bly, although most of these studies were performed by 
in vivo microdialysis (Carpenedo et al., 2001; Pocivavsek 
et al., 2011; Rassoulpour, Wu, Ferré, & Schwarcz, 2005; 
Wu et al., 2010), the decrease in glutamate can also be 
readily detected using a glutamate-sensitive microelec-
trode array, which allows for a much higher temporal 
resolution of the effect (Konradsson-Geuken et al., 2010). 
Conversely, extracellular glutamate levels in the brain 
rise promptly when KYNA synthesis is compromised by 
the local application of a KAT II inhibitor. Attesting to 
the specificity of this phenomenon, the elevation in glu-
tamate is not seen when minute amounts of KYNA are 
coadministered to offset the effect of KAT II inhibition 
(Konradsson-Geuken et al., 2010; Pocivavsek et al., 2011; 
Wu et al., 2010).

Experimental manipulations of brain KYNA not only 
influence glutamate but have qualitatively and quanti-
tatively very similar effects on the extracellular levels 
of dopamine (Rassoulpour, Wu, Ferré, et al., 2005; Wu 
et al., 2007), gamma-aminobutyric acid (GABA) (Beg-
giato et al., 2013; Beggiato, Tanganelli, et al., 2014) and, 
as demonstrated by upregulation after KAT II inhibition, 
acetylcholine (Zmarowski et al., 2009). Although not as 
thoroughly investigated as the link between KYNA and 
glutamate, these effects similarly do not appear to be 
brain region-specific (see Figure 2 for an illustration of 
the inverse relationship of KYNA and dopamine in the 
rat prefrontal cortex). Moreover, they are clearly not lim-
ited to acute events since KYNA-deficient KAT II knock-
out mice show significant increases in extracellular 
dopamine levels in the striatum (Wu et al., 2007) and ele-
vated extracellular glutamate levels in the hippocampus  
(Potter et al., 2010).
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The bidirectional actions of endogenous KYNA 
on classic neurotransmitter systems are likely initi-
ated by α7nAChRs (Albuquerque & Schwarcz, 2013). 
Thus, KYNA-induced decreases in the extracellu-
lar levels of glutamate, GABA, and dopamine are 
readily prevented by low doses of galantamine, a 
drug that directly counteracts KYNA at an allosteric 
potentiating site of the receptor (Beggiato et al., 2013;  
Beggiato, Tanganelli, et al., 2014; Konradsson-Geuken 
et al., 2010; Lopes et al., 2007; Wu et al., 2010, 2007), or, 
shown in the case of dopamine, the α7nAChR agonist 
choline (Rassoulpour, Wu, Albuquerque, & Schwarcz, 
2005). The involvement of α7nAChRs is also sup-
ported by the fact that the receptor antagonist methyl-
lycaconitine duplicates, but is not additive with, the 
effects of KYNA (Carpenedo et al., 2001; Rassoulpour, 
Wu, Albuquerque, et al., 2005). In contrast, and argu-
ing against the proposition that the effects of (fluctua-
tions in) endogenous brain KYNA are mediated by 
NMDA receptors, the effects of KYNA on extracellu-
lar neurotransmitter levels are neither reproduced nor 
influenced by the potent and selective glycineB recep-
tor antagonist 7-chloro-KYNA (Beggiato et al., 2013; 
Beggiato, Tanganelli, et al., 2014; Rassoulpour, Wu, 
Ferré, et al., 2005) and are not affected by co-perfusion 
with d-serine, a selective endogenous agonist of the 
glycineB site (Wu et al., 2007).

Interestingly, extracellular KYNA levels in the brain 
are in turn rapidly reduced by glutamate (Wu et al., 
1992) and by various pharmacological agents that 
stimulate dopaminergic neurotransmission (Poeggeler, 
Rassoulpour, Guidetti, Wu, & Schwarcz, 1998; Rassoul-
pour, Wu, Poeggeler, & Schwarcz, 1998; Wu, Rassoul-
pour, & Schwarcz, 2002), and are also dysregulated by 
continuous nicotine administration (Rassoulpour, Wu,  
Albuquerque, et al., 2005). All these effects are in line with 
the presence of appropriate neurotransmitter receptors 
on astrocytes (Conti, DeBiasi, Minelli, & Melone, 1996; 
Duffy et al., 2011; Khan, Koulen, Rubinstein, Grandy, & 
Goldman-Rakic, 2001; Sharma & Vijayaraghavan, 2001) 
and highlight the functional complexity of the tripar-
tite synapse (Perea, Navarrete, & Araque, 2009). Pos-
sible roles of these neurotransmitter effects on astrocytic 
KYNA formation, and especially possible implications 
for the pathophysiology of SZ and other brain diseases, 
have so far not been examined.

BEHAVIORAL EFFECTS OF MODERATE 
KYNA FLUCTUATIONS IN THE BRAIN

In adult rodents, nanomolar or low micromolar concen-
trations of KYNA itself, or stimulation of KYNA synthesis 
with kynurenine, causes a spectrum of cognitive deficits, 

TABLE 2 effects of KynA Fluctuations on extracellular neurotransmitter levels

Neurotransmitter Brain Area References

Increased KYNA ↓ Glutamate Caudate Carpenedo et al. (2001)

Striatum Rassoulpour, Wu, Ferré, et al. (2005)

PFC Wu et al. (2010) and Konradsson-Geuken et al. (2010)

Hippocampus Pocivavsek et al. (2011)
See Figure 3

↓ GABA Striatum Beggiato et al. (2013)

PFC Beggiato, Tanganelli, et al. (2014)

↓ Dopamine Striatum Rassoulpour, Wu, Ferré, et al. (2005)

PFC See Figure 2

Reduced KYNA ↑ Glutamate PFC Wu et al. (2010) and Konradsson-Geuken et al. (2010)

Hippocampus Pocivavsek et al. (2011)

Striatum Beggiato et al. (2013)

↑ GABA Striatum Beggiato et al. (2013)

PFC Beggiato, Tanganelli, et al. (2014)

↑ Dopamine Striatum Amori, Wu, et al. (2009)

PFC See Figure 2

↑ Acetylcholine PFC Zmarowski et al. (2009)

GABA, gamma-aminobutyric acid; KYNA, kynurenic acid; PFC, prefrontal cortex.
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which are readily translatable to the human condition. 
Specifically, these relatively moderate elevations in cere-
bral KYNA levels result in disruptions in auditory sen-
sory gating (Shepard, Joy, Clerkin, & Schwarcz, 2003) and 
prepulse inhibition (Erhardt, Schwieler, Emanuelsson, & 

Geyer, 2004), and induce impairments in prefrontal-medi-
ated cognitive flexibility (Alexander, Wu, Schwarcz, & 
Bruno, 2012; Hightower & Rodefer, 2011), hippocampus-
mediated contextual learning and memory (Pocivavsek 
et al., 2011) (Figure 3), and working memory and contex-
tual fear memory (Chess, Landers, & Bucci, 2009; Chess, 
Simoni, Alling, & Bucci, 2007; Vunck, Supe, Schwarcz, & 
Bruno, 2013) (see Table 3). Confirming the central role of 
α7nAChRs in KYNA function in the rat brain, several of 
these deficits are effectively neutralized by the administra-
tion of an α7nAChR agonist (Alexander et al., 2012; Phe-
nis, Vunck, Schwarcz, & Bruno, 2014; Vunck et al., 2013). 
Moreover, again supporting a functional link between 
KYNA and cognitive processes, deficits in contextual 
memory and increased anxiety are seen in KMO knock-
out animals, which show a several-fold elevation in brain 
KYNA levels (Giorgini et al., 2013). These impairments 
may be causally related to a malfunction in dopaminergic 
neurotransmission (Schwieler et al., 2014).

Conversely, decreases in brain KYNA levels are asso-
ciated with pro-cognitive effects. Thus, KAT II knock-
out mice display enhanced performance in a number of 
exemplary cognitive processes (Potter et al., 2010), and 
an acute reduction of brain KYNA significantly improves 
performance in a hippocampus-based cognitive task in 
rats (Pocivavsek et al., 2011) (see the following section for 
details). Taken together, these findings provide a strong 
rationale for considering KYNA as a possible etiological 
factor in the cognitive impairments seen in individuals 
with SZ and for inhibiting KYNA biosynthesis for thera-
peutic purposes.

KYNURENIC ACID AND COGNITIVE 
DEFICITS IN SCHIZOPHRENIA

Cognitive dysfunctions, including deficits in working 
memory, verbal and visual learning and memory, atten-
tion and vigilance, reasoning and problem-solving, pro-
cessing speed, and social cognition, are a core domain of 
the psychopathology of SZ (Green et al., 2008; McKibbin, 
Brekke, Sires, Jeste, & Patterson, 2004; Nuechterlein et al., 
2004). These deficits, which do not improve with antipsy-
chotic treatment, are seen in the majority of patients and 
originate in early adolescence—preceding the onset of 
psychotic and negative symptoms in young adulthood or 
later in life (Gold, 2004; Heinrichs, 2005).

Studies in humans and animals have provided support 
for the hypothesis that an elevation in brain KYNA levels 
may be causally involved in cognitive impairments seen 
in SZ. We first articulated this idea more than two decades 
ago based on KYNA’s ability to function as a preferential 
NMDA receptor antagonist (Ganong et al., 1983) and the 
emerging realization that NMDA receptor hypofunction 
plays a central role in several aspects of SZ pathology 

FIGURE 2 Kynurenic acid (KYNA) reduces the extracellular 
concentration of dopamine in the rat prefrontal cortex. (A) KYNA, 
applied for 2 h by reverse dialysis (bar), reversibly decreases dopamine 
levels (baseline: 1.3 nM). *p < 0.05 versus baseline value. The kynuren-
ine aminotransferase II (KAT II) inhibitor, S-ESBA (1 or 10 mM), was 
applied for 2 h by reverse microdialysis (bar). (B, C) Extracellular lev-
els of KYNA (baseline: 2.9 nM) and dopamine (baseline: 1.3 nM) were 
determined in the same microdialysate. Data are the mean ± standard 
error of the mean (SEM) (n = 4 per group). *p < 0.05 versus the respec-
tive baseline (two-way ANOVA with Bonferroni’s posthoc test).
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(Coyle, 1996; Olney, Newcomer, & Farber, 1999; Schwarcz 
et al., 1992). The hypothetical link between KYNA and 
cognitive dysfunction in SZ was then reinforced by the 
discovery of KYNA’s ability to noncompetitively inhibit 
α7nAChRs (Hilmas et al., 2001), which are critical for 
several cognitive processes (Levin, 2002) and believed to 
be impaired in SZ (Leonard et al., 1996; Sarter, Nelson, & 
Bruno, 2005).

Measurements in postmortem brain tissue and cere-
brospinal fluid (CSF) consistently demonstrate significant 
increases in the levels of both KYNA and kynurenine in 
SZ, and these changes do not appear to affect 3-HK levels 
and are unrelated to prolonged treatment with antipsy-
chotic drugs (Ceresoli-Borroni, Rassoulpour, Wu, Guidetti, 
& Schwarcz, 2006; Erhardt et al., 2001; Linderholm et al., 
2012; Miller, Llenos, Dulay, & Weis, 2006; Nilsson et al., 
2005; Sathyasaikumar et al., 2011; Schwarcz et al., 2001). 

These elevations in both kynurenine and KYNA levels may 
result from enzymatic changes, in particular an increase in 
TDO and a reduction in KMO, which may jointly account 
for an increase in kynurenine production and a shift of KP 
metabolism toward enhanced KYNA formation (Figure 1). 
Gene expression studies (Miller et al., 2004, 2006; Sathya-
saikumar et al., 2011; Wonodi et al., 2011) and, in the case 
of KMO, measurements of enzyme activity (Sathyasaiku-
mar et al., 2011; Wonodi et al., 2011), have demonstrated 
qualitatively similar impairments of these enzymes in 
various regions of the cerebral cortex of persons with SZ. 
Notably, the tissue KYNA concentrations reached in these 
cases are in the high nanomolar range, sufficient to inhibit 
α7nAChRs and to subsequently impact glutamatergic, 
GABAergic, dopaminergic, and cholinergic systems, all of 
which have been implicated in the psychopathology of SZ 
(Carlsson & Carlsson, 1990; Carlsson, Carlsson, & Nilsson, 

FIGURE 3 Acute elevation of kynurenic acid (KYNA) by systemic injection of kynurenine reduces extracellular glutamate and impairs 
hippocampal-dependent learning in rats. (A) Intraperitoneal (i.p.) injection of kynurenine (100 mg/kg) increases extracellular KYNA levels 
(baseline: 2.8 nM) and decreases extracellular glutamate (baseline: 2.0 μM) in the dorsal hippocampus. Data are the mean ± standard error of the 
mean (SEM) (n = 4, *p < 0.05 vs baseline, two-way ANOVA with Bonferroni’s posthoc test). (B) Kynurenine (100 mg/kg; i.p.) was applied daily 
90 min before testing in the Morris water maze. Data are the mean ± SEM (n = 12 per group, *p < 0.05 vs control, two-way repeated measures 
ANOVA with Bonferroni’s posthoc test).

TABLE 3 Acute Stimulation of KynA Synthesis: behavioral effects in rats

Kynurenine 
Administration Behavioral Task Outcome References

IP Auditory sensory gating Impairment Shepard et al. (2003)

IP Prepulse inhibition Impairment Erhardt et al. (2004)

IP Spatial working memory Impairment Chess et al. (2007)

IP Contextual fear conditioning Impairment Chess et al. (2007)

IP Attentional set-shifting Impairment Hightower and Rodefer (2011)

ICV Spatial learning and reference memory Impairment Pocivavsek et al. (2011)

IP Spatial learning and reference memory Impairment See Figure 3

IP Social behavior No effect Trecartin and Bucci (2011)

IP Attentional set-shifting Impairment Alexander et al. (2012)

IP Delayed nonmatch to position working  
memory

Impairment Vunck et al. (2013) and Phenis et al. (2014)

ICV, intracerebroventricular administration; IP, intraperitoneal injection; KYNA, kynurenic acid.
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2004; Coyle et al., 2012; Gonzalez-Burgos & Lewis, 2012; 
Sarter et al., 2005).

In further support of the KYNA hypothesis, a single 
nucleotide polymorphism in the KMO gene has been 
identified in the brain of SZ patients (Aoyama et al., 
2006). The same polymorphism (rs2275163) was subse-
quently linked to impairments in smooth pursuit eye 
movement and visuospatial working memory (Wonodi 
et al., 2011) and increased KYNA levels in CSF (Holtze 
et al., 2012). Although the connection between KMO 
single nucleotide polymorphisms and (a reduction in) 
KMO activity has not been verified so far, these studies 
suggest that the investigation of KP metabolism in SZ 
may be particularly informative using distinct subdo-
mains of psychopathology (endophenotypes). A recent 
study demonstrating that SZ patients with distress intol-
erance show an especially pronounced stress-induced 
elevation in salivary KYNA levels support this general 
notion (Chiappelli et al., 2014).

Clinical studies (Borovcanin et al., 2012; Chittiprol 
et al., 2009; Nawa, Takahashi, & Patterson, 2000; Severance  
et al., 2012; Sirota, Schild, Elizur, Djaldetti, & Fishman, 
1995), assessments of human postmortem brain tissue 
(Arion, Unger, Lewis, Levitt, & Mirnics, 2007; Busse et al., 
2012; Saetre et al., 2007), genetic analyses and consid-
erations (Michel, Schmidt, & Mirnics, 2012; Stefansson  
et al., 2009), and corresponding work in experimental 
animals (Behrens, Ali, & Dugan, 2008; Bergink, Gibney, 
& Drexhage, 2014) strongly indicate an etiologically 
significant connection between the immune system 
and various domains of SZ pathology, including cogni-
tive impairments. As cytokines, including interferon-γ, 
interleukin-1β, and interleukin-6, stimulate several KP 
enzymes, most prominently IDO and KMO (Kiank 
et al., 2010; Saito, Markey, & Heyes, 1991; Widner, 
Ledochowski, & Fuchs, 2000), it is not surprising that 
KYNA and other kynurenines have been considered 
to be active participants in this process. Indeed, stress, 
viral, or microbial infections as well as direct cytokine 
administration cause increases in the formation of KP 
metabolites in the periphery, in the CSF, and in the 
brain, with larger effects in the QUIN branch of the 
pathway in many but not all cases (Chiarugi & Moroni, 
1999; Heyes, Brew, et al., 1992; Heyes, Saito, et al., 1992; 
Laugeray et al., 2010; Miura, Shirokawa, Isobe, & Ozaki, 
2009; Notarangelo et al., 2014; Pawlak, Takada, Urano, 
& Takada, 2000; Raison et al., 2010). Notably, infections 
in humans can result in long-lasting KYNA elevations 
in the CSF, as documented, for example, after tick-borne 
and herpes simplex virus type 1–induced encephalitis 
(Atlas et al., 2013; Holtze et al., 2012). However, evi-
dence supporting the idea that immune activation in 
adulthood leads to stimulation of KP metabolism in SZ 
remains quite speculative (Bechter et al., 2010; Johansson  
et al., 2013; Schwieler et al., 2015).

The most compelling arguments favoring a role of 
immune-related KP impairments in SZ come from data 
in experimental animals that experience stress or other 
immune challenges early in life. This focus on immunolog-
ical abnormalities in the immature brain, which is based 
on epidemiological and other studies in humans (Brown, 
2011; Brown & Susser, 2002; Hornig & Lipkin, 2001;  
Rapoport, Giedd, & Gogtay, 2012; van Os & Selten, 1998; 
Volk & Lewis, 2013; Wright, Gill, & Murray, 1993), has 
led to a plethora of converging preclinical findings and 
the rather unambiguous conclusion that stress, bac-
terial, or viral infections in utero or during the early 
postnatal period cause structural changes as well as 
neurochemical and cognitive impairments in adult-
hood, which are reminiscent of those seen in SZ (see, e.g.,  
Abazyan et al., 2010; Fatemi et al., 2002; Fortier, Luheshi, 
& Boksa, 2007; Markham & Koenig, 2011; McAllister, 
2014; Meyer & Feldon, 2009; Piontkewitz, Arad, & Weiner, 
2012; Shi, Fatemi, Sidwell, & Patterson, 2003). Notably, 
though these consequences of early immune abnormali-
ties have been mostly described in mice and rats so far, 
they are also observed in nonhuman primates (Bauman 
et al., 2014; Willette et al., 2011).

Stress or infections affect KP metabolism and elevate 
brain KYNA levels not only in adulthood but also prena-
tally (Notarangelo & Schwarcz, 2014) and in the early post-
natal period (Asp, Holtze, Powell, Karlsson, & Erhardt, 
2010; Holtze, Asp, Schwieler, Engberg, & Karlsson, 2008; 
Zavitsanou et al., 2014). This made it possible to study the 
hypothetical connection between perinatal activation of 
the immune system, early stimulation of KP metabolism, 
and the emergence of SZ-like phenomena later in life 
directly by experimentally increasing KYNA levels in the 
immature rodent brain (Table 4). In one approach, preg-
nant rats were continuously fed KYNA’s brain-penetrant 
bioprecursor kynurenine from embryonic day (ED) 15 
to weaning (i.e., postnatal day 21). This protocol assures 
chronic elevation of brain KYNA levels during the entire 
treatment period. Upon termination of the treatment, all 
offspring were fed normal rodent chow until biochemical 
and behavioral testing in adulthood. As adults, animals 
exposed to high brain KYNA levels during early devel-
opment show remarkable biochemical abnormalities 
reminiscent of SZ, namely increased extracellular KYNA 
and parallel reductions in extracellular glutamate levels 
in the prefrontal cortex and in the hippocampus. These 
biochemical changes may explain the pronounced defi-
cits in hippocampal memory, learning and spatial mem-
ory, contextual memory, and executive function in these 
animals (Alexander et al., 2013; Pocivavsek, Wu, Elmer, 
Bruno, & Schwarcz, 2012). Follow-up studies revealed 
that an increase in fetal brain KYNA during the last week 
of gestation (ED–22) (i.e., at a time when ambient cerebral 
KYNA levels in the mammalian brain are already excep-
tionally high normally) (Beal et al., 1992; Cannazza et al., 
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2001; Ceresoli-Borroni & Schwarcz, 2000), is sufficient to 
induce these biochemical and behavioral abnormalities 
in adulthood (Pershing et al., 2015; Pocivavsek, Thomas, 
et al., 2014). Interestingly, rats exposed to elevated KYNA 
during the final week of embryonic development also 
show a delayed decrease in the expression of α7nAChRs 
as well as reductions in dendritic spine density and sub-
sensitivity to mesolimbic stimulation of glutamate release 
in the prefrontal cortex (Pershing et al., 2015).

KYNA levels in the fetal brain can also be elevated 
pharmacologically, using the systemic administration 
of the KMO inhibitor Ro 61-8048 (Röver et al., 1997) 
during the late gestational period. Applied three times 
(i.e., on ED 14, ED 16, and ED 18), this agent leads to 
long-lasting deficits in adult offspring, including a 
reduction in hippocampal long-term potentiation and 
structural changes in hippocampus and cortex (Forrest, 
Khalil, Pisar, Darlington, & Stone, 2013; Forrest, Khalil, 

TABLE 4 Prolonged Systemic Kynurenine Administration: behavioral effects

Systemic 
Administration

Age of 
Manipulation Testing Behavioral Assessment Outcome Species References

Laced food ED15–22 PD56 Spatial learning and reference 
memory

Impairment Rat Pocivavsek, Thomas, et al. 
(2014)

Passive avoidance contextual 
learning

Impairment

Laced food ED15–22 PD56 Attentional set-shifting Impairment Rat Pershing et al. (2015)

Laced food ED15–22 PD35 Trace fear conditioning No effect Rat Pershing et al. (2014)

PD56 Impairment

Laced food ED15–22 PD56 Delayed nonmatch to position 
working memory

Impairment Rat Vunck, Phenis, Tseng, 
Schwarcz, and Bruno 
(2014)

Laced food ED15–PD21 PD56 Spatial learning and reference 
memory

Impairment Rat Pocivavsek et al. (2012)

Passive avoidance contextual 
learning

Impairment

Laced food ED15–PD21 PD56 Attentional set-shifting Impairment Rat Alexander et al. (2013)

IP PD7–10 PD70 Social behavior Impairment Rat Iaccarino et al. (2013)

IP PD7–16 PD90 Amphetamine-induced 
locomotor activity

Impairment Mouse Liu et al. (2014)

IP PD27–35 PD61 Social behavior Impairment Rat Trecartin and Bucci (2011)

PD61 PD84 No effect

IP PD27–35 PD61 Novel object recognition 
memory

Impairment Rat Akagbosu et al. (2012)

Contextual fear memory Impairment

Cue-specific fear memory No effect

IP PD27–35 PD61 Motivational value by sign 
tracking

Increased Rat DeAngeli et al. (2015)

Laced food PD42–49 PD85 Spatial learning and reference 
memory

No effect Rat Pocivavsek, Thomas, et al. 
(2014)

Passive avoidance contextual 
learning

No effect

IP Adulthood Adulthood Prepulse inhibition Impairment Rat Nilsson, Linderholm, and 
Erhardt (2006)

IP Adulthood Adulthood Amphetamine-induced 
locomotor activity

Impairment Mouse Olsson, Larsson, and Erhardt 
(2012)

ED, embryonic day; IP, intraperitoneal injection; PD, postnatal day.
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Pisar, McNair, et al., 2013; Khalil et al., 2014; Pisar et al., 
2014). Jointly, these studies highlight the relevance of KP 
metabolism in fetal brain development and emphasize 
the importance of maintaining normal KP homeostasis 
in the maturing brain. The concept that hyperphysiolog-
ical levels of KYNA in the fetal brain cause untoward 
consequences in adulthood is also indirectly supported 
by the recent demonstration that prenatal activation of 
α7nAChRs, possibly by counteracting the elevation in 
KYNA levels (Albuquerque & Schwarcz, 2013), effec-
tively downregulates inflammatory responses in the 
fetal brain, and ameliorates the detrimental long-term 
effects of maternal infection (Wu et al., 2015). Further 
evaluation of the implications of all these findings for 
the pathophysiology of SZ, and the design of successful 
follow-up studies, will require detailed insights into the 
mechanisms, which normally control the presence, for-
mation, and function of KYNA and other KP metabolites 
in the fetal brain. Unfortunately, these mechanisms are 
still only poorly understood.

KP manipulations during the early postnatal period 
or in adolescence also influence translationally relevant 
behavioral performances in adult animals. Thus, in 
mice, repeated systemic kynurenine injections on post-
natal days 7–16 (Liu et al., 2014) or postnatal days 7–10 
(Iaccarino, Suckow, Xie, & Bucci, 2013) enhance sensi-
tivity to amphetamine-induced increases in locomotor 
activity and deficits in social behavior. In rats, intermit-
tent exposure to kynurenine during adolescence causes 
impairments in two hippocampus-dependent cognitive 
processes (i.e., novel object recognition and contextual 
fear memory) as well as a deficit in social behavior, in 
adulthood (Akagbosu, Evans, Gulick, Suckow, & Bucci, 
2012; Trecartin & Bucci, 2011). Moreover, kynurenine-
treated rats show increased incentive salience of cues 
associated with reward, perhaps informing about the 
heightened sensitivity to drug-related cues seen in per-
sons with SZ. Very interestingly, early exposure to kyn-
urenine also prevents long-term potentiation after a 
burst of high-frequency stimulation that is sufficient to 
produce a robust effect in vehicle-treated rats (DeAngeli 
et al., 2014). Taken together, all these results reinforce the 
hypothesis that developmental events resulting in the 
increased presence and function of KYNA in the brain 
have significant construct validity for the study of cogni-
tive deficits in persons with SZ.

PHARMACOLOGICAL APPROACHES TO 
REDUCE EXCESSIVE KYNA FUNCTION 

IN THE BRAIN

The idea that elevated KYNA concentrations are caus-
ally related to cognitive impairments in SZ immediately 
suggests possible clinical benefits of interventions that 
lower brain KYNA levels. Unfortunately, no degradative 

enzymes or reuptake sites can be targeted to specifically 
promote the removal of excess KYNA from its effector 
site(s) in the brain, nor is it feasible to exploit the ability 
of depolarizing events or cellular energy deprivation to 
downregulate cerebral KYNA production (Gramsbergen 
et al., 1997; Turski et al., 1989). Efforts to reduce KYNA for-
mation in the brain have therefore focused mostly on phar-
macological KAT inhibition. Feasibility of this approach 
is demonstrated by the fact that the nonspecific amino-
transferase inhibitor aminooxyacetic acid readily blocks 
cerebral KYNA neosynthesis in vivo (Speciale et al., 1990; 
Swartz et al., 1990). Because KAT II does not recognize 
abundant endogenous amino acids as competitors of its 
substrate kynurenine, this enzyme was soon regarded as 
the preferential target to effect KYNA synthesis inhibition 
in the brain (Schwarcz et al., 2012).

Development of (S)-4-(ethylsulphonyl)benzoylala-
nine (ESBA), the first selective KAT II inhibitor syn-
thesized (Pellicciari et al., 2006), was delayed because 
other compounds with comparable inhibitory potency 
(Varasi et al., 1996) also attenuated KMO activity 
and therefore failed to lower KYNA levels in the rat 
brain in vivo (H.-Q. W and R.S., unpublished data; cf.  
Figure 1). However, ESBA rapidly reduces extracellu-
lar KYNA levels (Amori, Wu, et al., 2009; Pellicciari 
et al., 2006; Pocivavsek et al., 2011; Wu et al., 2010).

The use of ESBA, the structurally distinct inhibitor 
BFF-122 (Amori, Guidetti, et al., 2009) or the endogenous 
substrate α-aminoadipate (Wu, Ungerstedt, & Schwarcz, 
1995), also revealed that KAT II preferentially controls a 
pool of KYNA that can be rapidly mobilized in the brain. 
Independent of brain region, this pool accounts for not 
more than 30–40% of extracellular KYNA levels in vivo. 
The relatively small reduction in KYNA caused by acute 
KAT II inhibition is sufficient, however, to increase the 
extracellular concentrations of glutamate (Pocivavsek 
et al., 2011; Wu et al., 2010), dopamine (Figure 2) (Amori, 
Wu, et al., 2009), and GABA (Beggiato et al., 2013; Beggiato,  
Tanganelli, et al., 2014) (i.e., the same neurotransmitters 
that are decreased when KYNA levels are moderately 
elevated). These studies, as well as the fact that selec-
tive KAT II inhibition results in an increase in extracel-
lular acetylcholine levels in the medial prefrontal cortex 
(Zmarowski et al., 2009), establish that astrocyte-derived 
KYNA serves as a bidirectional neuromodulator in the 
rat brain.

A causal connection between a reduction in KYNA 
synthesis and cognitive enhancement was first demon-
strated using KAT II knockout mice. These mutant ani-
mals exhibit significantly improved performance in three 
hippocampus-dependent behavioral paradigms, namely 
object exploration and recognition, passive avoidance, 
and spatial discrimination. Moreover, compared with 
wild-type controls, hippocampal slices from KAT II– 
deficient mice show an impressive increase in the ampli-
tude of long-term potentiation in vitro (Potter et al., 2010). 
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A subsequent first proof-of-concept study in rats revealed 
that ESBA administration improves performance in the 
Morris water maze (Pocivavsek et al., 2011). Because of its 
inability to penetrate the blood–brain barrier to a signifi-
cant extent, ESBA had to be applied intracerebroventricu-
larly in this experiment, emphasizing the need to develop 
systemically active KAT II inhibitors. Two compounds 
with high specificity for KAT II are now available and 
have been successfully used in experimental animals. Both 
PF-04859989 (Dounay et al., 2012; IC50: 263 nM), adminis-
tered subcutaneously, and BFF-816 (Wu et al., 2014; IC50: 
14 μM), which is orally active, rapidly reduce extracellular 
KYNA levels in various regions of the rat brain. As antici-
pated from studies with focally applied KAT II inhibitors, 
oral BFF-816 at the same time increases both extracellu-
lar glutamate and dopamine. Remarkably, no tolerance is 
seen when animals are treated daily for five consecutive 
days (Wu et al., 2014). PF-04859989, too, boosts glutamater-
gic function, demonstrated by reversal of KYNA-induced 
attenuation of nicotine-evoked glutamatergic transients 
(Koshy Cherian et al., 2014), but unexpectedly does not 
affect extracellular dopamine levels (Kozak et al., 2014).

Behavioral tests have revealed remarkable pro-cogni-
tive effects of both agents. Thus, in rodents, PF-04859989 
prevents amphetamine- and ketamine-induced disrup-
tion of auditory gating as well as ketamine-induced dis-
ruption of performance in a working memory task and 
a spatial memory task, and improves performance in a 
sustained attention task (Kozak et al., 2014). Notably, 
the compound, which has especially high potency as 
an inhibitor of human KAT II (IC50: 23 nM), also readily 
antagonizes ketamine-induced working memory defi-
cits in nonhuman primates (Kozak et al., 2014). In excel-
lent conceptual agreement, daily injections of BFF-816 
significantly improve performance in spatial and refer-
ence memory in rats (Wu et al., 2014), and pretreatment 
with BFF-816 attenuates the contextual memory deficit 
exhibited in the offspring of kynurenine-treated dams 
(see the previous section; Pocivavsek, Wu, et al., 2014).

The use of α7nAChR agonists constitutes an alterna-
tive strategy to limit the actions of KYNA in the brain, 
and this approach has been validated to overcome 
KYNA-induced cognitive impairments in rats. Thus, 
the positive allosteric modulator galantamine effectively 
prevents KYNA-induced deficits in attentional set-shift-
ing (Alexander et al., 2012) and working memory (Phenis 
et al., 2014), and the α7nAChR partial agonist SSR180711 
restores conditioned freezing to control levels in the off-
spring of kynurenine-fed dams (Pershing et al., 2014).

Taken together, these results support the notion that 
KAT II inhibitors or pharmacological agents that attenu-
ate the function of KYNA at its receptor(s), hold promise 
for cognitive enhancement in healthy people and espe-
cially for overcoming cognitive deficits in SZ and, pos-
sibly, other psychiatric disorders. In principle, because of 
KYNA’s ability to effectively decrease the extracellular 

concentrations of several neurotransmitters known to 
play critical roles in cognitive processes, any pharma-
cological or other intervention that reduces the levels 
of KYNA or otherwise interferes with its function in 
the brain may show pro-cognitive effects. Antioxidants 
(Lugo-Huitron et al., 2011; Blanco-Ayala et al., 2015) 
and stimulants such as amphetamine (Rassoulpour 
et al., 1998) appear to constitute interesting leads in this 
context.

FUTURE PERSPECTIVES

In spite of the remarkable convergence of experimental 
data supporting a neuromodulatory role of KYNA in the 
mammalian brain, many fundamental issues of KYNA 
neurobiology continue to be unresolved. The understand-
ing of the physiological function of KYNA in the brain may 
help to identify and reconcile the roles of the ever-expand-
ing number of potential receptor targets (Stone et al., 2013, 
Table 1). These investigations are still in the very early 
phases, and it remains unknown if and under which con-
ditions all these sites are directly affected by endogenous 
KYNA in vivo. Several unanswered questions also relate to 
physiological events upstream from KYNA. In other words, 
we need to focus on the mechanisms that normally link 
fluctuations in both peripheral and central KP metabolism 
to KYNA formation in the brain. Of critical importance in 
this regard would be, for example, a thorough examination 
of the possible functional relationship between the KP and 
the serotonin branch of tryptophan degradation. Other top-
ics, such as the chronic effects of (changes in) dietary tryp-
tophan or metabolic malfunction, possible sex differences, 
and circadian or seasonal phenomena, have so far not been 
investigated with regard to brain KYNA. Of more imme-
diate significance, the recent emphasis on a possible role 
of KYNA in early brain development (see previously) and 
maturation (Thomases, Flores-Barrera, Bruno, Schwarcz, & 
Tseng, 2014) has highlighted the need to better understand 
the ontogenetic trajectory of the KP. Although relevant 
prior studies have been published in this area (Manuelpil-
lai et al., 2005; Nicholls, Nitsos, Smythe, & Walker, 2001), the 
prenatal dynamics between mother, placenta, and fetus, in 
particular, are poorly understood (Beggiato, Sathyasaiku-
mar, et al., 2014; Notarangelo & Schwarcz, 2014), yet must 
hold the key to the exceptionally high levels of KYNA in the 
fetal brain (Beal et al., 1992; Cannazza et al., 2001; Ceresoli- 
Borroni & Schwarcz, 2000; Pocivavsek, Thomas, et al., 
2014). Complementary research with far-reaching 
implications should explore the possibility that trypto-
phan originating from the gut microbiome influences 
KYNA levels and function in the brain both pre- and 
postnatally. Because the production of tryptophan by 
microbiota is not enantioselective (Kolodkin-Gal et al., 
2010; Lam et al., 2009; Yamada, Yoshida, Nakazawa, &  
Kumagai, 1975), these studies should include the assessment 
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of d-tryptophan, which has recently been shown to raise 
brain KYNA levels in the rat following peripheral admin-
istration (Ishii, Iizuka, Ogaya, Song, & Fukushima, 2011; 
Notarangelo et al., 2013).

As reviewed here, the possible role of the KP, and KYNA 
in particular, in SZ has gained significant traction during 
the past decade. Because it appears that KP impairments 
in utero and/or later in life may be causally linked to cog-
nitive and other abnormalities in persons with the disease, 
both genetic and environmental causes of cerebral KYNA 
malfunction will need to be examined longitudinally and 
in depth. These studies should include an evaluation of 
the involvement of KP metabolism and brain KYNA in 
“double-hit” phenomena, which are increasingly viewed 
to be etiologically significant in SZ (Bayer, Falkai, & Maier, 
1999; Giovanoli et al., 2013).

In the clinical realm, it remains to be seen if measure-
ments of KYNA and other KP metabolites in the serum or 
other peripheral compartments provide data that can be 
used as biomarkers for diagnostic and treatment purposes. 
In preparation of clinical applications, there is also a press-
ing need to develop new methodologies for specifically 
monitoring the effects of pharmacological KYNA manipu-
lations in the human brain. Challenges include the distinct 
structure of human KAT II, which needs to be taken into 
consideration when attempting to tag the enzyme directly 
with a radiolabeled tracer (Pellicciari et al., 2008), and the 
multitude of potential receptor sites (see Table 1) for which 
no in vivo imaging techniques are available to verify tar-
get engagement of KYNA. Together with the availability 
of pharmacological agents that can predictably influence 
KYNA levels in the human brain, successful resolution of 
these methodological challenges will provide investigators 
with the tools that are necessary to test the KYNA hypoth-
esis in persons with SZ and, it is hoped, help to attenuate 
the cognitive deficits that are associated with the disease. 
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INTRODUCTION

Schizophrenia is one of the most devastating men-
tal disorders, affecting about 1% of the general popula-
tion worldwide. The clinical picture of the disease has 
been traditionally seen to embrace three major groups of 
symptoms (positive, negative, and cognitive symptoms) 
in various combinations. Positive symptoms include 
such prominent manifestations as hallucinations, delu-
sions, and disordered thoughts and speech. A variety 
of emotional and social deficits are related to negative 
symptoms. Memory, attention, and learning deficits 
represent cognitive symptoms of schizophrenia that are 
notoriously difficult to treat.

Since the 1970s, when Seeman, Snyder, and others 
have shown that typical antipsychotics selectively block 
dopamine (DA) D2 receptors (Feinberg & Snyder, 1975; 
Seeman & Lee, 1975), the DA/monoamine theory of 
schizophrenia has been one of the principal frameworks 
to explain pathogenesis. Increased dopaminergic tone 
or sensitivity of D2 DA receptors resulting in dysregula-
tion of intracellular signaling mechanisms would under-
lie manifestations of schizophrenia, particularly those 
related to positive symptoms. Most importantly, this 
theory still has strong predictive validity, because all of 
the clinically effective antipsychotics are D2 DA recep-
tors antagonists.

All DA receptors, including D2 DA receptors, are 
members of the G protein-coupled receptor (GPCR) 
superfamily. Each of them possesses seven membrane-
spanning domains and is able to activate G proteins to 
transduce signals to intracellular molecules. There are 
two major types of intracellular signaling mechanisms 
that can be triggered by the activation of D2 DA receptors. 
A first type is G protein-dependent and results in a nega-
tive regulation of cAMP and intracellular calcium levels 
by activation of ion channels or by release of calcium 
from intracellular depots (Nishi,  Snyder, & Greengard, 
1997; Missale, Nash, Robinson, Jaber, & Caron, 1998). A 
second type is G protein-independent and involves the 
formation of a protein complex composed of β-arrestin 
2, Akt should be written in capitals (AKT), and protein 
phospholipase 2A (PP2A) (Beaulieu et al., 2005). Both 
mechanisms are believed to be involved in regulation of 
DA-associated behaviors.

Despite providing a good correlation between anti-
psychotic drug action, the monoamine theory of schizo-
phrenia has received relatively poor support from 
genetic evidence. However, one major exception to this 
is the identification of a mechanism for the regulation 
of AKT and Glycogen synthase kinase 3 (GSK3) by D2 
dopamine receptors. GSK3 is a highly conserved serine 
threonine kinase critically involved in D2R/β-arrestin 2/
AKT/PPA2 intracellular signaling downstream of AKT.  

a These authors contributed equally to this work.
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There are two isoforms of GSK3: GSK3α (51 kDa) and 
GSK3β (47 kDa), which are coded by two separate gene 
loci. It was shown that several schizophrenia risk genes 
(such as AKT1, Neuregulin 1, and Disc1) directly interact 
with or contribute to cascades signaling through GSK3. 
Furthermore, this kinase also plays a role in neurodevel-
opment. GSK3 may, thus, be located at a crossroads of 
pathways that modulate development, behaviors, and 
cognition. Intriguingly, both psychomimetics and anti-
psychotics affect GSK3 activity (Beaulieu, 2012). Here, we 
discuss the involvement of GSK3 in DA-related intracel-
lular signal cascades believed to be involved in different 
behavioral dimensions schizophrenia with a particular 
emphasis on the results of human and animal studies.

GSK3 REGULATING PATHWAYS

Regulation of GSK3 by AKT

AKT is a versatile serine/threonine kinase impli-
cated in numerous cellular processes in neurons ranging 
from monoamine transporter trafficking and synaptic 
plasticity to morphology and metabolism. AKT, also 
termed protein kinase B (PKB), comprises three closely 
related isoforms (AKT1, 2, and 3), with distinct and 
specific functions. AKT is a major signal transducer 
downstream of phosphatidylinositol 3-kinase (PI3K) 
activation in response to cell surface receptor stimu-
lation. PI3K activity produces phosphatidylinositol 
(3,4)-biphosphate (PIP2) and phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3), which binds the pleckstrin 
homology (PH) domain of AKT, thereby recruiting AKT 
to the cell membrane where it is activated (Gonzalez &  

McGraw, 2009). To be activated, AKT1undergoes 
sequential phosphorylation in the catalytic domain 
(Thr308) and carboxy terminal (Ser473) by intracellular 
kinases 3-phosphoinositide-dependent protein kinase 
1 (PDK1) and rictor-mammalian target of rapamycin 
complex 2 (mTORC2), respectively (de Bartolomeis, 
Buonaguro, & Iasevoli, 2013). Following activation, 
AKT phosphorylates a number of downstream signal-
ing molecules. GSK3 isoforms are phosphorylated by 
AKT at N-terminal serine residues, Ser21 (GSK3α) and 
Ser9 (GSK3β). This event results in the inhibition of both 
GSK3 isoforms. (Cross, Alessi, Cohen, Andjelkovich, & 
 Hemmings, 1995) ( Figure 1). Such inhibitory phosphor-
ylation can also be catalyzed by other serine threonine 
kinases including p70 ribosomal S6 kinase (Sutherland, 
Leighton, & Cohen, 1993), p90 ribosomal S6 kinase 
(p90rsk-1) (Stambolic &  Woodgett, 1994), AGC kinase, 
p38 mitogen-activated protein kinase (MAPK) (Cohen & 
Frame, 2001), protein kinase C, and phospholipase Cγ1 
(Shin, Yoon, Kim, Kim, & Lee, 2002).

Regulation of GSK3 by Wnt

Wnt pathway, a prominent modulator of a plethora of 
cellular events also incorporates GSK3. In neurons, the 
processes governed by this cascade include but are not 
limited to synapse formation and specificity, synaptic 
plasticity, and neural development (Okerlund & Cheyette, 
2011; Wu & Pan, 2010). In 1995, different groups showed 
for the first time that expression of a dominant negative 
mutant of GSK3 in the ventral side of Xenopus embryo 
could imitate Wnt-induced formation of an ectopic dorsal 
axis (Dominguez, Itoh, & Sokol, 1995; He, Saint-Jeannet, 
Woodgett, Varmus, & Dawid, 1995; Pierce & Kimelman, 

FIGURE 1 GSK3 signaling networks. Proteins represented in bold are encoded by genes conferring susceptibility to schizophrenia, arrows 
denote activation, and T-shaped arrows denote inhibition.
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1995). Further investigation revealed that β-catenin, the 
key effector of the canonical Wnt system, is indeed a GSK3 
substrate, the phosphorylation of which by GSK3 renders 
it unstable and subject to ubiquitination (Yost et al., 1996). 
This phenomenon occurs in the “β-catenin destruction 
complex” formed by interaction of the scaffolding protein 
AXIN with its partners and stabilized by phosphorylation 
of GSK3 and casein kinase I-alpha (CKIα). Other compo-
nents include adenomatous polyposis coli (APC) and 
WTX. When the Wnt pathway is inactive, interplay with 
AXIN and APC brings cytoplasmic β-catenin to the com-
plex, leading to its sequential phosphorylation by CKIα 
and GSK3 and resultant proteasomal degradation (Wu & 
Pan, 2010).

The canonical Wnt pathway is activated upon binding 
of Wnt ligands to seven transmembrane-domain protein 
frizzled (Fzd) and its co-receptors low-density lipopro-
tein receptor-related proteins 5 and 6 (LRP5/6). This 
event results in the mobilization of dishevelled (Dvl) and 
subsequently GSK3-associated AXIN to membrane, cul-
minating in dissociation of GSK3 from β-catenin (Sutton 
& Rushlow, 2011). Stabilized β-catenin accumulates in 
the cytoplasm and translocates to the nucleus, where it 
forms a complex with co-transcription factors T cell fac-
tor/lymphoid enhancer factor (TCF/LEF) and initiates 
the transcription of Wnt-target genes (Wu & Pan, 2010) 
(Figure 1). Of note, activation of the Wnt cascade, as 
opposed to PI3K signaling pathway, does not affect the 
phosphorylation status and, therefore, kinase activity of 
GSK3 (Ding, Chen, & McCormick, 2000).

Regulation of GSK3 by Disc1

Disrupted-in-schizophrenia 1 (DISC1) is a scaffold-
ing protein that interacts with several protein partners 
and modulates various signaling cascades in the brain 
and participates in neuronal development and synap-
tic functions (Johnstone et al., 2011). Recent findings 
have indicated that DISC1 binds and regulates GSK3β 
activity (Figure 1) (Mao et al., 2009). Using specific shR-
NAs against endogenous DISC1 in adult hippocampal 
progenitors (AHPs) or in E13 mouse brains, Mao et al. 
demonstrated that DISC1 promotes both embryonic 
and adult neural progenitor proliferation and that this 
effect is exerted through modulation of the canonical 
Wnt pathway (Mao et al., 2009). DISC1 KO decreased 
the number of proliferative neural progenitors in an 
embryonic mouse brain, abolished Wnt3a-induced 
AHP proliferation, reduced β-catenin amount, and spe-
cifically curtailed LEF/TCF transcriptional activity. The 
deficits were restored by expression of either DISC1 or a 
degradation-resistant β-catenin. Negative regulation of 
GSK3βactivity, either directly or indirectly, by DISC1 was 
suggested by the observation that a decrease in β-catenin 
level was associated by increases in its phosphorylation 

at Ser33/37 and Thr41, motifs known to be phosphory-
lated by GSK3.

More direct evidence for an inhibition of GSK3 by 
DISC1 came from the findings that DISC1 abrogation 
induced, while its overexpression precluded, GSK3β 
autophosphorylation at Tyr216, a step crucial for GSK3 
activity (Lochhead et al., 2006). In contrast, Ser9 phos-
phorylation was unaltered by disc1 KO, excluding the 
involvement of AKT in regulation of GSK3β by DISC1. 
In an attempt to dissect the mechanism, DISC1 was 
found to inhibit GSK3β activity through a direct physical 
interaction of its N-terminal region (aa 1–220).

In adult mouse hippocampus, DISC1 has been shown 
to sequester an AKT activity enhancer called KIAA1212, 
leading to inhibition of AKT and one of its downstream 
kinases mTOR (Anai et al., 2005). Over the course of adult 
neurogenesis, a finely tuned stage-dependent role has 
been proposed for GSK3 and DISC1 (Kim et al., 2009). 
According to the findings of Ishizuka et al., during mid-
embryonic stages when progenitor cell proliferation is 
prominent, unphosphorylated DISC1 binds GSK3β to 
promote cell proliferation. However, later in embryonic 
stages when neuronal migration predominates, phos-
phorylated DISC1 dissociates from GSK3β and switches 
its role to activating neuronal migration (Ishizuka et al., 
2011). DISC1 also forms a complex with DIXDC1, and the 
resulting complex can potentiate the canonical Wnt path-
way (Singh et al., 2010). Apart from β-catenin, phosphor-
ylation of two other known substrates of GSK3β, namely 
Ngn2 (Ma et al., 2008) and C/EBPa (Ross, Erickson, 
Hemati, & MacDougald, 1999), is not affected by either 
DISC1 knockout or overexpression.

Regulation of GSK3 by IP6K1

Inositol hexakisphosphate kinases (IP6Ks) have 
been also implicated in regulating GSK3 activity. The 
inositol pyrophosphate IP7 (5-diphosphoinositol pen-
takisphosphate), produced by this kinase family, acts 
as a physiologic inhibitor of AKT signaling (Figure 1) 
through binding the PH domain of AKT, thereby pre-
venting it from membrane translocation and subsequent 
PDK1-induced activatory phosphorylation at Thr308. 
Corroborating this finding, AKT activity and phospho-
GSK3β are drastically augmented in hepatic, muscular, 
and adipose tissues from Ip6k1-KO mice (Chakraborty 
et al., 2010). Furthermore, GSK3 activity is considerably 
diminished in different brain regions of Ip6k1-KO mice. 
At the behavioral level, these mice perform similarly to 
WT animals treated with GSK3 inhibitors and to different 
transgenic mouse models of GSK3 deficiency. Reduced 
exploratory locomotor activity of Ip6k1-KO mice in a 
novel environment mimics that of Gsk3a-KO mice (Kaid-
anovich-Beilin et al., 2009), while their reduced amphet-
amine-induced hyperlocomotion is reminiscent of Gsk3β 
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haploinsufficient mice (Beaulieu et al., 2004). Regard-
ing sociability, Gsk3a-KO mice display a defective trait, 
while complete ablation of forebrain Gsk3β contrarily 
facilitates social interactions (Latapy, Rioux, Guitton, & 
Beaulieu, 2012), indicating distinct roles of GSK3 iso-
forms on social behavior. In the case of Ip6k1-KO mice, 
they manifest impaired social interaction that mimics WT 
mice receiving TDZD-8 (a general GSK3 inhibitor). Such 
an observation suggests that inhibition of both GSK3 iso-
forms adversely affects social interactions (Chakraborty, 
Latapy, Xu, Snyder, & Beaulieu, 2014). In addition to 
regulating GSK3 activity through AKT, we have recently 
demonstrated that IP6K1 directly interacts and potenti-
ates GSK3α/β in mouse cortex. It is noteworthy that such 
potentiation is noncatalytic and occurs via physical bind-
ing of IP6K1 to the N-terminal domain of active GSK3 
and hinders AKT-mediated inhibitory phosphorylation 
at this site (Chakraborty et al., 2014).

β-Arrestin-2-Mediated Regulation of GSK3  
by Dopamine

Recent investigations indicate regulation of the AKT-
GSK3 pathway by DA as well as involvement of this 
signaling pathway in DA-related behaviors and antipsy-
chotic drug response (Beaulieu, 2012; Beaulieu, Gainetdi-
nov, & Caron, 2009). It all started with a pioneering work 
on DA transporter knockout (DAT-KO) mice, a model, 
where DA reuptake was inhibited and mice exhib-
ited almost fivefold increase of extracellular DA levels 
(Gainetdinov et al., 1999; Giros, Jaber, Jones, Wightman, 
& Caron, 1996; Sotnikova et al., 2005). Elevated levels of 
DA result in inactivation of AKT1 and, as a consequence, 
activation of GSK3α and GSK3β (Beaulieu et al., 2004). In 
agreement with previous phenomenon, amphetamine, 
methamphetamine, or apomorphine, known DA recep-
tor agonists, decrease AKT1 activity and increase GSK3α 
and GSK3β activity when administered to wild-type 
mice (Beaulieu et al., 2004; Bychkov, Ahmed, Dalby, & 
Gurevich, 2007; Chen, Lao, & Chen, 2007). DA-mediated 
regulation of AKT-GSK3 signaling was also validated in 
a paradigm of DA depletion in the striatum by admin-
istration of DA synthesis inhibitor (Beaulieu et al., 2004; 
Bychkov et al., 2007; Chen, Lao, & Chen, 2007). By knock-
out of DA receptors and use of various receptor agonists, 
it was possible to show that the main receptor regulating 
DA-mediated AKT-GSK3 signaling is D2R. While being 
a D2 subtype, D3 DA receptor seems to function as an 
enhancer of D2R action on this signaling (Beaulieu et al., 
2007).

When investigating involvement of D2R subtypes 
in regulation of AKT-GSK3 signaling, it was found that 
despite presence of DA D2RS splice variant in both pre- 
and postsynaptic neurons, D2RL-KO mice exhibited 
elevated AKT1 phosphorylation (Beaulieu et al., 2007). 

This sets D2RL splice variant of D2R as a critical regula-
tor of AKT and GSK3 by DA. However, there is a lack 
of studies exploring the effect of D2R receptor agonists 
on AKT and GSK3 phosphorylation in D2RL-KO mice, 
which leaves the specific contribution of D2RL to this 
modality of DA receptor signaling yet to be further 
investigated.

While D2R signals to cAMP, regulation of AKT1 
was found not to be mediated by canonical signal-
ing, but instead by involvement of the scaffolding pro-
tein β-Arrestin-2 (βArr2) (Beaulieu et al., 2005). It was 
observed that DA receptor agonists could not achieve 
to the AKT inhibition anymore when mice were lacking 
βArr2 (βArr2-KO) (Beaulieu et al., 2005). Formation of a 
novel complex consisting of βArr2, AKT1, and PP2A was 
found in response to D2R receptor activation. DA recep-
tor stimulation facilitates complex formation and AKT1 
dephosphorylation/inactivation by PP2A (Figure 1)  
(Beaulieu et al., 2005). And as a result of decreased AKT1 
activity, GSK3 is dephosphorylated and activated. More-
over, GSK3, in turn, may contribute to regulation of this 
signaling by facilitating the formation of the βArr2/
PP2A/AKT1 complex, as it was shown in genetic mouse 
models (O’Brien et al., 2011; Urs, Snyder, Jacobsen, 
 Peterson, & Caron, 2012)

Regulation of D2R-mediated behaviors adds an 
extra importance to βArr2-AKT1-GSK3 signaling 
pathway. βArr2-KO mice exhibit decreased activity 
and diminished responsiveness to DA agonists com-
pared to wild type littermates. (Beaulieu et al., 2005). 
In addition, hyperactive phenotype of DAT-KO mice 
is diminished by the lack of βArr2 (Beaulieu et al., 
2005). Furthermore, hyperactivity of DAT-KO and 
amphetamine-treated normal mice can be reduced 
by administration of GSK3 inhibitors (Beaulieu et al., 
2004; Gould, O’Donnell,  Picchini, & Manji, 2007).

Decreased locomotion in response to amphetamine 
treatment was also documented in D2 neuron-specific 
GSK3β-KO and Gsk3b haploinsufficient mice (Beaulieu 
et al., 2004; Urs et al., 2012).

Regulation of GSK3 by Serotonin

Modulation of GSK3 function is not limited to DA, 
and several lines of evidence now point at another 
monoamine player, serotonin (Figure 1) (Polter & Li, 
2011). The notion was driven from the observation that 
GSK3β was inactivated in vivo by various classes of sero-
tonergic agents, including selective serotonin reuptake 
inhibitors, monoamine oxidase inhibitors, and tricyclic 
antidepressants (Li et al., 2004). Furthermore, admin-
istration of d-fenfluramine, an enhancer of serotoner-
gic tone, to mice dramatically changes phosphorylated 
GSK3β levels in different brain regions (Li et al., 2004). 
The physiological importance of serotonin-dependent 
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regulation of GSK3 was verified in a knock-in mouse 
model harboring a mutant form of tryptophan hydrox-
ylase 2 (Tph2), the rate-limiting enzyme in brain sero-
tonin biosynthesis (Walther et al., 2003; Zhang, Beaulieu, 
 Sotnikova, Gainetdinov, & Caron, 2004). Deficient sero-
tonin transmission in these mice is accompanied by 
anxiogenic- and depressive-like behavior. Interestingly, 
pharmacological or genetic inactivation of GSK3β sub-
stantially restored the phenotypes, implicating GSK3β as 
an important effector of serotonin-mediated behavioral 
responses (Beaulieu, Zhang, et al., 2008). When agonists 
and antagonists specific to a single serotonergic receptor 
were employed, it was shown that activation of 5HT1A 
receptors increase, while that of 5HT2 subtypes decrease 
phospho-GSK3β levels (Li et al., 2004). However, mecha-
nisms contributing to serotonin-evoked GSK3β altera-
tions remain to be elucidated.

GSK3 Regulation, a Final Remark

As one can realize, both GSK3 isoforms can be reg-
ulated by several converging mechanisms involving 
protein:protein interactions and/or the modulation of 
protein phosphorylation. Of interest, the regulation of 
AKT and GSK3 by D2R provides a unique mechanism 
by which an extracellular messenger molecule, in this 
case DA, can regulate the inactivation of AKT-mediated 
signaling. Furthermore, in view of the central role that 
DA and serotonin have been thought to play in the eti-
ology and treatment of schizophrenia (Sawa & Snyder, 
2002; Seeman, 2002), this pathway may also provide 
important cues on how pharmacological treatments act-
ing on DA receptors may compensate for genetic deficits 
that are not obviously associated with the modulation of 
dopaminergic or serotonergic neurotransmission.

GSK3 IN SCHIZOPHRENIA

AKT-GSK3 Pathway in Biology  
of Schizophrenia

Progress in genetics sheds light on involvement of AKT 
in schizophrenia. Genetic studies of schizophrenic patients 
revealed several single nucleotide polymorphisms (SNPs) 
of the Akt gene to be associated with schizophrenia risk in 
patients with Northern European origin (Emamian, Hall, 
Birnbaum, Karayiorgou, & Gogos, 2004).

In addition, analyses of protein extracts of lymphocyte-
derived cell lines (LDCs) obtained from schizophrenic 
patients revealed that AKT1 expression is decreased in 
diseased samples compared to control. Data got strength-
ened by the fact that a similar decrease of AKT1 is also 
observed in the postmortem cortex and hippocampus 
of patients with schizophrenia. Expression changes 

were specific to AKT1, and no differences were found 
in expression of AKT2 and AKT3 isoforms (Emamian 
et al., 2004). All these observations were very much in 
line with genetic studies. Since then, a plethora of inves-
tigations conclude in support of Akt1 gene variants as 
a risk factor of schizophrenia in Iranian (Bajestan et al., 
2006), Japanese (Ikeda et al., 2004), Chinese (Xu et al., 
2007), European (Karege et al., 2010; Schwab et al., 2005), 
and British (Mathur, Law, Megson, Shaw, & Wei, 2010; 
Norton et al., 2007) populations. There are also studies 
that failed to show the association of Akt1 haplotypes 
with schizophrenia in Japanese (Ide et al., 2006; Ohtsuki, 
Inada, & Arinami, 2004), Taiwanese (Liu et al., 2006, 
2009), Finnish (Turunen et al., 2007), and Korean (Lee 
et al., 2010) samples. It is worth mentioning that there 
may be several reasons for inconsistencies between these 
results, and several factors can contribute, such as ethnic 
origins of analyzed subjects, size of selected cohorts, as 
well as the type of analyses performed (Emamian et al., 
2004; Ohtsuki et al., 2004).

Regarding expression levels of total and phosphory-
lated AKT1 (pAKT1) in the frontal cortex of schizo-
phrenic patients, there are also some studies bringing 
controversy to the field (Ide et al., 2006). One important 
aspect of these kinds of studies is to obtain high-quality 
postmortem samples. It has been shown that pH can 
influence greatly the phosphorylation of AKT1; a termi-
nal medical state of the patient and the storage condi-
tions after death should be considered as well (Ide et al., 
2006). In addition, inconsistent results may stem from 
the fact that different brain regions have been examined 
over a wide range of studies.

Importantly, studies of recent years support AKT1 as 
a risk factor for schizophrenia. Decrease in AKT1 levels 
as well as pAKT1/AKT1 ratio in postmortem brains of 
schizophrenic patients was confirmed in various inde-
pendent studies (Karege et al., 2010; Szamosi, Kelemen, 
& Keri, 2012). Although in other studies, decrease of 
AKT1 was not detected, and pAKT (S473) levels were 
significantly lower in dentate gyrus of schizophrenic 
patients compared to control individuals, indicating an 
overall decreased AKT1 activity (Balu et al., 2012).

A study found five new genetic loci significantly asso-
ciated with schizophrenia risk (Schizophrenia Psychiatric 
Genome-Wide Association Study (GWAS) Consortium, 
2011). An intriguingly low pAKT1/AKT1 ratio and 
diminished AKT1 activity were detected in all risk allele 
carriers, suggesting that proteins encoded by genes that 
are affected in schizophrenia may converge on a common 
pathway, having AKT1 as a shared component (Balog, 
Kiss, & Keri, 2012). One study addressed the question 
from different point of view by analyzing a complete set 
of genes affected in schizophrenia, and it found AKT1 
among many other genes that are differentially expressed 
in schizophrenic patients. Metabolic and signaling 
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pathways were reconstructed based on the discovered 
genes, and AKT1 appeared to be involved in 20 out of 35 
deregulated pathways (van Beveren et al., 2012).

As mentioned, GSK3 is one of the substrates of AKT1; 
therefore, studies were conducted to explore its involve-
ment in pathophysiology of the disease.

Several GSK3b gene variants are found to be associ-
ated with schizophrenia risk (Scassellati et al., 2004; Souza 
et al., 2008; Tang et al., 2013). A particular SNP located in 
the promoter region of GSK3b affects transcription factor 
binding, and it leads to an increased expression of GSK3β 
(Li et al., 2011). Association of Gsk3b polymorphisms with 
schizophrenia was confirmed by several studies; however, 
reporting decreased in GSK3 mRNA levels (Blasi et al., 
2013; Kozlovsky, Shanon-Weickert, et al., 2004). Interest-
ingly, decreased GSK3 mRNA levels were paradoxically 
accompanied by a reduction in β-catenin, which is sug-
gestive of enhanced GSK3 activity.

Data regarding GSK3 protein levels and activity in 
schizophrenia is less conclusive. Unaltered expression of 
GSK3 in LDCs or in frontal cortex lysates of schizophrenic 
patients were found to be accompanied by decreased 
relative phosphorylation of GSK3β at Ser9, indicating an 
increased activity of GSK3β. The change in GSK3 phos-
phorylation could be the result of regulation by AKT1, 
since no difference was observed in its phosphorylation 
at Tyr216, while AKT1-dependant phosphorylation of 
GSK3β at Ser9 was decreased. These data are suggestive 
of a relationship between AKT1 and GSK3 in schizophre-
nia (Emamian et al., 2004). That being said, several stud-
ies have reported decreased protein levels and activity 
of GSK3 in schizophrenic patients (Beasley et al., 2001; 
Kozlovsky, Belmaker, & Agam, 2000, 2001; Kozlovsky, 
Regenold, et al., 2004). Since decreased immunoreactiv-
ity of GSK3 was detected along with unchanged lev-
els of its direct substrate β-catenin, one may conclude 
increased GSK3 activity (Beasley et al., 2001).

AKT-GSK3 and the Pathophysiology  
of Schizophrenia

Several brain regions are known to be structurally and 
functionally altered in schizophrenic patients. Structural 
magnetic resonance imaging (sMRI) identified gray mat-
ter deficits that correlate with SNPs of 16 schizophrenia 
risk genes including Akt1, Pi3k, and Drd2 (Jagannathan 
et al., 2010). Reduction in hippocampal volume of schizo-
phrenic patients is also found to correlate with decreased 
pAKT1/AKT1 ratio (Szamosi, Kelemen, & Keri, 2012). 
Akt1-deficient mice exhibit several hippocampal abnor-
malities including alterations in synaptic plasticity and 
impaired neurogenesis (Balu et al., 2012).

In addition to structural changes, Akt1 variants seem 
to also affect brain function of schizophrenic patients, 
since patients with a genetic variant of Akt1 exhibit 

poorer memory performance, particularly in atten-
tion/concentration compared to patients devoid of the 
variant. Akt1 variants also correlate with several brain 
morphological vulnerabilities and deficits in sustained 
attention and vigilance (Ohi et al., 2013). These data are 
supported by behavioral studies on Akt1-deficient mice. 
These mice exhibit deficiencies in spatial memory and 
attenuated PPI response, along with modest anxiety and 
a decrease in fear-conditioned learning (Balu et al., 2012).

In addition, AKT1 variants may epistatically interact 
with other risk genes to contribute to schizophrenia risk 
as well as to cognition and brain volume of affected indi-
viduals (Tan et al., 2012, 2008).

Gsk3b polymorphisms affect the temporal lobe gray 
matter, a region with the most consistently documented 
morphometric abnormalities in schizophrenia (Benedetti 
et al., 2010). Gsk3b SNPs correlate with reduced thick-
ness of the dorsolateral prefrontal cortex (DLPFC) and 
are associated with attenuated activity of DLPFC and 
decreased cognitive performance and working memory 
as measured by functional magnetic resonance imaging 
(fMRI) (Blasi et al., 2013). In a wide range of neurological 
disorders such as bipolar disorder, Alzheimer’s disease, 
and Fragile X syndrome, pharmacological and genetic 
inhibition of GSK3 has been associated with cognitive 
improvements in mice and human. Modulation of syn-
aptic plasticity, neurogenesis, and neuroprotection by 
GSK3 are the most plausible underlying mechanisms 
(King et al., 2014). Altogether, data indicate that changes 
in the AKT-GSK3 pathway may contribute to behavioral 
manifestations of schizophrenia.

Wnt-GSK3 Pathway in Schizophrenia

Numerous alterations occur in the GSK3-regulating 
Wnt pathway in schizophrenia. Postmortem brains of 
schizophrenic patients display diminished β-catenin lev-
els in the CA3 and CA4 hippocampal subregions (Cotter 
et al., 1998), which could possibly be a consequence of 
aberrant β-catenin instability due to unrestraint GSK3 
activity. In the same brain regions, Wnt1 content has also 
been found elevated in schizophrenic subjects (Miyaoka, 
Seno, & Ishino, 1999). It is, therefore, conceivable that 
such upregulation occurs as part of an endogenous com-
pensatory mechanism to abate the detrimental effects of 
increased GSK3-mediated β-catenin degradation. Asso-
ciation studies have identified a number of members of 
the Wnt cascade, namely Fzd3, Apc, and Tcf4 as schizo-
phrenia susceptibility genes (Cui, Jiang, Jiang, Xu, & Yao, 
2005; Katsu et al., 2003; Stefansson et al., 2009; Steinberg 
et al., 2011; Yang et al., 2003), and transgenic mice mimic 
certain schizophrenia-like phenotypes. TCF4 gain-of-
function in the brain leads to impaired PPI but normal 
locomotor activity (Brzozka, Radyushkin, Wichert, 
Ehrenreich, & Rossner, 2010), while mice with partial KO 



GSK3 In SchIzoPhRenIa 453

II. NEUROBIOLOGY OF PSYCHOTIC DISORDERS

of Apc display normal PPI but working memory deficit 
in adulthood and reduced locomotion ( Koshimizu et al., 
2011). DIX domain containing 1 (DIXDC1) is a positive 
regulator of Wnt that enhances TCF-dependent tran-
scription through interaction with Dvl and AXIN (Shiomi 
et al., 2005; Shiomi, Uchida, Keino-Masu, & Masu, 2003). 
DIXDC1 knockout in mice generates a complex pheno-
type reminiscent of schizophrenia-like behavior in cer-
tain aspects (Kivimae et al., 2011). Dvl1-KO results in 
disrupted PPI and social interaction, which are typical 
endophenotypes of schizophrenia (Lijam et al., 1997). 
Given the role of Dvl1 in GSK3 inhibition, it is plau-
sible that GSK3 overactivation underlies the defective 
sensorimotor gating and social behavior in Dvl1 loss of 
function.

NRG1-GSK3 and BDNF-GSK3  
in Schizophrenia

Neuregulins (NRGs) constitute a family of growth 
factor-encoding genes (Nrg1–4). NRG1 is the best char-
acterized member, and in humans, it occurs in more than 
30 isoforms, all of which share an epidermal growth 
factor (EGF)-like domain. Upon binding of NRG1 to 
its receptors ERBB4, the latter forms a homo- or het-
erodimer with other ERBB subtypes (Pan, Huang, & 
Deng, 2011). As growth factors, both NRG1 and BDNF 
(brain-derived neurotrophic factor) activate receptor-
type tyrosine kinases (Ogata et al., 2004) that transduce 
signals mainly through the MAPK pathway consisting 
of  Ras-Raf-MAPK kinase (Mek)-extracellular signal- 
regulated kinase (Erk) and the PI3K pathway comprising 
PI3K (with its adaptor subunit p85 and the catalytic sub-
unit p110)-AKT-GSK3 and other downstream molecules 
(Figure 1) (Hunter, 1997).

NRG1-ERBB4 signaling plays key roles in neurode-
velopmental phenomena including neuronal migra-
tion, radial glia formation, dendritic development, 
axon myelination, and guidance (Deng, Pan, Engel, & 
Huang, 2013). Nrg1 and Erbb4 have been strongly asso-
ciated with schizophrenia, and several studies have pin-
pointed them as susceptibility genes (Harrison & Law, 
2006; Stefansson et al., 2003, 2002). Neurons derived 
from induced pluripotent stem cells of schizophrenic 
individuals manifest NRG1 and ERBB4 overexpression 
(Law et al., 2012). This finding has been corroborated 
by independent studies on postmortem brains from 
schizophrenic subjects (Law, Kleinman, Weinberger, &  
Weickert, 2007; Law et al., 2006; Silberberg, Darvasi, 
Pinkas-Kramarski, & Navon, 2006). Risk polymorphisms 
in ERBB4 are also associated with increases in ERBB4 
CYT-1 isoform in lymphoblastoid B-cell lines from 
schizophrenia patients (Law et al., 2012). ERBB4 CYT-1 
possesses a binding site for PI3K through which it can 
activate the PI3K pathway (Junttila, Sundvall, Maatta, & 

Elenius, 2000). Intriguingly, the same ERBB4 genotype 
is also linked with elevated p110δ PIK3CD expression 
but paradoxically decreased PIP3 generation in schizo-
phrenia (Law et al., 2012). Of importance, suppression 
of p110δ PIK3CD with a small molecule (IC87114) coun-
teracts amphetamine-evoked hyperactivity in mice, 
increases brain Thr308 phospho-AKT levels, and corrects 
PPI defects in a rat neonatal ventral hippocampal lesion 
model of schizophrenia. Rats receiving the antipsychotic 
haloperidol chronically display a specific diminution 
in PIK3CD isoform expression in the brain (Law et al., 
2012). Furthermore, in both first-episode unmedicated 
and chronic medicated schizophrenia, but not other psy-
chotic disorders, NRG1-induced PI3K-mediated AKT 
phosphorylation at Ser473 is reduced (Keri, Beniczky, & 
Kelemen, 2010; Keri, Seres, Kelemen, & Benedek, 2009). 
Together, these findings conform to deregulation of AKT 
signaling in schizophrenia (Emamian et al., 2004) and 
point at augmented GSK3 activity as a pivotal element in 
the aberrations that engender or perpetuate the schizo-
phrenic state.

Of great relevance to schizophrenia, NRG1 also 
affects both the function and neurodevelopment of the 
dopaminergic system (Pan et al., 2011). Indeed, central 
or peripheral administration of NRG1β enhances DA 
release in brain regions involved in dopaminergic trans-
mission (Carlsson et al., 2011; Kwon et al., 2008; Yurek, 
Zhang, Fletcher-Turner, & Seroogy, 2004). How such 
modification could influence behavior was the subject 
of an elegant study (Kato et al., 2011); systemic adminis-
tration of NRG1 to neonatal mice led to midbrain ERBB4 
activation, enhanced expression, phosphorylation, and 
enzyme activity of tyrosine hydroxylase, all of which 
culminated in a hyperdopaminergic state in the medial 
prefrontal cortex that continued to persist through 
adulthood. In addition, once reaching adulthood, these 
mice manifested schizophrenia-related behaviors, 
that is, namely impaired social behaviors, PPI, latent 
inhibition (LI), and hypersensitivity to methamphet-
amine (Kato et al., 2011). Considering the relevance of 
βArr-mediated D2R signaling in schizophrenia and its 
pathophysiology, one can envisage that augmented 
NRG1-ERBB4 signaling confers susceptibility to schizo-
phrenia through adversely affecting the dopaminergic 
transmission and AKT/GSK3 as its integral signaling 
modality.

As for BDNF, an intricate correlation exists between 
BDNF and GSK3β. Chronic administration of lithium, an 
established inhibitor of GSK3β, induces BDNF expression 
both in vitro (Hashimoto et al., 2002) and in vivo (Fuku-
moto, Morinobu, Okamoto, Kagaya, & Yamawaki, 2001). 
A more direct evidence comes from the work on dopami-
nergic human neuron-like cells, where protracted inhibi-
tion of GSK3β either genetically or pharmacologically was 
found to augment BDNF secretion (Gimenez-Cassina, 
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Lim, & Diaz-Nido, 2012). Phencyclidine (PCP) has long 
been associated with induction of a psychotomimetic state 
reminiscent of schizophrenia incorporating both positive 
and negative symptoms (Javitt & Zukin, 1991). Perinatal 
exposure of mice to PCP evokes a schizophrenia-like phe-
notype in later life that has been associated with apop-
tosis. BNDF-induced protection of corticostriatal cultures 
against PCP-evoked apoptosis involved inhibition of 
GSK3β downstream of the PI3K/AKT signaling cascade 
(Xia, Wang, Liu, Anastasio, & Johnson, 2010).

DISC1-GSK3 in Schizophrenia

DISC1 was first identified in a large Scottish pedi-
gree in which a translocation in the Disc1 gene segre-
gates with schizophrenia, bipolar disorder, and major 
depression (Margolis & Ross, 2010; Millar et al., 2000; 
St Clair et al., 1990). Through several postmortem, 
genetic association, and linkage studies in various 
ethnic groups, it is now well established that Disc1 
is a bona fide risk gene for schizophrenia (Callicott 
et al., 2005; Cannon et al., 2005; Ekelund et al., 2004, 
2001; Hennah et al., 2003; Hwu, Liu, Fann, Ou-Yang, & 
Lee, 2003; Nakata et al., 2009; Schumacher et al., 2009; 
Thomson et al., 2005; Zhang et al., 2006). Although the 
functional outcome of DISC1 variants in psychiatric 
illnesses is elusive, gathering evidence on the roles of 
DISC1 within the brain networks has provided some 
valuable mechanistic insights. One hypothesis is that 
haploinsufficiency can result from Disc1 polymor-
phisms (Millar et al., 2005). This theory is supported 
by the finding that (1) mRNA levels of DISC1 were 
decreased in lymphocytes from 57 bipolar pedigrees, 
(2) a higher load of manic symptoms were associated 
with lower levels of DISC1 expression (Maeda et al., 
2006), and (3) when mice are chronically treated with 
atypical antipsychotics olanzapine and risperidone, 
DISC1 mRNA is upregulated in the frontal cortex 
(Chiba et al., 2006), possibly as part of their therapeu-
tic effects. Another theory, as corroborated by animal 
findings, states that the product of the mutation in 
Disc1 acts a dominant negative, disrupting the func-
tion of wild-type protein. For a detailed discussion 
of DISC1 in schizophrenia, the reader is referred to 
elegant reviews published elsewhere (Johnstone et al., 
2011; Mackie, Millar, & Porteous, 2007). A missense 
L100P mutation gives rise to typical schizophrenia-
like behavior, that is, hyperactivity, a dramatic decline 
in working memory, PPI, and LI, all of which can be 
can be abated by administration of typical or atypical 
antipsychotics. The anatomical findings of the brain 
also resemble those reported in schizophrenic patients 
(Clapcote et al., 2007) and, therefore, substantiate the 
implication of DISC1 in schizophrenia and establish a 
reliable animal model for this disorder.

With regard to the putative role of GSK3, treatment 
of Disc1 KO mice with GSK3β inhibitors offsets the 
novelty-induced hyperlocomotion, a murine equiva-
lent of positive symptoms of schizophrenia and corrects 
impaired LEF/TCF-dependent neural progenitor prolif-
eration (Lochhead et al., 2006). In DISC-1-L100P mutant 
mice, Gsk3a knockdown rescues dendritic spine defects 
of the frontal cortex neurons (Lee, Kaidanovich-Beilin, 
Roder, Woodgett, & Wong, 2011). As with antipsychotics, 
pharmacological or genetic inhibition of GSK3 suffices 
to offset the behavioral phenotypes of these mice (Lipina 
et al., 2011; Lipina, Palomo, Gil, Martinez, & Roder, 2013; 
Lipina, Wang, Liu, & Roder, 2012), verifying the signifi-
cance of GSK3-incorporating pathways as a promising 
therapeutic target in schizophrenia.

REGULATION OF GSK3 BY 
ANTIPSYCHOTICS

The fact that the AKT-GSK3 pathway is involved in 
the pathophysiology of schizophrenia makes this path-
way an attractive target for drug development. Most 
antipsychotics have the ability to act as D2R receptor 
antagonists with second-generation antipsychotics also 
antagonizing 5HT2A serotonin receptors. Since the AKT-
GSK3 pathway is involved in signaling of DA and 5HT 
receptors, it is not surprising that most existing antipsy-
chotics have been shown to affect AKT-GSK3 signaling 
either directly or indirectly.

Studies in mice show that first-generation antipsy-
chotic haloperidol increases AKT1 and GSK3β phos-
phorylation without affecting their expression levels 
(Emamian et al., 2004). Chronic and subchronic but not 
acute treatment with several antipsychotics also caused 
increases in β-catenin, GSK3β, and pGSK3β levels in 
the striatum, prefrontal cortex (PFC), hippocampus, 
and ventral midbrain of rats (Alimohamad, Rajakumar, 
Seah, & Rushlow, 2005; Alimohamad, Sutton, Mouyal, 
Rajakumar, & Rushlow, 2005). In SH-SY5Y cells, clo-
zapine increases Ser9 phosphorylation of GSK3β along 
with accumulation of β-catenin and its migration to the 
nucleus. Interestingly, this effect is resistant to the inhibi-
tion of the PI3K pathway, suggesting a possible involve-
ment of other pathways such as Wnt (see above) in 
GSK3β regulation in response to clozapine (Kang et al., 
2004). However, there is a lack of in vivo studies for 
involvement of other PI3K-independent mechanisms, 
such as the inactivation of AKT by PP2A and βArr2 or 
by 5HT receptors.

Using a bioluminescence resonance energy transfer 
method, an elegant study demonstrated that various 
antipsychotics, such as haloperidol, clozapine, aripip-
razole, chlorpromazine, quetiapine, olanzapine, risperi-
done, and ziprasidone, all share the common ability to 
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antagonize DA-mediated recruitment of βArr2 to D2LR 
(Masri et al., 2008). Further research led to the genera-
tion of βArr2-biased compounds that would selectively 
target βArr2-mediated D2R signaling. Newly synthe-
tized aripiprazole derivatives UNC9975, UNC0006, and 
UNC9994 displayed antipsychotic-like activity in rodents 
(Allen et al., 2011). These three compounds act as partial 
agonists for βArr2 recruitment to D2R in the absence of 
a full agonist, while leaving cAMP signaling unaltered. 
It is worthy to point out that aripiprazole behaves as a 
partial agonist for βArr2 recruitment, since it is applied 
alone in in vitro assays (Allen et al., 2011); however, it acts 
as an antagonist of βArr2 recruitment when simultane-
ously applied with quinpirole (Masri et al., 2008). Thus, 
interpretation of the pharmacological properties of differ-
ent UNC compounds should be approached carefully by 
taking in account whether applied alone in vitro or in the 
context of an active DA tone in vivo.

Further investigations of these compounds, including 
a characterization or their pharmacological profile in the 
presence of full D2R agonists, may constitute an impor-
tant first step toward the development of a new class of 
antipsychotics targeting GSK3-mediated signaling.

HOW GSK3 AFFECTS BEHAVIOR

There are over 100 known substrates, which can be 
phosphorylated and regulated in different fashions by 
GSK3 (Sutherland, 2011). To date, little is known about 
the mechanisms by which GSK3 activity does contrib-
ute to the regulation of behavior. However, several GSK3 
substrates might be implicated in neurological func-
tions, and their dysregulation by GSK3 may contribute 
to pathological conditions (Figure 2). Below, we will 
discuss some of the GSK3 substrates and their possible 

role in processes underlying neurological function and 
regulation of behaviors.

Circadian Rhythms

Circadian rhythms are periodic processes orches-
trated by the suprachiasmatic nucleus (SCN) and are 
important for organisms to adapt to environmental 
changes. Circadian rhythms are tightly regulated on 
a molecular level by several factors and genes called 
clock genes (Gachon, Nagoshi, Brown, Ripperger, & 
Schibler, 2004). Being highly expressed in SCN, GSK3 
exerts its effect on circadian rhythms by regulating its 
components. First, it has been shown that the nonse-
lective GSK3 inhibitor lithium lengthens the period of 
circadian rhythms in vitro and in vivo (Abe, Herzog, 
& Block, 2000; Iwahana et al., 2004) and that GSK3 
haploinsufficiency lengthens the circadian locomotor 
activity in mice (Lavoie, Hebert, & Beaulieu, 2013b). 
GSK3 is able to regulate clock genes PER2 and CRY2 
by direct phosphorylation that promotes nuclear trans-
location (Iitaka, Miyazaki, Akaike, & Ishida, 2005) or 
degradation (Harada, Sakai, Kurabayashi, Hirota, & 
Fukada, 2005), accordingly. GSK3 also phosphorylates 
and stabilizes the negative component of the circa-
dian clock Rev-erbα and lithium treatment results to 
its rapid proteasomal degradation and the activation 
of Rev-erbα repressed gene Bmal1 as a result of GSK3 
inhibition (Yin, Wang, Klein, & Lazar, 2006). Finally, 
GSK3 is crucial for maintaining the robustness of the 
circadian clock since phosphorylation of BMAL1 sta-
bilizes this protein and controls the amplitude of the 
circadian oscillation (Sahar, Zocchi, Kinoshita, Borrelli, 
& Sassone-Corsi, 2010).

β-Catenin

As described above, GSK3 regulates β-catenin 
downstream of Wnt signaling. In addition to acting 
as a transcription factor when translocated to the 
nucleus, β-catenin can also interact with the cyto-
skeletal network. It has been shown that β-catenin is 
recruited to dendritic spines following depolarization, 
indicating that it may be involved in synaptic plastic-
ity (Murase, Mosser, & Schuman, 2002). Since GSK3 
can phosphorylate β-catenin, which directs it for deg-
radation, it is possible that GSK3 may influence gene 
expression and synaptic plasticity via regulation of 
β-catenin levels. In support of this notion, β-catenin 
overexpression mimics the GSK3-dependent effect 
of lithium on locomotor hyperactivity (Gould et al., 
2007). However, the role of β-catenin in regulation of 
normal behaviors is less prominent, since forebrain-
specific β-catenin-KO mice exhibit little behavioral 
phenotype (Gould et al., 2008).

FIGURE 2 Involvement of GSK3 and its putative targets in neuro-
logical functions.
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Microtubules

Microtubule-associated proteins (MAPs) regu-
late assembly and stability of microtubules. Microtu-
bules constitute a major part of the cytoskeleton and 
are important in cytoskeletal rearrangements during 
neuronal growth, axon guidance, and synapse forma-
tion. Several MAPs are substrates of GSK3. GSK3 can 
phosphorylate and regulate Tau protein (Sutherland, 
2011), collapsin response mediator proteins (Alabed, 
Pool, Ong, Sutherland, & Fournier, 2010; Cole et al., 
2004; Yoshimura et al., 2005), MAP 1B (Lucas, Goold, 
Gordon-Weeks, & Salinas, 1998; Trivedi, Marsh, Goold, 
Wood-Kaczmar, & Gordon-Weeks, 2005), and MAP2C 
(Sanchez, Perez, & Avila, 2000). And as a result, they 
can regulate microtubule assembly and stability, axon 
growth, dendritic development, and axonal remodel-
ing. Although the exact mechanism by which GSK3-
mediated phosphorylation of microtubules can give 
rise to behavioral changes is not clear, we speculate that 
by doing so, GSK3 may regulate neurodevelopment 
and synaptic plasticity, which can result in modulation 
of behavioral responses.

AMPA and NMDA Receptors

GSK3 can act on ionotropic glutamate receptors 
AMPA and NMDA. This may be one of the mecha-
nisms underlying the acute modulation of behavior 
by GSK3. AMPA and NMDA are known to be impor-
tant for synaptic plasticity; in accordance, it has been 
shown that activation of GSK3 inhibits long-term 
potentiation, while its inhibition prevents develop-
ment of long-term depression (Peineau et al., 2007; 
Zhu et al., 2007). Trafficking and cell surface expres-
sion of NMDA receptor subunits are also the subject 
of GSK3 regulation (Chen, Gu, Liu, & Yan, 2007; Zhu 
et al., 2007). Since glutamate receptors could poten-
tially be involved in the etiology of psychiatric dis-
orders, their regulation by GSK3 may be implicated 
in the pathophysiology of many diseases including 
schizophrenia.

Dynamin I

Dynamin I is a large GTPase and can serve as a 
GSK3 substrate. The phosphorylated form of dynamin 
I is involved in activity-dependent bulk endocytosis 
(ADBE), but not in clathrin-mediated endocytosis. The 
activity of GSK3-dependent phosphorylation of dyna-
min I is necessary and sufficient for ADBE to take place. 
Thus, GSK3 may also play an important role in prepar-
ing synaptic vesicles for retrieval during elevated neuro-
nal activity (Clayton et al., 2010).

BIOMARKERS

Although at the beginning of the twentieth century 
the term schizophrenia was coined and its symptoms 
defined, diagnosis has conventionally relied on symp-
toms (Stefansson et al., 2009). A main obstacle in psy-
chiatric research is how to obtain measurable biological 
information from a living brain (Lavoie, Maziade, & 
Hebert, 2014). Therefore, to improve diagnosis and facil-
itate monitoring of response to therapy, development 
of valuable and highly discriminating noninvasive bio-
markers presents a priority in psychiatry.

Peripheral Blood Cells

Collection and further processing of peripheral blood 
cells for biochemical analyses represent a rapid and non-
invasive method for data acquisition from individuals. 
mRNA and protein expression profiling in the periph-
eral blood can provide useful information about altera-
tions in disease-related signaling networks. Individuals 
with schizophrenia demonstrate diminished AKT1 and 
phospho-GSK3β protein levels in their peripheral lym-
phocytes that mirror similar alterations in the brain 
(Emamian et al., 2004). Moreover, stimulation of B lym-
phoblasts from schizophrenic subjects with NRG1a leads 
to a prominent reduction in pAKT (Sei et al., 2007) that 
is specific to schizophrenia and not shared by other psy-
chiatric disorders (Keri et al., 2009).

Olfactory Epithelium

A solution to overcome the limitations of using 
postmortem brain and nonneural tissues is to analyze 
olfactory epithelium (OE) collected from subjects. OE 
possesses the distinctive feature of being a neuronal tis-
sue with safe accessibility in live human subjects (Mor 
et al., 2013). The gene expression pattern of these cells 
also resembles that of the central nervous system (CNS) 
(Arnold et al., 2001). What makes OE especially attrac-
tive for schizophrenia is the correlation of negative 
symptoms with the structural and functional olfactory 
deficits (Corcoran et al., 2005). However, expression 
studies are lacking on GSK3 and its signaling partners in 
OE obtained from diseased versus healthy individuals.

Electroretinogram

The activity of retina, as part of the CNS, can be uti-
lized as a biomarker for the assessment of brain disorders 
since it reflects certain aspects of brain neurochemistry. 
The retinal functions can be monitored using the noninva-
sive flash electroretinogram (ERG) method. Interestingly, 
patients with schizophrenia display ERG abnormalities, 
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namely a reduction in cone a-wave and rod a- and 
b-waves. In the same vein, young mice at high genetic 
risk (HR) for schizophrenia and bipolar disorder also 
manifest reduced rod b-wave amplitude at Vmax as a bio-
logical endophenotype (Lavoie et al., 2014a, 2014b, 2014c). 
In line with the putative role of increased GSK3 activity in 
schizophrenia, the ERG of mice with GSK3β overexpres-
sion in neurons (prpGsk3b mice) shows the same pattern 
reported in the ERG of HRs, that is, a longer rod b-wave 
implicit time at Vmax and decreased rod b-wave ampli-
tude. Alteration in the opposite direction was detected in 
GSK3β haploinsufficient mice. Cone a-wave alterations 
consistent with those of schizophrenic patients were also 
seen in GSK3α-KO mice. These observations link the GSK3 
expression or activity profile with certain ERG anomalies 
in HRs and patients, thus highlighting the relevance of 
ERG assessments as a potentially reliable biomarker for 
psychiatric research (Lavoie, Hebert, & Beaulieu, 2014a).

Magnetic Resonance Imaging

Schizophrenia is associated with a multitude of func-
tional and structural and anomalies that could be detected 
by noninvasive imaging techniques such as MRI. Using 
sMRI, structural changes in cerebral white matter and gray 
matter thickness, the hippocampal and subcortical vol-
umes were traced in patients with schizophrenia (van Erp 
et al., 2014; Ledoux et al., 2014; Suzuki et al., 2002). Further-
more, cognitive abnormalities including perturbations in 
working memory and attention as well as aberrant activity 
of various brain regions were detected by fMRI in schizo-
phrenic subjects (Bittner et al., 2014). In order to assess the 
predictability power of MRI data, its correlation with the 
presence of risk gene polymorphisms was studied (Bittner 
et al., 2014). Of interest, gray matter deficits seen with sMRI 
in thalamus, frontal, and temporal lobes were associated 
with polymorphisms in Akt, Pi3k, D2dr (Jagannathan 
et al., 2010), and GSk3β Gsk3 (Benedetti et al., 2010) loci. In 
addition, decreased PFC thickness and activity in schizo-
phrenic subjects were strongly correlated with the Gsk3b 
polymorphisms (Blasi et al., 2013). The potential utility of 
noninvasive imaging techniques for early diagnosis will 
foster effective treatment.

CONCLUSIONS

Schizophrenia is the most chronic and disabling of the 
major mental illnesses. It is a life-long disease with largely 
unmet therapeutic needs. Understanding the intricate 
regulation of GSK3 in schizophrenia and its involvement 
in different, behavioral, metabolic, and developmental 
dimensions of mental illnesses may pave the way to the 
development of better therapies. Current medications 

include two generations of antipsychotics: typical (first 
generation) blocking D2 DA receptors and atypical (sec-
ond generation) modulating both DA and serotoninergic 
neurotransmission. However, schizophrenia cannot be 
cured but can only be controlled with proper treatment, 
with so-called positive symptoms being predominantly 
amenable. Furthermore, antipsychotics of both genera-
tions have propensity to generate significant motor and/
or metabolic side effects. These reasons and growing 
evidence on the involvement of abnormalities in intra-
cellular signaling mechanisms in schizophrenia have 
brought to focus the signaling cascades mediated by D2 
DA receptors. For future antipsychotic drug discovery, 
the strategy aimed at targeting these cascades may repre-
sent a more “soft” and effective approach than targeting 
receptors themselves.

While there is no specific pharmacological agent in clini-
cal practice – with exception of lithium (Beaulieu, Marion, 
et al., 2008) – that modulates intercellular signaling mech-
anisms of DA receptors, the recent research in this field 
demonstrate intensive progress. Several lines of research, 
both in experimental animals and humans, overviewed 
here indicate that dysregulation of AKT-GSK3 might be a 
cardinal signaling event in pathogenesis and/or manifesta-
tions of schizophrenia. However, growing understanding 
of the complex and broad array of AKT-GSK3 regulation 
pathways impedes direct aiming at AKT and/or GSK3 as 
targets of pharmacological intervention, rather suggesting 
potential utility of downstream signaling targets. One of the 
future directions for antipsychotic drug discovery might 
involve regulation of βArr2/AKT/GSK3 intracellular sig-
naling by biased antagonists of D2 DA receptors favoring 
one signaling modality over another (Masri et al., 2008). It 
is expected that biased antagonists should provide unique 
pharmacological profile of action: these hypothetical agents 
might block only the βArr2/AKT/GSK3 signaling trans-
duction pathway while leaving other intracellular signal-
ing routes unaffected. These and other directions based on 
the idea of targeting DA-related intracellular signaling cas-
cades involved in psychosis could eventually result in the 
development of a new generation of antipsychotic agents 
with unprecedented specificity to certain symptoms and 
minimal side effects.
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INTRODUCTION

The interrelationships between the endocrine sys-
tem and the nervous system are intricate and complex. 
Important connections between hormones and mental 
health have been observed and studied for centuries, 
in both the basic and applied research areas as well as 
in clinical practice. Pituitary disorder such as Cushing’s 
disease, Sheehan’s syndrome, and acromegaly are asso-
ciated with a wide variety of psychiatric symptoms. Psy-
chotic symptoms can be induced by the administration 
of high doses of steroids. Abnormalities of the thyroid, 
adrenal, or pituitary can result in psychotic symptoms. 
Hence, there is a great deal of clinical evidence linking 
endocrine (hormone) changes to mental disorders.

HISTORY

In 1891, Emil Kraepelin postulated links between 
hormones and dementia precox (Kendler & Jablensky, 
2011). He undertook extensive endocrine reviews of his 
patients. Kretschrner observed “insufficient functions of 
the sexual glands” and “chronic hypoestrogenism” in 
women with schizophrenia (Kretschmer, 1922). Between 
1940 and 1970, many researchers looked for evidence of 
endocrine dysfunction in people with schizophrenia.

Hoskins further examined the link between hormones 
and dementia precox in postmortem studies in 1929 and 
conducted case study experiments using “glandular 
extracts” to treat schizophrenia (Hoskins, 1929).

The discovery of major hypothalamic hormones in the 
early 1970s (Besser & Mortimer, 1974) excited researchers 
and formally confirmed psychoneuroendocrinology as a 
legitimate area for research in schizophrenia. The hormones 

discovered were growth hormone (GH),  lutenizing hor-
mone, follicle- stimulating hormone-releasing hormone 
(LH/FSH-RH now known as gonadotrophin-releasing  
hormone (GnRH)), thyrotrophin-releasing hormone 
(TRH), and  corticotrophin-releasing factor (CRF). Prolactin 
release-inhibiting factor (PIF, now known as dopamine/ 
somatostatin) and prolactin-releasing factor (PRF) had 
been shown to control prolactin release in the 1950s  
(Desclin, 1950; Everett, 1954).

Critically important in the history of hormones and 
schizophrenia was the development of the dopamine 
(DA) hypothesis in schizophrenia. The DA hypothesis 
is the oldest and most established of the schizophre-
nia hypotheses, with some empirical validation from 
antipsychotic drug action. Arvid Carlsson (Carlsson 
& Lindqvist, 1963) is credited with describing the DA 
hypothesis of schizophrenia in 1963, further highlight-
ing the interrelationship between neurotransmitters, 
hormones, and schizophrenia. Between 1900 and 1960, 
endocrinology was pursued at the physiological level, 
and 25 hormones were identified.

Brambilla and Penati in 1978 reviewed the evidence for 
abnormal functioning of the pituitary, adrenal, gonads, 
and thyroid glands in people with schizophrenia (Bram-
billa & Penati, 1978). They reported that there were no 
true organic endocrinopathies, so that the disease pro-
cesses of schizophrenia appear to be causing endocrine 
changes, rather than diseased endocrine organs causing 
schizophrenia.

The 1980s heralded an era of further considering the 
role of neurotransmitters in the regulation of pituitary 
hormone release via hypothalamic hormones. New 
neuroendocrine studies of schizophrenia aimed toward 
using pituitary hormones as markers of function of neu-
rotransmitters (Meltzer, 1984). George Fink coined the 
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phrase “the pituitary is the window to the brain,” and 
a number of clinical neuroendocrine studies in schizo-
phrenia measured pituitary hormones as markers of cen-
tral nervous system CNS functioning (Fink, 2012).

As of 2015, we know of the existence of over 130 hor-
mones, and the sphere of influence and mode of action 
of each hormone remains to be determined. Schizophre-
nia is a severe, complex, multidimensional illness with 
largely unknown etiology. The role of some hormones 
that have been studied with respect to schizophrenia 
 etiology or impact will now be discussed.

Brief Definitions and Classification of Hormones

Hormones are signaling molecules that are synthe-
sized in endocrine glands, travel through the circulation, 
and have actions in distant target tissues. Hormones 
have diverse chemical structures. Originally, there were 
thought to be three major classes of hormones based on 
their structures. As new hormones are discovered, this 
simple classification system has become inadequate 
(Carson-Jurica, Schrader, & O’Malley, 1990) (Table 1).

Basic Hormone Actions

Over the past decade, many neurotransmitters have 
been considered to operate in similar ways to hormones, 
in that neurotransmitters act like chemical messengers. 
Colloquially, the steroid class of hormones dominate 
discussion about hormones, and in particular in schizo-
phrenia, this is the most widely studied class of hor-
mones, along with the specific neurotransmitters such as 
DA, serotonin, acetylcholine, and glycine. Classical bio-
chemical cascade mechanisms are generated by hormone 
actions acting at cell membranes to alter cell metabolism 
and ultimate cellular responses (Norman & Litwack, 
1997). Within the CNS, the hormone cascade systems 
are generated in the hypothalamus to the pituitary to 
distal endocrine glands to target tissues. Feedback loops 
and circuits regulate hormone production. Electrical or 
chemical signals originating in the limbic system are sent 
to the hypothalamus to initiate CNS endocrine cascade 
systems (Norman & Litwack, 1997). Hormones deliver 
their “message” to target cells by interacting with cell 
receptors that are largely proteins and specifically bind 
with their correct hormone. Peptide hormones tend to 
bind with receptors present in the outer membrane of the 
cell, while steroid hormone receptors are usually present 
in the nuclear compartments of the cell and interact with 
DNA. The hormone–receptor complex physically inter-
acts with other cellular constituents such as G proteins 
or ion channels (Norman & Litwack, 1997). The nervous 
systems and endocrine systems are closely integrated 
with hormonal actions influencing neurogenesis, apop-
tosis, synaptogenesis, and other neuromodulatory roles. 

Hormones are also secreted by neurons that are known as 
neurosecretory cells. This integral relationship between 
the nervous system and hormonal systems provides a 
key to the understanding of the hormonal influences on 
wide ranging and complex behaviors, including expres-
sion of mental illness symptoms such as those seen in 
schizophrenia.

It is beyond the scope of this chapter to provide a 
comprehensive review on all or even many of the hor-
mone interactions and influences on schizophrenia. This 

TABLE 1 Some Examples of Hormones and Their Classification 
(Norman & Litwack, 1997)

Hormone Function Name Type

Hypothalmic 
regulation

Thyrotropin-releasing 
hormone (TRH)

Peptide-protein

Gonadotropin releasing 
hormone (GnRH)

Peptide-protein

Corticotropin releasing 
hormone (CTH)

Peptide-protein

Prolactin-releasing 
factor (PRF)

Peptide-protein

Growth hormone-
releasing hormone 
(GHRH)

Peptide-protein

Anterior pituitary 
functions

Prolactin (PRL) Peptide-protein

Growth hormone (GH) Peptide-protein

Lutenizing hormone 
(LH)

Peptide-protein

Follicle-stimulating 
hormone (FSH)

Peptide-protein

Thyroid-stimulating 
hormone (TSH)

Peptide-protein

Posterior pituitary 
functions

Oxytocin Peptide-protein

Vasopressin Peptide-protein

Thyroid regulation Thyroxine (T4) Amino acid derived

Triiodothyronine (T3) Amino acid derived

Pancreas function Insulin Peptide-protein

Adrenal cortex Cortisol Steroid

Aldosterone Steroid

Adrenal medulla Adrenalin Amino acid derived

Noradrenalin Amino acid derived

Gonadal 
reproduction

Estradiol Steroid

Progesterone Steroid

Testosterone Steroid

Dehydroepiandrosterone 
(DHEA)

Steroid
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review will summarize and appraise recent work on spe-
cific hormone impacts in schizophrenia. This includes 
the HPG axis effects in schizophrenia, the hypotha-
lamic-pituitary-adrenal axis (HPA axis) prolactin effects 
and the hypothalamic-pituitary-thyroid (HPT) axis in 
schizophrenia.

THE HPG AXIS AND SCHIZOPHRENIA

The hormones of the HPG axis include gonadotropin-
releasing hormone from the hypothalamus (GnRH), LH 
and FSH from the pituitary, and the steroid hormones 
estrogen, progesterone, and testosterone from ovaries 
and testes (Figure 1).

The link between estrogen and mental illness was 
recognized more than a century ago (Riecher-Rossler & 
Hafner, 1993), but the effects of estrogen and other hor-
mones of the HPG axis in the CNS have really only been 
studied for the past 20 years. Although more research is 
needed, there is accumulating evidence for the complex 
interactions between gonadal hormones, particularly 
estrogen, and neurotransmitters of the CNS. This evi-
dence includes epidemiological, clinical, and preclinical 
research data.

Epidemiological observations of sex differences in the 
onset and course of schizophrenia reveal that schizo-
phrenia is a sexually dimorphic disease (Hafner, 2003; 
Hafner & an der Heiden, 1997). Women with schizophre-
nia present with their first episode about 5 years later 
than men (Angermeyer & Kuhn, 1988; Hafner, Riecher-
Rossler, Maurer, Fatkenheuer, & Loffler, 1992; Jablensky 
et al., 1992; Loffler et al., 1994).

Life cycle studies describe increased risk of first epi-
sode or relapse of schizophrenia in women during times 
of decreasing or changing estrogen production such 
as premenstrually, in the postpartum phase, and dur-
ing menopause (Kendell & Chalmers, Seeman cited in 
Kulkarni, de Castella, et al., 2008). In particular, epidemi-
ological evidence reveals a second spike in the incidence 
of schizophrenia onset for women at age 45–50 (Rossler & 
Seeman, as cited in Kulkarni, de Castella, et al., 2008). This 
is associated with falling levels of estrogen during meno-
pause. In essence, estrogen has a protective role against 
psychosis during reproductive years (Chavez et al., 2010).

Preclinical evidence has revealed that estrogen has sig-
nificant actions in the CNS beyond its primary endocrine 
and reproductive functions (Fink, Sumner, Rosie, Grace, 
& Quinn, 1996). Estrogen receptors are found in abun-
dance in the limbic system including the hippocampus 
and amygdala as well as the basal ganglia and cerebral 
cortex (ter Horst, 2010; Hughes et al., 2009). In classical 
genomic and rapid nongenomic interactions with these 
receptors, estrogen functions as a neuroactive steroid, 
influencing signaling pathways and neurodegenerative 

processes with the CNS (Cosimo Melcangi & Garcia-
Segura, 2010).

Estrogen: A Potent Neurotransmitter Modulator 
in Schizophrenia

There are three main forms of estrogen found in 
women: estradiol, the predominant hormone in repro-
ductive years; estrone, the predominant form after meno-
pause, and estriol, synthesized mainly in pregnancy. 
Estradiol has the highest affinity for estrogen receptors 
and is the focus of most studies of the influence of estro-
gen on psychosis.

DA, serotonin, and glutamate are widely accepted 
as key neurotransmitter systems involved in the patho-
physiology of schizophrenia (Gonzalez-Maeso et al., 
2008). Most antipsychotic drugs antagonize D2 (Dopa-
mine) receptors, but the newer antipsychotics also 
interact with serotonin receptors (5-H2A and 5-HT1A) 
(Horacek et al., 2006).

Estradiol interacts significantly with dopaminergic, 
serotonergic, and glutaminergic systems and has prop-
erties similar to the newer antipsychotic drugs (Adams, 
Fink, Janssen, Shah, & Morrison, 2004; Hughes et al., 
2009). Estrogen–dopamine interactions are complex 
and still not fully understood. Estrogen treatment has 
been found to increase the D2 receptor density in the 
striatum of ovariectomized rats (Sanchez, Bourque, 
Morissette, & Di Paolo, 2010). Estrogen also affects the 
serotonergic system (Lokuge, Frey, Foster, Soares, & 
Steiner, 2010) in many ways. Estradiol decreases the 
activity of monoamine oxidase, manipulates expres-
sion of the serotonin transporter, increased tryptophan 

FIGURE 1 
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activity, downregulates 5HT1A receptors, and upregu-
lates 5HT2A receptors.

N-methyl-d-aspartate (NMDA) receptor antagonists 
such as phencyclidine (PCP) produce psychotic symp-
toms (Bubenikova-Valesova, Horacek, Vrajova, & Hoschl, 
2008). This observation provides a basis for the role of 
hypoglutamatergic neurotransmission in the frontal cor-
tex and hippocampus in the pathogenesis of schizophre-
nia. Estradiol upregulates NMDA receptors and increases 
NMDA agonist binding in the rat brain (Kulkarni, de 
 Castella, et al., 2008), which could help to improve hypo-
active glutamatergic functioning in schizophrenia.

Clinical Trials Using Estradiol as a Treatment  
in Schizophrenia

Estrogen supplementation appears to be a useful 
method for reducing psychotic symptoms associated 
with schizophrenia. Early work in this area showed that 
in an open label placebo, controlled pilot study using 
2 mg of adjunctive oral estradiol valerate, the women 
with schizophrenia receiving estradiol had a more rapid 
improvement in symptoms compared to women with 
schizophrenia receiving adjunctive placebo (Kulkarni 
et al., 1996). Subsequent early clinical trials includ-
ing a dose-finding pilot study of transdermal estradiol 
(Kulkarni et al., 2001) and a second trial of 100 mcg 
transdermal estradiol (Kulkarni, de Castella, et al., 2008) 
showed efficacy of adding estradiol to antipsychotic treat-
ment in women with schizophrenia. A subsequent large 
clinical trial in 102 women provided further evidence for 
the efficacy of adjunctive transdermal estradiol (Kulkarni 
et al., 2014). Replication of these positive findings that 
adjunctive estradiol is effective in improving psychotic 
symptoms has been provided by Akhondzadeh et al. 
(Akhondzadeh et al., 2003). A meta-analysis performed 
in 2012 before the large trial of 102 women was published 
in 2014 (Kulkarni et al., 2014) of all estradiol treatment 
trials in schizophrenia concluded “Estrogens, especially 
estradiol, could be an effective augmentation strategy in 
the treatment of women with schizophrenia” (Begemann, 
Dekker, van Lunenburg, & Sommer, 2012). Estradiol 
treatment in men with schizophrenia is more difficult 
to trial with respect to the feminization side effects for 
men. In a short 14-day trial of 53 men with schizophre-
nia, the estradiol treatment group who had higher serum 
estradiol levels made a quicker recovery from psychotic 
symptoms (Kulkarni et al., 2011). This suggests that estra-
diol has a positive impact regardless of gender.

Estrogens and Neuroprotection

As well as the neurochemical impact of estrogens, 
schizophrenia is a disease with numerous brain ana-
tomical abnormalities. Reduced gray matter volume 

has been reported in temporal, limbic, frontal, striatal, 
thalamic, and vestibular enlargement plus abnormali-
ties in the prefrontal cortex (Fornito, Yucel, &  Pantelis, 
2009; Shenton, Dickey, Frumin, & McCarley, 2001). 
Changes in cytoarchitecture have also been described 
with abnormalities in neuropil volume, neuronal soma, 
irregular synaptic organization, and ectopic neurons 
(Flashman & Green, 2004; Iritani, 2007). Estrogen is 
known to have diverse neurotrophic properties that 
could be part of its ability to mediate the course and 
onset of brain disorder in schizophrenia. Estrogenic 
compounds can protect brain cells against injury from 
excitotoxicity, oxidative stress, inflammation, and 
apoptosis (Arevalo, Santos-Galindo, Bellini, Azcoitia, 
& Garcia-Segura, 2010; Bryant & Dorsa, 2010). Estro-
gens can enhance neurogenesis, angiogenesis, synaptic 
density, plasticity, connectivity, axonal sprouting, and 
remyelination (Li et al., 2011; Liu, Kelley, Herson, & 
Hurn, 2010). These neuroprotective actions are medi-
ated by neuronal estrogen receptor alpha. Psychopro-
tective properties of estrogens are thought to originate 
from preservation and enhancement of neuronal mito-
chondrial functioning (Simpkins, Yi, Yang, & Dykens, 
2010).

Selective Estrogen Receptor Modulators

Adjunctive estradiol treatment has been shown to 
improve psychotic symptoms (Akhondzadeh et al., 
2003; Begemann et al., 2012; Kulkarni, de Castella, et al., 
2008; Kulkarni et al., 2011, 1996, 2014, 2001) through a 
number of neuroprotective actions. However, the longer 
term use of unopposed estradiol can have a number of 
serious side effects because of estrogenic stimulation of 
breast, uterine, and gonadal tissue (Chlebowski et al., 
2009). These concerns drive exploration of the selective 
estrogen receptor modulators (SERMs) (Chlebowski 
et al., 2009). SERMs such as raloxifene hydrochloride 
stimulate CNS and bone estrogen receptors, while hav-
ing an inhibitory effect on uterine, breast, and gonadal 
tissue (Chan, Leung, et al., 2007; Kulkarni, Gurvich, 
et al., 2008). Raloxifene is a second generation SERM that 
is approved for use in the treatment of osteoporosis in 
postmenopausal women, and it has been shown to have 
a positive effect on memory (Yaffe et al., 2005).

The first dose-finding clinical trial using adjunctive 
raloxifene in schizophrenia (Kulkarni et al., 2010) dem-
onstrated that in a dose of 120 mg/day, positive and neg-
ative symptoms improved in a group of postmenopausal 
women with schizophrenia.

Subsequent studies using 60 mg/day raloxifene 
adjunct showed some improvement in negative symp-
toms and cognition but not positive psychotic symptoms 
in postmenopausal women with schizophrenia (Usall 
et al., 2011).
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Therefore, raloxifene hydrochloride 120 mg/day 
appears to be a useful adjunct in the treatment of older 
women with schizophrenia. However, further clinical 
trials are required to confirm this finding.

Other Sex Steroids and Schizophrenia

Androgens impact the mental state in a complex and 
poorly understood fashion. Testosterone may be impli-
cated in the development of positive psychotic symp-
toms. However, a recent study has shown a negative 
correlation between plasma testosterone levels and the 
severity of negative symptoms of schizophrenia (Akhon-
dzadeh et al., 2006).

Animal evidence suggests that testosterone may be 
propsychotic given that the administration of testoster-
one significantly enhanced NMDA antagonist-induced 
disruption in ovariectomized rats (Gogos, Kwek, & van 
den Buuse, 2012). High-dose androgenic steroids can 
induce psychotic symptoms (Talih, Fattal, & Malone, 
2007), although most of this work has focussed on 
DHEA (dehydroepiandrosterone) and DHEA-S (DHEA 
Sulfate). DHEA-S has been shown to be a neuroprotec-
tive agent in some animal studies, but the results are 
inconsistent (Ritsner, 2011).

Pregnenolone and its metabolites, especially allopreg-
nanolone, also seem to be promising hormone treatments 
in schizophrenia. Serum pregnenolone levels have been 
found to be lower in people with schizophrenia (Ritsner, 
2011). Antipsychotic medications raise pregnenolone 
levels, and a recent review of three small pilot studies 
showed improvement in psychotic symptoms with preg-
nenolone treatment (Marx et al., 2011).

Sex steroids, in particular, estrogen, appear to have 
an important role in the treatment and understanding 
of the etiology of schizophrenia. Further clinical trials 
and etiological research are needed in this promising 
area.

PROLACTIN AND SCHIZOPHRENIA

Prolactin (PRL) is a single chain 199 amino acid poly-
peptide hormone secreted by the lactotroph cells of the 
anterior pituitary. It has a plasma half-life of 20–30 min 
and is responsible for the initiation and maintenance of 
lactation by direct action on mammary tissue. PRL secre-
tion is under predominantly inhibitory hypothalamic 
control. PRL is released in a pulsatile manner with 13–14 
peaks per day and has a circadian rhythm with a maxi-
mum level reached about 4 h after the onset of sleep, and 
a minimum level reached about 6 h after waking (Frantz, 
1978). PRL levels are impacted by many factors such 
as stress, eating, sexual activity, menstrual cycle phase, 
pregnancy, and lactation frequency. The catecholamine 

DA is considered to be a major physiological hypotha-
lamic PRL-inhibiting factor. DA exerts a tonic inhibitory 
effect on lactotroph PRL secretion. PRL release increases 
as the DA available to the lactotroph is reduced. Estro-
gen, TRH, and vasoactive intestinal peptide all impact 
the pulsatile release of PRL (Moult, Dacie, Rees, & Besser, 
1981).

DA is synthesized by tuberoinfundibular dopa-
minergic neurons that have their cell bodies in the 
arcuate and periventricular nuclei of the medial basal 
hypothalamus with terminals ending on the hypotha-
lamic-hypophyseal portal capillaries at the median 
eminence (Gudelsky, 1981). DA is secreted by these 
neurons and transported by the portal system to the 
anterior pituitary, where it binds to the DA D2 recep-
tor on the membrane of the lactotroph cells ( Gudelsky, 
1981). Serotonin may also stimulate PRL secretion 
(Tuomisto & Mannisto, 1985).

Since the DA excess theory remains a compelling 
neurotransmitter hypothesis in the development of 
schizophrenia, and DA is intricately related to PRL 
secretion, it is important to understand and study the 
role of PRL in schizophrenia. All antipsychotic drugs 
have the capacity to block DA D2 receptors in the meso-
limbic and mesocortical areas. PRL response to even 
a single dose of antipsychotic medication is largely 
determined by pituitary DA mechanisms. Hence, 
PRL has been studied as a marker of DA systems in 
people with schizophrenia (Langer, Sachar, Gruen, & 
Halpern, 1980; Rubin & Hays, 1980). Using haloperi-
dol as a challenge test to assay PRL levels, Keks et al. 
(1990) utilized the concept of the pituitary gland being 
a “window to the brain.” Further symptom analysis 
revealed that there was a correlation between PRL/
DA levels and delusional symptoms (Kulkarni et al., 
1990).

Antipsychotics and Prolactin

PRL elevation by antipsychotic drugs is a common 
side effect. There is some variation between the sec-
ond generation antipsychotics (SGAs) in their propen-
sity to elevate PRL. The first-generation antipsychotics 
have been shown to elevate PRL up to 10 times normal 
non-breast-feeding levels, with a correlation of eleva-
tion to antipsychotic dose (Smith, Wheeler, Murray, & 
O’Keane, 2002). Within the SGA group, quetiapine has 
negligible effect on PRL elevation (Arvanitis & Miller, 
1997), while olanzapine elevates PRL in a dose-depen-
dent fashion. PRL elevations appear to be present with 
over 40% of patients treated with ziprasidone (Groot-
ens et al., 2011) and 60% treated with olanzapine (Groo-
tens et al., 2011).

Risperidone and paliperidone have the greatest asso-
ciation with hyperprolactinaemia, and this is related to 
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medication dose (Skopek & Manoj, 2010). Risperidone 
and paliperidone elevate PRL even more than the first-
generation antipsychotics (Skopek & Manoj, 2010). It is 
important to note that female patients experience greater 
PRL elevation in response to antipsychotics, particularly 
in response to risperidone (Kinon, Gilmore, Liu, & Hal-
breich, 2003). Aripiprazole has also been associated with 
decreased PRL levels (Chan, Lin, et al., 2007), which may 
be explained by the action of aripiprazole. This action 
includes partial agonism at D2 receptors with subse-
quent activation of the DA autoreceptor systems (Aihara 
et al., 2004). A newer antipsychotic, asenapine, did not 
cause PRL elevation in comparison to placebo and ris-
peridone treatment of patients with acute schizophrenia 
(Potkin, Cohen, & Panagides, 2007).

Elevated Prolactin Issues

Elevated PRL levels can often be asymptomatic, 
therefore, often undetected until laboratory investiga-
tion is performed (Kelly et al., 2013). Hyperprolacti-
naemia symptoms such as sexual dysfunction can be 
easily missed (Barnes cited in Riley, Peet, & Wilson, 
1993) but are often a major reason for nonadherence 
to antipsychotic medication regimens. Symptomatic 
presentations of elevated PRL levels include galactor-
rhea, menstrual abnormality in women, and changes 
in bone density.

Galactorrhea due to antipsychotic-induced PRL eleva-
tion is more common in women than men (Kelly et al., 
2013). Some studies have linked hyperprolactinaemia to 
an increased risk of breast cancer in women ( Halbreich, 
Kinon, Gilmore, & Kahn, 2003; Hankinson et al., 1999). 
The mechanisms suggested to explain this possible link 
include the increased synthesis and expression of PRL 
receptors in breast cancer tissue and PRL-induced increase 
in DNA synthesis in breast cancer cells (Vyas, 2012). Epi-
demiological studies investigating a link between antipsy-
chotic use in women and breast cancer have not produced 
clear findings. However, a recent retrospective cohort 
study (Wang et al., 2002) compared women who took PRL 
elevating antipsychotics with age-matched healthy con-
trols. A small but significant increased incidence of breast 
cancer was found in the antipsychotic taking group. 
Another study (Cohen, Cohen, Maislos, & Buskila, 2000) 
did not find a correlation between hyperprolactinaemia 
and breast cancer. Menstrual cycle abnormalities are 
common in women taking PRL-elevating antipsychot-
ics. Amenorrhea, anovulatory cycles, and long cycles are 
common (Kulkarni, de Castella, & Thompson) and can 
be related to the inverse relationship between PRL and 
estrogen.

Hypoestrogenism is commonly seen in women with 
amenorrhea and can increase the risks of osteoporosis 

and cardiovascular ischemic heart disease. Infertility is 
common in women who have prolonged hyperprolacti-
naemia (McIver, Romanski, & Nippoldt, 1997). As per the 
described work on estrogen providing neuroprotection 
in women with schizophrenia (Riecher-Rossler & Haf-
ner, 1993), PRL-induced hypoestrogenism can also lead 
to worse outcomes in psychotic symptoms. The SOHO 
study (Brugnoli et al., 2012) described an increased risk 
of suicide by 64%, in women who had amenorrhea, 
related to hyperprolactinaemia. Although the SOHO 
study did not examine estradiol levels in the amenor-
rheic patients, it could be speculated that a decrease in 
circulating estradiol resulted in loss of neuroprotection 
in the affected women.

Osteoporosis is a significant problem of degenera-
tion of the skeletal system, and people with schizo-
phrenia have a high risk of developing osteoporosis 
because of PRL-elevating antipsychotics over a long 
period of time, plus the nature of schizophrenia as a 
chronic illness, with associated poor general health 
(Meaney et al., 2004).

Treatments for PRL elevation generally involve reduc-
ing the dose of the medication, if possible. The more 
potent D2 antagonist medications usually have the 
associated hyperprolactinaemia. Switching medications 
to a PRL-sparing antipsychotic is a treatment option, if 
lowering the dose is ineffective. However, the impact 
on treating psychosis symptoms can be detrimental if 
the patient was stable on high-potency antipsychotics. 
Direct PRL antagonists such as bromocryptine have 
been studied (Yuan et al., 2008), but there is an associ-
ated risk of worsening psychosis. Adjunctive estradiol 
if used with concurrent progesterone may be useful in 
women (Kulkarni et al., 2014), provided medical safety 
with respect to screening for breast, uterine, and ovarian 
tumors with longer term use. Overall, the importance 
of testing serum PRL in patients who need long-term 
antipsychotic treatment is often ignored by clinicians. 
Patients who are symptomatic need action to rectify 
the hyperprolactinaemia before longer-term side effects 
occur.

The HPA Axis and Schizophrenia

The hypothalamic-pituitary-adrenal axis (HPA or 
HTPA axis) is also known as the limbic-hypothalamic-
pituitary-adrenal axis and is a complex set of interac-
tions between the hypothalamus, the pituitary gland, 
and the adrenal (also called “suprarenal”) glands (Fig-
ure 2).

The HPA axis is closely regulated by central mecha-
nisms involving the limbic system and hypothalamus. 
Signals reach the paraventricular nucleus (PVN) of 
the hypothalamus from limbic structures. Secretion of 
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corticotrophin-releasing hormone (CRH) and arginine 
vasopressin from neurons of the PVN triggers release of 
adrenocorticotrophic hormone (ACTH) from the ante-
rior pituitary (Mitrovic cited in Boron & Boulpaep, 2002). 
In addition to CRH, ACTH, cortisol, and numerous other 
messengers are involved in the HPA axis. For example, 
pro-opiomelanocortin (POMC), a prohormone, is the 
precursor for many bioactive peptides, including ACTH. 
ACTH is derived from POMC in the anterior pituitary 
(Stevens & White, 2010). ACTH travels in the blood and 
stimulates the adrenal gland.

The Adrenal Gland

The adrenal gland consists of two distinct endocrine 
glands: the adrenal medulla, which secretes catechol-
amines; and the adrenal cortex, which secretes steroid 
hormones. The adrenal medulla releases catecholamines 
(such as adrenalin and noradrenalin) directly into the 
blood. Adrenal medullary secretion is under sympathetic 
control (Herman, Ostrander, Mueller, & Figueiredo, 2005).

The adrenal cortex is divided into three zones: the 
zona glomerulosa, zona fasciculata, and zona reticu-
laris. The zona glomerulosa, which secretes aldosterone, 
is controlled primarily by the reninangiotensin system, 
ACTH, and other factors, while the zona fasciculata and 

zona reticularis, which secrete glucocorticoids (cortisol 
and corticosterone), androgens (DHEA), and estrogens, 
is controlled primarily by ACTH (Mitrovic cited in Boron 
& Boulpaep, 2002).

Glucocorticoids and Mineralocorticoids

Steroids such as corticosterone and cortisol, elabo-
rated in the zona fasciculate of the adrenal glands, cause 
glycogen production at the expense of protein break-
down, hence the term “glucocorticoid” (Sayers & Sayers, 
1948).

Several decades later, the term “mineralocorticoid” 
was coined to explain the salt-conserving action of 
aldosterone produced in the adrenal zona glomerulosa 
( Herman et al., 2005). While there is a categorical distinc-
tion made between the two steroid groups, their actions 
are interdependent (Grundy, Simpson, & Tait, 1952).

Mineralocorticoid receptors (MRs) and glucocorticoid 
receptors (GRs) are present throughout the limbic and 
paralimbic regions, including the hippocampus, amyg-
dala, and prefrontal cortex (Agarwal & Mirshahi, 1999; 
Oitzl, Champagne, van der Veen, & de Kloet, 2010).

Cortisol

Cortisol is one of the few hormones essential for life. 
It is termed as “glucocorticoid” and regulates the activ-
ity of the hypothalamus and pituitary by negative feed-
back effects (Mitrovic cited in Boron & Boulpaep, 2002). 
Peripheral cortisol levels have a circadian rhythm peak-
ing in the morning and decreasing in the evening, with 
the lowest levels during early sleep cycles. Stress of var-
ious types causes activation of PVN, resulting in peaks 
of cortisol levels superimposed on the usual rhythm 
(Herman, Flak, & Jankord, 2008). Approximately 75% 
of the cortisol in the circulation is bound to a plasma 
protein named transcortin or corticosteroid-binding 
globulin. Another 15% is bound to albumin, and the 
remaining 10% is “free.” It is the free cortisol that is bio-
logically active. Transcortin is produced by the liver and 
stimulated by estrogens.

Plasma transcortin levels increase during pregnancy. 
As a result, more cortisol is bound, free cortisol concen-
tration decreases, and ACTH secretion increases. Cor-
tisol production then increases until the free cortisol 
concentration returns to normal. For this reason, preg-
nant women have elevated blood cortisol levels but do 
not have symptoms of glucocorticoid excess. The same 
phenomenon occurs in women taking estrogen-contain-
ing oral contraceptives (Mitrovic cited in Boron & Boul-
paep, 2002).

Cortisol has many effects including anabolic effects on 
the liver and catabolic effects (proteolysis and lipolysis) 

FIGURE 2 
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at several sites including muscle, adipose tissue, connec-
tive tissue, and lymphoid tissue. Cortisol increases glu-
cose output by the liver, and glucose uptake by muscle, 
adipose, and other tissues decreases. As a result, blood 
glucose increases. These actions are mechanisms to 
mobilize energy sources (amino acids, fatty acids, and 
glycerol) from some tissues to provide energy, particu-
larly glucose, for the brain and heart. Other hormones, 
particularly insulin, may counterbalance the metabolic 
effects of glucocorticoids. Insulin secretion is stimulated 
by the rise in blood glucose (Herman et al., 2008).

Cortisol inhibits ACTH secretion both at the hypothal-
amus and at the pituitary levels. It is the free cortisol that 
is responsible for the inhibition. In addition to its effects 
on the organs and tissues directly involved in meta-
bolic homeostasis, cortisol influences a number of other 
organs and systems. Cortisol maintains the responsive-
ness of vascular smooth muscle to catecholamines and, 
therefore, participates in blood pressure regulation. Glu-
cocortoicoids inhibit the inflammatory response to tissue 
injury. For example, cortisol (and all known glucocorti-
coids) suppresses synthesis and decreases the release 
of arachnidonic acid, the key precursor for a number of 
mediators of inflammation (e.g., prostaglandins and leu-
cotrienes). It also decreases circulating T4 lymphocytes, 
proliferation of local mast cells, stabilizes lysosomes, and 
decreases production of platelet-activating factor and 
nitric oxide. All of these effects suppress local inflamma-
tory response (Spiga, Walker, Terry, & Lightman, 2011).

Cortisol and the CNS

In the CNS, cortisol can directly modulate electrical 
activity of the neurons via type I and type II GRs that 
are expressed particularly in the limbic system and hip-
pocampus. Cortisol’s ability to decrease hippocampal 
volume as well as memory has also been demonstrated. 
Cortisol decreases REM sleep but increases both slow-
wave sleep and time spent awake. Excessive concen-
trations of cortisol in blood can cause insomnia and 
strikingly increase or decrease mood (Brown, Rush, & 
McEwen, 1999).

ACTH and cortisol secretion are increased by stressful 
stimuli including surgery, trauma, pain, apprehension, 
infection, hypoglycemia, and hemorrhage. GRs have a 
higher affinity for synthetic glucocorticoids (e.g., dexa-
methasone (DEX) or prednisone) and are activated by 
higher levels of endogenous glucocorticoids in times of 
stress or pharmacologic challenge (Jankord & Herman, 
2008). In the hippocampus, GRs are primarily expressed 
in the dentate gyrus and CA1 and CA2 subregions, which 
are critical for cognitive function (DeRijk & de Kloet, 
2005; Walker, Mittal, & Tessner, 2008). GRs are also pres-
ent in the thalamus, septum, and PVN, as well as broadly 
throughout the prefrontal cortex and other cortical areas.

The increase in cortisol production is necessary for 
survival in times of stress. During stress or at the peak 
of the circadian cortisol rhythm (i.e., morning), MRs 
are saturated (unlike the 10% occupancy during rest), 
and increasing proportions of GRs become occupied 
(Silverman & Sternberg, 2012; Stevens & White, 2010). 
Both animal and human studies suggest that the relative 
proportion of MR to GR activation may be an important 
moderating factor in multiple brain processes, with the 
relation of receptor activation to brain function constitut-
ing an “inverted U” such that too much or too little can 
impair cognitive processes (de Kloet, Oitzl, & Joels, 1999; 
Lupien et al., 1998, 2002).

The reason that an increase in circulating glucocorti-
coid level is needed to resist stress is not well understood 
particularly in the context of the inhibitory effects of glu-
cocorticoids on the immune system. It has been suggested 
that basal (or slightly elevated) levels of cortisol have per-
missive action that is critical for initial metabolic response 
to stress (and even immune response- glucocorticoids 
mobilize neutrophils from the bone marrow). Conversely, 
the immunosuppressive effects of glucocorticoids are 
supposed to protect the organism from an overactive 
immune system. As with other steroid hormones, the 
multiple effects of glucocorticoids result from stimula-
tion of DNA-dependent mRNA synthesis in the cells of 
the target tissues (Herman et al., 2008; Spiga et al., 2011).

Aldosterone

Aldosterone is the major mineralocorticoid and the 
main hormone responsible for regulating the reabsorp-
tion of sodium and excretion of potassium, thereby regu-
lating arterial pressure and electrical excitability of nerve 
and muscle, which critically affect a number of vital 
body functions. Aldosterone secretion generally is regu-
lated by the level of pituitary ACTH, kidney angiotensin 
II, and plasma ions (especially sodium and potassium) 
(Agarwal & Mirshahi, 1999). Aldosterone secretion is sen-
sitive to smaller amounts of ACTH than the GRs, so that 
feedback inhibition of aldosterone secretion is possible 
even in the presence of high levels of plasma glucocorti-
coids (Blair West et al., 1963; Ganong, Biglieri, & Mulrow, 
1966). The increase in aldosterone secretion due to an 
excess of ACTH during stress is accompanied by an ele-
vation in urinary mineralocorticoids (Melby, 1989). Aldo-
sterone secretion is inhibited by atrial natriuretic peptide 
(ANP) (Ganguly, 1992), cortisol,  testosterone (Emeric-
Blanchouin, Zenatti, Vonarx, Schaison, & Aupetit- 
Faisant, 1992), and diabetes (Shimada et al., 1993). ACTH 
increases aldosterone acutely, but chronic exposure 
to ACTH can suppress aldosterone production (Hat-
tangady, Olala, Bollag, & Rainey, 2012).

DA and somatostatin specifically impede the stimu-
latory effect of angiotensin II, whereas the ANP blocks 
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the action of all stimulators of steroidogenesis in zona 
glomerulosa (Muller, 1995). Aldosterone secretion is 
stimulated by a large number of substances, including 
progesterone (Braley, Menachery, Yao, Mortensen, & 
Williams, 1996), DA agonists and H2 receptor antago-
nists (Garcia-Robles & Ruilope, 1987), spironolactone 
(Tsai, Davis, & Morris, 1980), and the pituitary adenyl-
ate cyclase-activating peptide (Bodart, Babinski, Ong, 
& De Lean, 1997). These suggest that zona glomeru-
losa activity is controlled by many factors.

The HPA Axis and Schizophrenia

There is a growing literature on the relationship 
between the HPA axis and schizophrenia. Two excellent 
recent reviews of this literature, Walker et al. (2008) and 
Holtzman et al. (2013), summarize several trends in the 
body of research findings in this area.

Patients with psychosis, especially nonmedicated 
patients, have higher baseline cortisol levels ( Garner 
et al., 2011; Kale et al., 2010; Venkatasubramanian, 
 Chittiprol, Neelakantachar, Shetty, & Gangadhar, 2010).

ACTH has also been found to be elevated in psy-
chotic patients (Brunelin et al., 2008; Ryan, Sharifi, 
 Condren, & Thakore, 2004). In fact, both ACTH and 
the DA metabolite homovanillic acid (HVA) response 
to metabolic stressor are also elevated in psychotic 
patients relative to controls (Brunelin et al., 2008). 
Further studies of ACTH are required to validate 
these findings since there are not many ACTH stud-
ies, largely due to the limitations in assaying ACTH in 
saliva and urine. A recent postmortem study of pitu-
itary glands from schizophrenia patients and controls 
revealed that the level of proACTH was elevated, and 
the POMC level showed a trend toward elevation in 
pituitaries from schizophrenia patients (Krishnamur-
thy et al., 2013).

Antipsychotic medications reduce cortisol and ACTH 
secretion, in addition to decreasing positive symptoms, 
and findings published subsequent to the above review 
support this effect as well (Venkatasubramanian et al., 
2010).

Psychotic patients show HPA axis dysfunction in 
response to pharmacologic challenge, such as the 
dexamethasone suppression test (DST). For example, 
administration of DEX, an exogenous glucocorticoid, 
typically leads to cortisol suppression due to the HPA 
axis negative feedback loop. DEX binds to GRs that, in 
turn, inhibit the expression of the POMC gene and, sub-
sequently, the secretion of ACTH and cortisol. Thus, cor-
tisol nonsuppression after the DST is an index of HPA 
axis dysfunction. In the DEX/CRH test, a more sensitive 
measure of HPA function, DEX is administered, then 
the following day, CRH is administered, and ACTH 
and cortisol responses are measured. More pronounced 

ACTH and cortisol secretion in response to CRH reflects 
reduced glucocorticoid feedback regulation. Higher 
post-DST and DEX/CRH levels of cortisol and ACTH 
were described in patients with schizophrenia and affec-
tive psychoses than in healthy and depressed compari-
son groups (Owashi et al., 2008; Walker et al., 2008). In 
many patients, this response is reversible with antipsy-
chotic treatment (Ceskova, Kasparek, Zourkova, & Pri-
kryl, 2006).

There are consistent reports of an inverse correlation 
between baseline cortisol and hippocampal volume in 
psychosis (Mondelli, Pariante, et al., 2010). The hippo-
campus exerts considerable influence on the HPA axis, 
and neuroimaging studies have consistently described 
decreased hippocampal volume reductions in patients 
with schizophrenia, so the link between hypercortisolae-
mia and schizophrenia is strengthened (Shepherd, Lau-
rens, Matheson, Carr, & Green, 2012).

Recent studies of first episode psychotic patients 
revealed significant associations of positive and negative 
symptom severity with cortisol levels (Belvederi Murri 
et al., 2012; Garner et al., 2011).

The magnitude of symptom severity reduction in 
response to antipsychotic medications is well correlated 
with a decrease in serum cortisol (Mondelli, Dazzan, 
et al., 2010).

Hypercortisolemia may precipitate or exacer-
bate psychotic symptoms. Further evidence for this 
comes from studies involving the administration of 
exogenous corticosteroids in high doses and causing 
psychotic symptoms ( Buchman, 2001; Warrington & 
Bostwick, 2006). Symptoms of hypercortisolemia-
induced psychosis include pressured speech, halluci-
nations, delusions, and disorganized thought, which 
are often indistinguishable from the symptoms of psy-
chotic disorders (Ling, Perry, & Tsuang, 1981; Wada 
et al., 2001).

Although there is relatively consistent evidence 
for elevated baseline HPA activity in psychosis, espe-
cially in nonmedicated patients, findings from inves-
tigations of psychosocial stress-induced cortisol are 
mixed. Some studies using laboratory psychosocial 
stressors have found that psychotic patients show no 
difference or less cortisol increase after stress induc-
tion, both on (Brenner et al., 2009; Jansen, Gispen-de 
Wied, & Kahn, 2000) and off (van Venrooij et al., 2012) 
antipsychotic medications. The absence of an enhanced 
psychosocial stress-induced cortisol increase in psy-
chosis, despite evidence for baseline elevations, may 
reflect several factors. First, there are ceiling effects on 
cortisol increments beyond heightened baseline levels 
(Crowley, Hindmarsh,  Honour, & Brook, 1993). Second, 
and perhaps more salient, after the onset of psychosis, 
the stress generated by the symptoms, especially dis-
tressing perceptions and ideations, may diminish the 
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effect of any external psychosocial stress. Also, the psy-
chosocial events that have the capacity for generating 
stress may become idiosyncratic. As discussed earlier, 
psychosis patients subjectively experience daily events 
as more distressing than healthy controls, even in the 
absence of increased stressor frequency.

Stress-sensitization may play a role in the elevated 
“set point” of HPA activity observed in some psy-
chotic patients. For example, Bennett (2008) reviews 
the neural mechanisms through which early stress-
ful experiences can alter the set point of the HPA axis 
and lead to chronically higher glucocorticoid activity, 
abnormalities in neuronal connectivity, and increased 
risk for subsequent psychosis. It has been shown that 
HPA set point is influenced by environmental factors 
such as prenatal maternal stress and early postnatal 
stress (Maccari et al., 2003), and it is also moderately 
heritable (Van Hulle, Shirtcliff, Lemery-Chalfant, & 
Goldsmith, 2012). Thus, as described below, genetic 
factors may also modulate biobehavioral sensitivity to 
stress.

Considerable research supports an association 
between HPA axis function and schizophrenia. In par-
ticular, elevated cortisol secretion in some patients with 
schizophrenia may be, in part, the trigger for illness 
onset and may determine the severity of symptoms and 
the course of illness.

More recently, the focus of some investigators has 
shifted to studies of the HPA axis in “ultra-high-risk” 
subjects, with the goal of addressing the critical ques-
tion of whether abnormalities in HPA function precede 
the onset of psychosis. The studies here report conflict-
ing results with some researchers (Garner et al., 2005) 
reporting that people at “ultra-high risk” (UHR) of 
developing psychosis, who went on to develop psycho-
sis, had an enlarged pituitary gland at baseline, sug-
gesting overactivity of the HPA axis. Mixed results of 
altered HPA axis function in people at risk of develop-
ing psychosis have been reported with the inconsis-
tency in results being due to various methodological 
limitations. A recent study (Day et al., 2014) showed 
that UHR participants displayed a blunted cortisol 
awakening response compared with HC participants. 
No group difference in daytime cortisol levels was 
found, nor were any associations between cortisol mea-
sures and symptoms.

Unfortunately, most of the HPA axis studies do not 
separate male and female patients in the analysis and 
reporting of psychoneuroendocrine data. The HPA axis 
set points may be different for men and women, with 
known increased sensitivity to stress in women (Kelly 
et al., 2013).

Also, the methodologies employed in the UHR stud-
ies understandably need to accommodate noninvasive 
techniques for young people who do not have clear 

symptoms, which further flaw the results. Also, since 
the majority of UHR people do not go on to develop 
schizophrenia (Fusar-Poli, Byrne, Badger, Valmaggia, 
& McGuire, 2013), it is difficult to draw generalizable 
conclusions about the HPA axis and its role in triggering 
schizophrenia.

However, the overall body of evidence in established 
schizophrenia that strongly suggests the HPA axis plays 
a role in the precipitation and perpetuation of schizo-
phrenia is a compelling area of further investigation and 
underlines the impact of hormones in the development 
and expression of schizophrenia.

THYROID HORMONES AND 
SCHIZOPHRENIA

William Gull first described adult hypothyroid-
ism in 1874 during an address to the Clinical Society 
of London (Gull, 1874). A few years later, William Ord 
coined the term “myxedema” to describe the nonpit-
ting edema he observed in some patients with hypothy-
roidism (Ord, 1878). A Committee on Myxedema of the 
Clinical Society of London first linked hypothyroidism 
with psychosis and reported that in 109 patients with 
myxedema,“delusions and hallucinations occur in nearly 
half the cases, mainly where the disease is advanced” 
(Doyle, 1991; Ord, 1888). The relationship between psy-
chosis and hypothyroidism was reported in 1949 (Asher, 
1949), and the term “myxedema madness” was added 
to the literature (Asher, 1949; Heinrich & Grahm, 2003) 
(Figure 3).

FIGURE 3 
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THE HYPOTHALAMIC-PITUITARY-
THYROID AXIS

The pituitary regulates the synthesis and secretion 
of thyroid hormones (THs) through the release of thy-
rotropin—also known as thyroid-stimulating hormone 
(TSH)—from the anterior pituitary. The hypothalamus, 
in turn, stimulates the release of TSH through TRH. 
Finally, circulating THs (T3, T4) exert feedback control 
on both TRH and TSH secretion (Guyton & Hall, 1996). 
The two primary THs, thyroxine (T4) and tri-iodothy-
ronine (T3), are labeled with the numbers 3 and 4 that 
refer to the number of atoms of iodine in the hormones. 
Iodine is essential for the production of THs. Low 
iodine diets lead to cell hyperplasia, known as goiter. 
The thyroid gland plays an important role in regulating 
the body’s metabolism. The T4 and T3 hormones stimu-
late every tissue in the body to produce proteins and 
increase the amount of oxygen used by cells (Guyton & 
Hall, 1996).

Thyrotropin-Releasing Hormone

TRH is a tripeptide pyro-Glu-His-Pro containing the 
modified amino acid pyro-Glu. It is found in the cerebral 
cortex, the gastrointestinal tract, and the β cells of the 
pancreas. The major sources of the TRH that stimulates 
TSH synthesis and secretion are located in the arcuate 
nucleus and the median eminence of the hypothalamus.

In the anterior pituitary thyrotrophs, TRH binds to 
the TRH receptor, a G protein-coupled receptor on the 
cell membranes of the thyrotrophs. TRH binding trig-
gers the phospholipase C pathway. Administering TRH 
also raises plasma PRL by stimulating lactotrophs in the 
anterior pituitary (Guyton & Hall, 1996).

Thyroid-Stimulating Hormone

TSH released by the thyrotrophs in the anterior pitu-
itary is a 28-kDa glycoprotein with α and β chains. The α 
chain of TSH is identical to that of the other glycoprotein 
hormones such as the gonadotropins luteinizing hor-
mone (LH) and FSH. The β chain is unique to TSH. Once 
secreted, TSH acts on the thyroid follicular cell through a 
specific receptor (Boron, Myers, Scarpa & Boulpaep cited 
in Boron & Boulpaep, 2011).

Circulating free T4 and T3 negatively feed back to both 
the hypothalamus and anterior pituitary and inhibit both 
the synthesis of TRH by hypothalamic neurons and the 
release of TSH by the thyrotrophs in the anterior pitu-
itary. Plasma TSH is very sensitive to alteration in the 
levels of free T4 and T3. An excess of thyroid hormone 
leads to a decrease in plasma TSH (Guyton & Hall, 1996).

The sensor in this feedback system monitors the con-
centration of T3 inside the thyrotroph. T3 can enter directly 

from the blood plasma or form inside the thyrotroph by 
deiodination of T4. The negative feedback of T4 and T3 on 
TSH release occurs at the level of the pituitary thyrotroph 
by both indirect and direct mechanisms. In the indirect 
feedback pathway, intracellular T3 decreases the number 
of TRH receptors on the surface of the thyrotroph. THs 
indirectly inhibit TSH release by reducing the sensitivity 
of the thyrotrophs to TRH. In the direct feedback path-
way, intracellular T3 inhibits the synthesis of both the α 
and the β chains of TSH. Free T4 and T3 concentrations in 
the plasma are relatively constant over the course of 24 h, 
and they have long half-lives. The feedback regulation of 
TSH secretion by THs is a slow process. T3 feeds back on 
the thyrotroph by modulating gene transcription, which 
is a slow process (Boron, Myers, Scarpa & Boulpaep cited 
in Boron & Boulpaep, 2011).

The feedback of T4 and T3 on the release of TSH may 
also be under the control of somatostatin and DA from 
the hypothalamus. Somatostatin and DA both inhibit 
TSH secretion, apparently by making the thyrotroph 
more sensitive to inhibition by intracellular T3. Thus, 
somatostatin and DA appear to counterbalance the stim-
ulatory effect of TRH (Boron, Myers, Scarpa, & Boulpaep 
cited in Boron & Boulpaep, 2011).

The HPT Axis and Schizophrenia

There are many well-described cases of psychosis and 
depression described in patients with hyperthyroidism 
or hypothyroidism (Fountoulakis et al., 2006; Hickie, 
Bennett, Mitchell, Wilhelm, & Orlay, 1996; Snabboon, 
Khemkha, Chaiyaumporn, Lalitanantpong, & Sridama, 
2009). There is considerable literature on the role of the 
THs on mood regulation, including the use of augmen-
tation strategies with thyroid hormone treatments for 
depression (Abraham, Milev, & Lawson, 2006; Abulseoud 
et al., 2007). The link between THs and schizophrenia is 
also noted. Several groups have measured TH levels, 
and other thyroid-related parameters, in patients with 
schizophrenia, and found several abnormalities (Palha 
& Goodman, 2006; Sim, Chong, Chan, & Lum, 2002). 
In a recent review of thyroid abnormalities in schizo-
phrenia (Santos et al., 2012), 15 independent studies of 
human population cohorts addressing the role of TH 
function in patients with schizophrenia were reported. 
Prior to the mid-1980s, the lack of high-sensitivity assays 
for measurement of TH, specifically for free TH, was a 
handicap. From the review of studies, a complex rela-
tionship emerged between psychiatric symptoms and 
fluctuations in TH. In an important study of war veter-
ans (Southwick, Mason, Giller, & Kosten, 1989), a highly 
significant relationship between the range (maximum 
minus minimum value) of the BPRS sum and the range 
of free thyroxine levels was found, possibly indicating 
that clinical improvement may be associated with falling 
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thyroxine levels in some patients and rising thyroxine 
levels in other patients.

A study by Roca and colleagues (Roca, Blackman, 
Ackerley, Harman, & Gregerman, 1990) showed that 
49% of psychiatric patients, in their study, had signifi-
cant changes in TH levels, with a significant positive 
correlation between severity of illness and elevations of  
TH levels. There are clinical case reports describing  
psychotic symptoms in people with hyperthyroidism  
(Benvenga, Lapa, & Trimarchi, 2003; Marian, Nica, 
Ionescu, & Ghinea, 2009; Snabboon et al., 2009).

A number of studies described above were done in 
patients with chronic schizophrenia who had received 
many years of antipsychotic medication. In a thorough 
study (Seeman cited in Kulkarni, de Castella, et al., 2008) 
of 31 acutely ill in-patients with schizophrenia before 
and after 4 weeks of treatment with perazine, T4, T3, 
reverseT3 (rT3), and TSH were measured in a further 19 
patients with schizophrenia in remission on no medica-
tion, 20 schizophrenia patients in remission taking anti-
psychotics drugs, plus 24 patients with residual-type 
schizophrenia were tested.

The serum levels of T4 of acutely ill schizophrenic 
patients were elevated, while those of T3, rT3, and TSH 
were normal. Their T4 levels showed a positive correla-
tion with the severity of illness and the degree of clinical 
response to antipsychotic treatment. There was a signifi-
cant fall in serum concentrations of T4 and rT3 during 4 
weeks of drug treatment, and the decrease was signifi-
cantly correlated to clinical response. No abnormalities 
in the serum concentrations of any of the hormones mea-
sured were found in schizophrenic patients in remis-
sion or in residual-type schizophrenia (Baumgartner, 
Pietzcker, & Gaebel, 2000).

The authors concluded that their results indicated that 
elevated serum levels of T4 with normal T3 and TSH lev-
els may be specific for acutely ill schizophrenia patients 
and that antipsychotic medication may affect thyroid 
hormone metabolism, this interaction being involved in 
the mechanism of action of these drugs (Baumgartner 
et al., 2000).

Mechanisms of Interaction between the HPT 
Axis and Schizophrenia

Either by direct action of the hormones of the HPT 
axis on neurotransmitters implicated in the formation 
of psychosis symptoms, or by an interaction on antipsy-
chotic drug metabolism, there appears to be a close con-
nection between the HPT axis and schizophrenia.

Dopamine and the HPT Axis

THs have been shown to regulate the levels of 
DA receptors (Crocker & Overstreet, 1984; Crocker, 

Overstreet, & Crocker, 1986) and the activity of tyrosine 
hydroxylase (Chaube & Joy, 2003; Diarra, Lefauconnier, 
Valens, Georges, & Gripois, 1989; Shikaeva & Koreneva, 
1987), a critical enzyme of the cathecolaminergic path-
way. DA may inhibit TSH secretion (Rao et al., 1990), 
and treatment with DA blockers leads to increased TSH 
level or subclinical hypothyroidism (Magliozzi, Gold, 
& Laubly, 1989). Conversely, hypothyroidism has been 
described as increasing DA receptor sensitivity (Crocker 
et al., 1986). In support of this, early animal studies 
showed that serum concentrations of T4 and fT4 declined 
after treatment with chlorpromazine and clozapine (Rin-
ieris, Christodoulou, Souvatzoglou, Koutras, & Stefanis, 
1980) and also after haloperidol treatment (Baumgartner, 
Graf, Kurten, & Meinhold, 1988). Subchronic treatment 
with haloperidol or clozapine induced specific changes 
in deiodinase activities in rat brains (Baumgartner et al., 
1988) Alpha 1- and Beta-adrenergic catecholamines are 
involved in maintaining deiodinase activity, and thus 
brain thyroid status (Barnes cited in Riley et al., 1993). In 
this way, the impact of elevated DA due to schizophre-
nia would have a major impact on the HPT axis and vice 
versa.

Serotonin and the HPT Axis

Serotonin is a key neurotransmitter in the develop-
ment of psychosis symptoms as well as depression. The 
SGA medications are also known as “atypical” antipsy-
chotics mainly because of their actions on the serotonin 
systems as well as dopaminergic systems (Meltzer & 
Massey, 2011).

There are studies that show decreased serotonin activ-
ity in hypothyroid patients (Cleare, McGregor, Chambers,  
Dawling, & O’Keane, 1996; Cleare, McGregor, & O’Keane,  
1995).

Work done by Strawn et al. (Strawn, Ekhator,  
D’Souza, & Geracioti, 2004) showed that CSF levels of the 
major metabolites of serotonin and dopamine-5-hydroxy  
indoleacetic acid and HVA were negatively correlated 
with plasma TSH, T3, and FT3. There does appear to be a 
significant interaction between the HPT and schizophre-
nia—although this connection is not as well studied as in 
mood disorders.

Glutamate and the HPT Axis

The glutamatergic hypothesis of schizophrenia pos-
its that there is dysfunction of corticolimbic glutama-
tergic neurotransmission that may contribute to or 
account for the manifestations of schizophrenia. The 
hypothesis is based upon the observation that psy-
chotomimetic agents, such as ketamine and PCP, induce 
neurocognitive deficiencies and psychotic symptoms, 
similar to those of schizophrenia, through blockage of 
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the neurotransmission at NMDA- type glutamate recep-
tors (Coyle, 1996).

NMDA receptors are colocated on brain circuits that 
regulate DA release, lending support to the notion that 
the two neurotransmitter systems are interlinked (Spiga 
et al., 2011). The role of T3 in the CNS, specifically on 
regulation of glutamate uptake has begun to be studied 
(Mendes-de-Aguiar et al., 2008). This study described 
that T3 modulates the astrocytic glutamate transporters 
and is thereby capable of regulating extracellular gluta-
mate levels. The overall impact of adequate T3 produc-
tion appears to be to promote neuronal development 
and neuroprotection.

Glutamate receptor agonist administration in male 
rats has been found to increase TSH concentrations 
(Arufe, Duran, Perez-Vences, & Alfonso, 2002), while 
antagonists decreased TSH and TH serum levels.

The role of the HPT axis in glutamate regulation in 
schizophrenia appears to be a significant one, but fur-
ther study is needed to ascertain the mechanisms and 
clinical impact of hypo- or hyperthyroidism on gluta-
mate regulation and the phenotypic expression of this in 
schizophrenia.

CONCLUSION

Multiple hormones interact with neurotransmitters, 
neural regulators, and other systems within the CNS to 
cause the development of schizophrenia. The impact of 
hormone regulation through the pituitary gland and on 
to target organs with significant feedback loops to the 
CNS and the entire body is immense. The intricate bal-
ance of hormone regulation with environmental triggers, 
such as stress, provides a rich source for explanation of 
clinical phenomena seen in schizophrenia—such as the 
early onset of illness being triggered by sexual abuse or 
other external threats. The impact of hormonal imbal-
ances appears to promote ongoing illness, for example, 
in people with long-term, persistent schizophrenia suf-
fering from hyperprolactinemia leading to osteoporosis 
or other effects of hypoestrogenism. Hypothyroidism 
is known from historical times to cause psychosis, and 
recent exciting work exploring the impact of TH on key 
neurotransmitter systems is promising in understand-
ing more about the etiological mechanisms leading to 
the development of schizophrenia. In this way, study of 
the pituitary and its products really is a “window to the 
brain” in schizophrenia.

While there is a great deal of research to be done in the 
area of endocrinology providing etiological answers to 
the development of schizophrenia, there is another bur-
geoning area of research that is about the use of hormones 
as innovative treatments for schizophrenia. The imbal-
ances in various hormone systems, whether as direct 

cause or effect of schizophrenia, can be addressed with 
hormone administration with resultant improvement in 
the symptoms of schizophrenia. The role of adjunctive 
estrogen treatment is an excellent example of this. Since 
there are a significant number of people with intractable 
schizophrenia, new treatment approaches are vital. Hor-
mone augmentation, particularly when schizophrenia 
has been noted to begin with major endocrine life events 
(e.g., postnatally) is an exciting area for research into the 
development of new, effective treatments.

Importantly, the clinical impacts of hormone imbal-
ances due to existing treatments with antipsychotic 
medications need to be managed well by all clinicians 
involved in patient care. It is important for mental health 
clinicians to adopt a holistic approach. Examples include 
the consideration of the effect of menopause on their 
patients’ existing or new psychosis, monitoring for dia-
betes in people who take weight gaining medication, 
and being aware of insidious onset of hypothyroidism if 
medications such as lithium carbonate are used to treat 
affective symptoms within the schizophrenia spectrum. 
There are many intricate interactions between medica-
tions, illness, hormones, and lifestyle factors that clini-
cians need to understand better and manage.

Hormones play a huge role in the development, per-
petuation, and prognosis of people with schizophre-
nia. A broad approach to the etiological and treatment 
research paradigms as well as in the clinical manage-
ment of schizophrenia is an important step toward better 
outcomes for patients.
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INTRODUCTION

Schizophrenia is a neurodevelopmental disorder 
appearing in adolescence or early adulthood result-
ing from both genetic and environmental risk factors. 
Despite a high heritability (estimations range between 
40% and 60%), monogenic causes cannot account for 
the cases, leading to the hypothesis of an interaction 
between genes and environment. Adverse events dur-
ing prenatal life, perinatal life, childhood, or adoles-
cence have been associated with the illness (Brown, 
2011; van Os, Rutten, & Poulton, 2008; Schmitt, Mal-
chow, Hasan, & Falkai, 2014). The delay between occur-
rence of these events and illness onset has led to the 
concept of a neurodevelopmental disorder (Catts et al., 
2013; Insel, 2010; Weinberger, 1987). Interestingly, 
schizophrenia coincidentally develops with maturation 
of the prefrontal cortex (Fuster, 2002; Hoistad et al., 
2009): volume of white matter in this region progresses 
through adolescence to reach a maximal volume in the 
third decade of life (Bartzokis et al., 2001; Lenroot & 
Giedd, 2006).

Imaging studies implicated anomalies of the pre-
frontal cortex in schizophrenia. Clinical manifesta-
tions of the illness, including cognitive symptoms, are 
hypothesized to reflect abnormal brain connectivity. 
This disconnectivity can result from disturbances of 
long-range neuronal circuits (i.e., white matter tracts) 

or of local circuits (i.e., GABAergic and glutamatergic 
system) (Ruiz, Birbaumer, & Sitaram, 2013; Schmitt, 
Hasan, Gruber, & Falkai, 2011; Steullet et al., 2014), 
both of which have been involved in schizophrenia. 
At the neuropathological level, alterations of oligo-
dendrocytes and myelin appear as clear findings in 
schizophrenia. Because myelin influences conduction 
velocity, an impairment of myelination process would 
disrupt temporal coordination between distant brain 
regions, affect their synchrony, and thus lead to dis-
connectivity (Whitford, Ford, Mathalon, Kubicki, & 
Shenton, 2012).

Current works from our laboratory and others sug-
gest that interactions of genes and environment during 
neurodevelopment converge to induce redox dys-
regulation and oxidative stress in schizophrenia (Do, 
Cabungcal, Frank, Steullet, & Cuenod, 2009; Steullet 
et al., 2014). In the present review, we will focus on 
evidences of redox dysregulation and myelin anoma-
lies in patients with schizophrenia as well as in early 
psychotic patients. Finally, we review data from human 
studies and rodent models of schizophrenia showing 
that known genetic and environmental risk factors of 
schizophrenia induce redox dysregulation/oxidative 
stress and myelin anomalies. We suggest that oxidative 
stress during key periods of brain maturation interferes 
with myelin development thus leading to disconnec-
tivity and schizophrenia symptoms.
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IMBALANCE OF REDOX HOMEOSTASIS 
IN SCHIZOPHRENIA

Key Players of Redox Homeostasis

Redox state is a regulatory system of posttranslational 
modifications that controls cellular signalization in 
response to oxidants and free radicals. Oxidative stress 
is defined as an imbalance between prooxidants and 
antioxidants, which results in macromolecular damages 
(lipid peroxidation, protein carbonylation, and DNA oxi-
dation) and in dysregulation of the redox system. Major 
prooxidants are free radicals, that is, reactive oxygen 
species (ROS; superoxide anion radicals O2%−, hydrogen 
peroxide H2O2, and hydroxyl radicals OH%) and reac-
tive nitrogen species (nitric oxide NO% and peroxyni-
trite ONOO−) (Do, Bovet, et al., 2009; Valko et al., 2007). 
NO% is produced by the NO synthase in mitochondria 
and peroxisomes (Szibor, Richter, & Ghafourifar, 2001; 

Valko et al., 2007). It diffuses through cytoplasm and 
plasma membranes, and plays signaling roles in various 
processes such as synaptic plasticity, immune response, 
or regulation of blood pressure. NO% toxicity is mainly 
linked to its reaction with O2%− that forms ONOO−, a 
strong oxidant inducing lipid oxidation and DNA frag-
mentation (Figure 1(A)) (Bergendi, Beneš, Ďuračková, & 
Ferenčik, 1999; Valko et al., 2007). In physiological con-
ditions, O2%− is produced within the cell by mitochon-
dria and, to a lower extent, by endoplasmic reticulum. 
O2%− is reduced by the superoxide dismutase (SOD) into 
H2O2 (Figure 1(A)). Moreover, peroxides are generated 
at high rates by anabolic and catabolic reactions ongo-
ing in peroxisomes (Schrader & Fahimi, 2006), where 
catalase catalyzes their decomposition into water. In a 
reaction catalyzed by iron, peroxides may form OH% 
radicals, which are highly reactive and thus can lead to 
lipid peroxidation, protein carbonylation, and DNA oxi-
dation (Figure 1(A)).

FIGURE 1 Antioxidant system (A) and glutathione (GSH) metabolism (B). (A) Free radicals such as O2%− are catalyzed to hydrogen peroxide 
(H2O2) through superoxide dismutase (SOD). H2O2 can be detoxified to water via peroxiredoxin (Prx) or catalase (CAT). Glutathione peroxidase 
(GPx) also catalyzes the same reaction, using GSH as a reductant. H2O2 can be converted into hydroxyl radical %OH (Fenton reaction), which 
induces macromolecular damages: protein carbonylation, DNA oxidation, and lipid oxidation. Lipid oxidation generates end products such 
as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), which are indirect oxidative stress markers. Lipids can be restored via vitamin E 
and GPx reactions using GSH as reductant. GSH acts as reductant to detoxify ROS or lipid via GPx, and is used as substrate by GSH transferase 
(GST) to detoxify xenobiotics. (B) GSH is synthesized by two consecutive enzymes: glutamine-cysteine ligase (GCL) and glutathione synthe-
tase (GS). GCL has two subunits, the catalytic and the modulatory, coded by GCLC and GCLM. GCL combines cysteine to glutamate to form 
γ-glutamylcysteine. The second enzyme (GS) catalyzes the final step of GSH synthesis by adding glycine to γ-glutamylcysteine. Reduced GSH can 
react directly with ROS, generating oxidized GSH (GSSG). Reduced GSH can be recycled via the activity of glutathione reductase (GR).
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Recent advances show that redox systems are regu-
lated under dynamic, nonequilibrium conditions. 
“Redox signaling” is used to describe signaling pro-
cesses in which a specific oxidative signal is conveyed 
through a specific redox element to direct a specific cel-
lular response (i.e., Nrf2 redox-signaling pathway). Nrf2, 
a transcription factor that induces the expression of an 
array of antioxidant enzymes, is regulated by redox-sen-
sitive proteins. Indeed, in conditions of redox dysregu-
lation, the inhibitor of Nrf2, KEAP1, is oxidized on its 
cysteine residues, leading to the release of Nrf2 and its 
translocation to the nucleus (Kensler, Wakabayashi, & 
Biswal, 2007). Many signaling systems including kinase, 
phosphatase, and transmembrane ionic signaling (e.g., 
N-methyl-d-aspartate(NMDA)receptor) can also be reg-
ulated by “redox sensing” thiols of critical proteins in the 
pathways (Jones, 2008). Both redox sensing and redox 
signaling use thiol switches, especially cysteine residues 
in proteins which are sensitive to covalent or noncova-
lent modifications (i.e., reversible oxidation, nitrosyl-
ation, and glutathionylation), leading to structural and 
functional alterations of target protein. This has led to 
the concept of “orthogonal control of signal transduction 
systems by redox-sensing mechanisms” (Jones, 2010). 
Moreover, because redox potentials are differently con-
trolled in subcellular compartments, the same signaling 
mechanism can be differentially regulated by the local 
redox environment. At present, there is no methodology 
to monitor these highly dynamic and unstable dithiol/
disulfide switches neither in real-time nor in space (i.e., 
targeted to specific proteins, cells, and brain regions). 
Recent proteomics-based approaches are efficient but 
they assess the endpoint. Indeed, the effects cannot be 
localized to cell type/structure and artifactual oxida-
tion/reduction can occur during isolation and fixation.

Redox regulators and endogenous antioxidants 
encompass a variety of enzymatic and nonenzymatic 
defenses. The nonenzymatic redox regulation is a mul-
tipartite system relying mainly on glutathione (GSH), 
thioredoxin (Trx), and cysteine. The tripeptide GSH is 
synthesized into two steps, the first and limiting one 
being catalyzed by the glutamate-cysteine ligase (GCL) 
(Figure 1(B)) (Lu, 2013). GSH can react with free radi-
cals via a nonenzymatic reaction. This oxidation of GSH 
generates disulfides (GSSG), which can be restored by 
GSH reductase (Figure 1(B)). Moreover, many enzy-
matic reactions use GSH to detoxify ROS or regenerate 
oxidized molecules. Two main families of enzymes use 
GSH as a substrate: (1) the GSH peroxidase (GPx), which 
reduces peroxides or peroxidized lipids, and (2) the GSH 
transferase (GST), a superfamily of enzymes catalyzing 
the conjugation of GSH, with mixed functions, such as 
the detoxification of xenobiotics and the synthesis of 
steroid hormones (reviewed by Board & Menon, 2013) 
(Figure 1(A)). In addition, GSH can regenerate other 

antioxidants such as vitamin C, vitamin E, and glutare-
doxin (Grx). Grx, Trx, and peroxiredoxin (Prx) are three 
families of thiol-dependant antioxidant proteins that can 
function independently of GSH. Prx catalyze the reduc-
tion of peroxides (Figure 1(A)). Grx and Trx reduce pro-
tein disulphide and mixed GSH disulphide (in the case 
of Grx). They are reduced back to their initial state by Trx 
reductase as well as by GSH in the case of Grx. Both GSH 
and Trx systems are dependent on reduced nicotinamide 
adenine dinucleotide phosphate–reducing potential. 
The very reducing redox state of reduced nicotinamide 
adenine dinucleotide phosphate/nicotinamide adenine 
dinucleotide phosphate + makes it the primary source of 
electrons for redox pathways.

Production of ROS is localized to specific part of the 
cell and, conversely, redox potential and its regulators 
are not evenly distributed (Table 1) (Go & Jones, 2008). 
This distribution has crucial importance in nervous tis-
sues known to present complex compartmentalization. 
Mitochondria, the main source of O2%−, contain GSH-
dependent as well as GSH-independent enzymes (Trx2, 
TR2 and the manganese SOD, SOD2). In peroxisomes, 
high producers of H2O2, catalase is very active, as well 
as Prx and GPx (Go & Jones, 2008). GSH and Trx1 both 
regulate redox potential in the cytoplasm; however, they 
may vary independently. The nucleus constitutes an iso-
lated environment protecting DNA from chemicals. Few 
antioxidant proteins are specifically addressed to the 
nucleus (Table 1), but oxidative stress and a large range 
of stressors induce translocation of cytoplasmic redox 
regulators as Trx1 and TR1 (Go & Jones, 2008). The extra-
cellular space has a more oxidized state than the cyto-
plasm and the major redox couple is cysteine/cystine in 
contrast with other compartments where GSH/GSSG is 
main redox regulator (Go & Jones, 2008).

Redox Anomalies in Schizophrenia

Measurements of free radicals and nonradicals oxi-
dants per se remain difficult because of their highly 
reactive nature. Similarly, redox homeostasis owing to 
its multipartite nature is not often assessed. Thus, evi-
dences of oxidative stress and redox dysregulation in 
schizophrenia are mostly based on lowered antioxidant 
defenses and accumulation of oxidation end products 
such as 8-oxo-deoxyguanosine (8-oxodG, formed by 
oxidation of DNA), protein carbonylation, and lipid per-
oxidation (malondialdehyde, MDA; 4-hydroxynonenal, 
HNE; thiobarbituric acid reactive substances, TBARS).

Peripheral Marks of Oxidative Stress  
in Schizophrenia Patients

Marks of oxidative stress have been repeatedly 
reported in peripheral samples of schizophrenia 
patients, suggesting a systemic implication of the stress. 
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TABLE 1 Subcellular localization of the Major Antioxidant players According to Gene ontology Annotations in the Uniprot Database (uniprot.org)

Glutathione System

Subcellular 
Localization Major ROS SOD

Peroxiredoxin and 
Catalase

Thioredoxin and 
Glutaredoxin

GSH Synthesis and 
Recycling GPx GST

Cytoplasm SOD1 PRX1
PRX2
PRX4
PRX5
PRX6*

TXN
TXNRD1
GRX1

GCLC
GCLM
GSS
GR

GPX1
GPX2
GPX4

GSTA1-5
GSTM1-4
GSTO1
GSTP1
GSTT1, 2, 2B

Mitochondria O2%− SOD2 PRX3
PRX5

TXN2
TXNRD2
GRX2
GRX5

GR GPX4 GSTP1

Peroxisomes H2O2 NO% PRX5
CAT

GRX5 GSTK1

Nucleus SOD1 TXN (see note 1)
TXNRD1 (see note 2)
TXNRD3 (see note 3)
GRX2

GSTP1

Secreted SOD3 PRX4 GPX3
GPX5
GPX6*
GPX7*

Others H2O2: ER PRX6*: Lysosomes TXNRD3: Microsome, ER 
(see note 3)

GPX8*: ER lumen GSTCD, exosomes

In the Grx family, the protein coded by GRX3 is probably enzymatically inactive and thus was not included. Note 1: The protein Trx1, coded by TXN, is nuclear after ultraviolet irradiation, but is mainly cytoplas-
mic otherwise. Note 2: Only a splicing variant of TXNRD1 (coding TR1) is reported to be nuclear. Note 3: TXNRD3 (coding TR3) is specifically expressed in testis. ER, endoplasmic reticulum. *: Putative subcel-
lular localization.
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In the urine of patients, reports indicate accumulation of 
8-oxodG (Jorgensen et al., 2013), lipid peroxides (Anna 
Dietrich-Muszalska & Olas, 2009), and bilirubin oxida-
tion (Miyaoka et al., 2005).

Increased lipid peroxidation (MDA or TBARS lev-
els) might be the most robust result in blood of patients. 
Despite some negative studies, plasmatic amounts of 
MDA are mostly reported to be increased in schizophre-
nia patients. Consistently, results of two meta-analyses 
indicate that this increase is present in first episode as 
well as in chronic patients (Flatow, Buckley, & Miller, 
2013; Grignon & Chianetta, 2007). In contrast, some 
oxidation markers as nitrite are accumulating only in 
chronic patients (Flatow et al., 2013).

Altogether, these data indicate an ongoing oxidative 
stress in schizophrenia patients. However, deficiencies 
of the antioxidant system are more controversial, as 
detailed in the next section.

Peripheral Levels of Antioxidant Defenses  
in Schizophrenia Patients

Mirroring the accumulation of oxidation products, 
the total antioxidant capacity is deficient in blood of 
schizophrenia patients (Dietrich-Muszalska & Kontek, 
2010; Yao, Reddy, McElhinny, & van Kammen, 1998). 
Although there are negative findings (Sarandol et al., 
2007; Sofic, Rustembegovic, Kroyer, & Cao, 2002), it 
remains significant in a recent meta-analysis (Flatow 
et al., 2013). The decrease of total antioxidant capacity 
might be due to lowered levels of GSH in blood, which 
was reported in schizophrenia patients as early as 1934 
(Looney & Childs, 1934) and subsequently in early psy-
chosis patients (Altuntas, Aksoy, Coskun, Caykoylu, & 
Akcay, 2000; Mico et al., 2011; Raffa et al., 2009).

Data on enzymatic activity are more contrasted, 
with increase, decrease and no change being reported 
for SOD, catalase, and GPx. Ruiz-Litago et al. con-
ducted a 1-year follow-up of young drug-naive 
patients following their hospitalization (mean age at 
inclusion: 23.1 years) (Ruiz-Litago et al., 2012). They 
could show the transient nature of some antioxidant 
defects in plasma: GSH, total antioxidant defenses, 
as well as SOD and GPx activities were decreased 1 
and 6 months after the first episode while TBARS 
were increased. After 1 year, they were all normalized. 
Interestingly, a similar study, but with less power, was 
performed on older patients in acute phase of illness 
(mean age at inclusion: 36.5 years) (Tsai, Liou, Lin, 
Lin, & Huang, 2013). This study did not reveal any 
change for TBARS, SOD, or GPx at 1 month of follow-
up, suggesting that the deficits in antioxidant system 
reported by Ruiz-Litago et al. are specific of disease 
onset and might be suitable as early prognosis mark-
ers in at-risk individuals (Ruiz-Litago et al., 2012). 
Longitudinal assessment of redox markers on the long 

term is necessary to characterize their progression and 
potential phase specific evolution.

Limits and Best Practices for Future Studies
Heterogeneity between studies is concerning, the 

impact of medication is controversial and the source 
of variability remains unclear. As suggested by Gri-
gnon et al. for MDA levels, heterogeneity of the results 
might be linked to the variable proportion of drug-free 
patients (Grignon & Chianetta, 2007). A good example 
of variability concerns data on SOD activity: the type of 
sample (plasma, serum, or red blood cells) and smoking 
status may change the picture completely (Flatow et al., 
2013). Moreover, genetic background may account for 
some differences in the pattern of antioxidant response 
between individuals. Additional covariates as type of 
antipsychotic treatment, disease duration, disease phase 
(acute or not, early or chronic), body mass index, coti-
nine, glucose levels, and genotyping of key genes of the 
antioxidant systems are required in future studies. How-
ever, recent data noted the absence of exogenous factor 
contributions (e.g., antipsychotic, diet, and smoke) to 
blood GSH levels (Ballesteros et al., 2013). In addition, 
GSH can undergo artifactual oxidation and thus it might 
be difficult to setup optimal conditions for its measure-
ment in clinical settings.

The complexity of the antioxidant system is also 
linked to the compartmentalization of the different play-
ers. One concern regarding the previously mentioned 
studies is the lack of discrimination between subcellular 
compartments. A more detailed characterization of the 
defects within different organelles and of GSH-indepen-
dent systems would greatly help to pinpoint the defec-
tive systems.

Finally, an important point is also the lack of data to 
relate anomalies reported in periphery to their poten-
tial impact on the central nervous system. Nevertheless, 
and as detailed later, there are evidences of anomalies in 
redox homeostasis in the brain of schizophrenia patients.

Evidence for Disrupted Redox Homeostasis in the 
Brain of Schizophrenia Patients

Postmortem studies revealed increased lipid peroxi-
dation (4-HNE) in the anterior cingulate cortex (Wang, 
Shao, Sun, & Young, 2009) but TBARS decreased in cere-
brospinal fluid. SOD1 (Cu-Zn SOD) is decreased in cere-
brospinal fluid of recent-onset schizophrenia patients 
(Coughlin et al., 2013), but SOD1 and SOD2 (Mn SOD) 
are increased in chronic patients’ brains (Michel et al., 
2004). GSH deficits are reported in caudate nucleus 
and prefrontal cortex of patients (Gawryluk, Wang, 
Andreazza, Shao, & Young, 2011; Yao, Leonard, & Reddy, 
2006). Moreover, GSH levels are found to be reduced 
by 27% in cerebrospinal fluid of drug-naive chronic 
patients and by 40% in the prefrontal cortex in a group 
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of patients as assessed by magnetic resonance spectros-
copy (MRS) (Do et al., 2000). Matsuzawa et al. report 
no change in GSH levels in the posterior medial frontal 
cortex in chronic patients compared with healthy sub-
jects, although low GSH levels are associated with more 
severe negative symptoms (Matsuzawa & Hashimoto,  
2011). GSH quantification by MRS is a challenging 
approach and many technical issues may contribute to 
variability in the results reported previously (Poels et al., 
2014). Moreover, recent observations from our group 
point to a crucial contribution of genotypes to brain GSH 
levels: indeed, polymorphisms associated with abnor-
mal regulation of GCL and of GSH levels in periph-
ery (“high-risk” genotypes, see Genetic Susceptibility 
to Oxidative Stress in Schizophrenia Patients Section) 
predict low GSH levels in prefrontal cortex (Xin et al., 
2014). Thus, variability of genotype distribution of this 
polymorphism in the different relatively small studied 
samples may explain discrepancies between reports.

Genetic Susceptibility to Oxidative Stress  
in Schizophrenia Patients

What may cause oxidative stress and redox dysregula-
tion in schizophrenia patients? Genetic factors, as NRG1, 
PRODH, and DISC1, may lead to oxidative stress via 
an indirect and yet unclear pathway (see Contribution 
of Genetic Factors Section). Other rare variants that have 
been associated with schizophrenia using linkage analy-
sis approaches may directly impact on GSH metabo-
lism. Indeed, copy number variation of genes coding for 
members of the GST family have been associated with 
schizophrenia—GSTT1 (Saadat, Mobayen, & Farrash-
bandi, 2007), GSTT2 (Rodriguez-Santiago et al., 2010), 
and GSTM1 (Gravina et al., 2011; Harada, Tachikawa, & 
Kawanishi, 2001)—however, there is one negative report 
in the Japanese population (GSTT1, GSTT2, and GSTM1) 
(Matsuzawa et al., 2009). SOD1 was associated with 
schizophrenia in a Turkish study (Akyol et al., 2005), but 
was not replicated (Hori et al., 2000; Pae et al., 2007; 
Ventriglia et al., 2006). Finally, different polymorphisms 
of the NOS have been associated with the disease in var-
ious ethnic groups (Fallin et al., 2005; Reif et al., 2006; 
Tang et al., 2008), including in the Japanese population 
for which there is also one negative report (Okumura 
et al., 2009). Moreover, polymorphisms in GCLM and 
in the 5′ noncoding region of GCLC, which code for the 
modulatory (GCLM) and catalytic (GCLC) subunit of 
the rate-limiting enzyme for GSH synthesis (GCL), have 
been associated with schizophrenia (Gysin et al., 2007; 
Ma et al., 2010; Tosic et al., 2006). These gene associations 
were not reproduced in studies of Japanese population 
(Hanzawa et al., 2011; Kishi et al., 2008; Matsuzawa et al., 
2009). However, there are technical issues: GCLC poly-
morphism is a tri-nucleotide repeat of usually seven, 

eight, or nine repeats. No good surrogate single-nucle-
otide polymorphism could be identified for any of the 
repeat lengths (Kulak et al., 2013); therefore, genotypes 
cannot be derived from available single-nucleotide poly-
morphisms, for instance, in genome-wide association 
studies. GCLC tri-nucleotide genotypes that are more 
frequent in patients than control individuals are associ-
ated with a decrease in plasma thiol levels (Gysin et al., 
2007), impaired regulations of metabolism and of GCL 
activity following oxidative stress (Fournier et al., 2014; 
Gysin et al., 2007), and low GSH levels in the anterior 
cingulate cortex as assessed by MRS (Xin et al., 2014).

Contribution of NMDA Hypofunction and 
Inflammation to Oxidative Stress

At the molecular level, redox dysregulation may 
also arise following the impairments of other path-
ways involved in schizophrenia: NMDA receptor hypo-
function and inflammation. Redox pathways present 
numerous reciprocal interactions with the glutamater-
gic and immune systems. Indeed, activation of synap-
tic NMDA receptors strengthens neuronal antioxidant 
defense mechanisms (Hardingham & Bading, 2010) 
and NMDA receptor hypofunction increases oxidative 
stress levels (Jiang, Cowell, & Nakazawa, 2013). In con-
trast, redox state modulates NMDA receptor function 
(Aizenman, Lipton, & Loring, 1989; Talukder, Kazi, & 
Wollmuth, 2011). Likewise, oxidative stress is tightly 
linked to inflammation. Many inflammatory mediators 
are activated by oxidative molecules, whereas activated 
immune cells such as microglia generate ROS/reactive 
nitrogen species (Buelna-Chontal & Zazueta, 2013; Dwir 
et al., 2014). These three systems are closely interacting 
and potentiating each other and a dysregulation within 
any of these factors can lead to disturbances of the others. 
It is proposed that dysregulations of redox homeostasis, 
neuroimmune, and glutamatergic systems induced by 
interaction between genetic and environmental risk fac-
tors during neurodevelopment, constitute one “central 
hub” contributing to schizophrenia pathophysiology. 
An imbalance within any of these “hub” systems would 
affect the excitatory/inhibitory balance of local neuro-
nal circuits (microcircuits) and the connections between 
distant brain areas (macrocircuits) (Do, Cabungcal, et al., 
2009; Kulak et al., 2013; Steullet et al., 2014).

In summary, these data indicate that there are abnor-
mal oxidation levels in the periphery (blood) and in the 
central nervous system of schizophrenia patients. These 
redox anomalies are present early in the course of the 
disease and might be driven by an interaction between 
genetic and environment risk factors as well as by defects 
in other molecular pathways involved in schizophrenia 
(NMDA receptor hypofunction and neuroinflamma-
tion). The following sections aim at summarizing the 
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impact of redox homeostasis imbalance on white matter 
integrity and connectivity in schizophrenia context.

WHITE MATTER IMPAIRMENTS IN 
SCHIZOPHRENIA

Connectivity abnormalities have been well-estab-
lished in schizophrenia. Connectomic studies, mapping 
neuronal connections based on functional magnetic res-
onance imaging, revealed abnormal functional connec-
tivity of the prefrontal cortex in first-episode patients. 
Functional connectivity is enhanced between prefrontal 
cortex and temporal lobe, and reduced between prefron-
tal cortex and parietal lobe, posterior cingulate cortex, 
thalamus, and striatum of patients (Zhou et al., 2007). 
Hypo- and hyperconnectivity in parietal, occipital lobe, 
and prominently in frontal and temporal lobe indicate 
a diffuse functional disconnectivity in schizophrenia 
(Fornito, Zalesky, Pantelis, & Bullmore, 2012).

Brain regions are wired through white matter tracts, 
whose development and integrity are essential for the 
flow of information and synchronization of distant brain 
regions, and thus for connectivity. Myelination starts 
before birth, continues through childhood and adoles-
cence and even adulthood for long association tracts 
(Peters & Karlsgodt, 2014). Neuroimaging and post-
mortem studies highlighted white matter abnormali-
ties in schizophrenia patients, which may participate to 
disconnectivity.

Evidences of White Matter Abnormalities in 
Imaging Studies

The noninvasive properties of magnetic resonance 
imaging have made it possible to address key questions 
in regards of timing of brain changes. Diffusion tensor 
imaging (DTI) is used to probe diffusion of water mol-
ecules, and thus reflects the underlying structure of the 
brain. Fractional anisotropy (FA), a frequently used met-
ric, describes the degree of anisotropy of water diffusion: 
low FA values are often interpreted as impairment of 
myelin integrity although it is acknowledged that other 
factors influence FA as well (fiber coherence and axon 
diameter for instance) (Beaulieu, 2002).

Despite some discrepancies among studies, low FA 
has been repeatedly reported in frontal and temporal 
brain regions of schizophrenia patients (Fitzsimmons, 
Kubicki, & Shenton, 2013; Kanaan et al., 2005; Kyria-
kopoulos, Bargiotas, Barker, & Frangou, 2008). Bundle 
tracts connecting these regions (uncinate fasciculus, cin-
gulum bundle, and arcuate fasciculus) have disrupted 
integrity, which emphasize frontotemporal circuitry 
abnormalities in the illness (Takahashi, Sakurai, Davis, &  
Buxbaum, 2011). To disentangle from other factors the 

contribution of myelin abnormalities to FA, Du and 
Ongür propose to combine different imaging meth-
ods. Diffusion tensor spectroscopy and magnetization 
transfer ratio can be used to assess axonal integrity and 
myelin volume, respectively (Du & Ongur, 2013).

From a functional point of view, there may be a rela-
tion between lost white matter integrity and psychopa-
thology. Indeed, more severe cognitive symptoms are 
associated with greater deficits in the volume of the fron-
tal white matter (Ho, Alicata, et al., 2003; Ren, Wang, & 
Xiao, 2013).

To summarize, imaging studies indicate disruption of 
frontotemporal tracts in schizophrenia patients. These 
anomalies may reflect myelin impairments as suggested 
by transcriptomics and neurocytochemical findings 
described in the following section.

Evidences of Oligodendrocyte Disruption  
in Postmortem Studies

Postmortem studies and histological characterization 
of patients’ brain support the view of altered white matter 
in schizophrenia patients. Indeed, structural alterations of 
myelinated fibers are reported in gray and white matter 
of prefrontal cortex and caudate nucleus of patients 
(Uranova, Vikhreva, Rachmanova, & Orlovskaya, 2011). 
Most studies report a decrease in oligodendrocyte density 
in thalamic nuclei and in prefrontal cortex (Byne et al., 
2006; Hof, Haroutunian, Copland, Davis, & Buxbaum, 
2002; Uranova, Vostrikov, Orlovskaya, & Rachmanova, 
2004; Vostrikov, Uranova, & Orlovskaya, 2007). In prefron-
tal cortex, the age-related increase in number of mature 
oligodendrocytes normally observed in control subjects 
is absent in schizophrenia patients (Vostrikov & Uranova, 
2011). Microarray analysis of prefrontal and anterior cin-
gulate cortex of schizophrenia patients indicate a reduced 
expression of several genes related to myelin and oligo-
dendrocytes (Dracheva et al., 2006; Hakak et al., 2001; 
Tkachev et al., 2003) and an altered expression of genes 
coding for cell-cycle maintenance or arrest (Katsel et al., 
2008). Altogether, these findings point to impairment of 
oligodendrocyte maturation and of myelination.

Abnormalities of White Matter at Early Stages  
of Schizophrenia

Many studies revealed impairment of white matter 
integrity in tracts connecting frontal and temporal regi-
ons already at early stages of schizophrenia (reviewed 
in Samartzis, Dima, Fusar-Poli, & Kyriakopoulos,  
2014), and even at illness onset for the frontal lobe 
(Hao et al., 2006; Samartzis et al., 2014; Witthaus et al., 
2008; Yao et al., 2013). Voxel-based morphometry of 
structural magnetic images revealed smaller white 
matter volumes in temporal gyrus, frontal gyrus, and 
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cingulum of first-episode patients compared with healthy  
subjects (Witthaus et al., 2008). In addition, early psy-
chosis patients have a reduced progression of frontal 
white matter volume over time compared with control 
subjects (Ho, Andreasen, et al., 2003). Based on a recent 
meta-analysis study, FA values are decreased in two 
main clusters of the brain in first-episode patients: the 
right anterior cingulum (uncinate fasciculus and cingu-
lum bundle) and the left temporal deep white matter 
(longitudinal fasciculus, fornix, fronto-occipital fascicu-
lus, and interhemispheric fibers) (Yao et al., 2013). Fur-
thermore, ultra-high-risk individuals with attenuated 
positive symptoms (i.e., at risk of developing psychosis) 
display a reduced volume of white matter in temporal 
lobe when compared with healthy subjects (Witthaus 
et al., 2008). Supporting these results, DTI analyses of 
ultra-high-risk individuals revealed alterations of white 
matter integrity in various brain regions (Karlsgodt 
et al., 2008; Peters et al., 2009; Samartzis et al., 2014), the 
superior and middle frontal lobe as well as the major 
frontoparietal connecting tract (Carletti et al., 2012). Also 
in line with these data, ultra-high-risk individuals pres-
ent abnormal functional connectivity between frontal 
and temporal regions (Crossley et al., 2009). Interest-
ingly, transition to psychosis in ultra-high-risk subjects 
is associated with a progressive decrease of white matter 
integrity in frontal and temporal lobes (Bloemen et al., 
2010; Carletti et al., 2012).

In summary, imaging data indicate that white mat-
ter deficits are present before onset of illness, at illness 
onset, and persist in chronic schizophrenia patients. 
Additional observations suggest that white matter of 
patients fails to undergo normal myelination. Struc-
tural abnormalities in myelin and oligodendrocytes can 
interfere with long-range neuronal circuitry (Takahashi 
et al., 2011), and may disrupt synchronization across 
brain regions (Whitford et al., 2012), leading to com-
plex symptoms in schizophrenia. In the somatosensory 
system, myelination is an important process to close the 
critical period of brain plasticity during which the neu-
ral circuits are shaped by experiences (Bavelier, Levi, 
Li, Dan, & Hensch, 2010; Morishita & Hensch, 2008; 
Takesian & Hensch, 2013). The notion of critical period 
for brain plasticity could be extended in other systems, 
including cognition (Barkat, Polley, & Hensch, 2011; 
Bavelier et al., 2010; Gogolla, Caroni, Luthi, & Herry, 
2009). The consequences of delayed myelination on 
brain maturation remain to be explored in the context 
of schizophrenia. We will discuss next the evidence in 
human and animal models suggesting that oxidative 
stress and redox dysregulation underlie the impaired 
maturation of white matters and oligodendrocytes in 
frontal cortex.

ROLE OF REDOX IMBALANCE IN MYELIN 
IMPAIRMENTS ASSOCIATED WITH 

SCHIZOPHRENIA

Oligodendrocyte Development and Maturation

To understand how redox dysregulation and oxida-
tive stress affect oligodendrocyte maturation, a descrip-
tion of oligodendrocyte development stages is first 
needed. Oligodendrocytes undergo a series of matura-
tion stages, which are characterized by the expression of 
specific cellular surface and myelin component proteins 
(Figure 2(A)) (Baumann & Pham-Dinh, 2001). Oligoden-
drocyte progenitor cells (OPC) proliferate in response to 
growth factors such as platelet-derived growth factors 
(PDGF) throughout PDGF receptor-signaling pathway. 
At this stage, OPC present the markers A2B5, NG2, and 
PDGF receptor. OPC differentiate into preoligodendro-
cyte cells, which are characterized by multiple processes, 
a reduced motility, and a decreased sensitivity to growth 
factors as PDGF. Preoligodendrocytes present typical 
sulfated glycolipids that are recognized by the O4 anti-
body. Although preoligodendrocyte branches become 
more complex throughout development, the transition 
into immature oligodendrocytes is accompanied by a 
complete cell-cycle arrest. At this stage, expression of 
galactocerebroside and 2′,3′-cyclic nucleotide 3′-phos-
phodiesterase (CNP) begins. After a complete differen-
tiation into mature oligodendrocytes, specific markers 
such as myelin-associated protein (MAG), myelin oli-
godendrocyte glycoprotein (MOG), proteolipid protein 
(PLP), and myelin basic protein (MBP) are present.

Sensitivity of Oligodendrocyte to Redox State

Oligodendrocytes are sensitive to redox dysregu-
lation and oxidative stress because of their intrinsic 
properties and functions. During myelination process, 
oligodendrocytes have a high metabolic rate to produce 
and maintain membranes (Bradl & Lassmann, 2010;  
Cammer, 1984; El Waly, Macchi, Cayre, & Durbec, 2014). 
High metabolic activity is known to generate large amo-
unt of ROS (Dringen, 2000). Moreover, oligodendrocytes 
are the predominant iron storing cells in the brain, as it 
is a required cofactor for myelin synthesis (Thorburne &  
Juurlink, 1996). Iron catalyzes the formation of oxy-
gen radicals (Figure 1(A)). In addition, myelin sheaths 
are enriched in polyunsaturated fatty acids (Baumann 
& Pham-Dinh, 2001), which are vulnerable to radi-
cal attacks. Surprisingly, oligodendrocytes display a 
low activity of GPx and low endogenous GSH levels 
(Baud et al., 2004; Juurlink, Thorburne, & Hertz, 1998). 
Data available online indicate that messenger RNA 
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expression of genes related to antioxidant capacity 
(GCLC) in the prefrontal cortex follow the same expres-
sion profile than myelin-related genes (e.g., MAG, PLP, 
http://braincloud.jhmi.edu/) (Kang et al., 2011). Expres-
sion of these genes peaks at late childhood and early 
adolescence period. Consistently, the most expressed 
genes in the prefrontal cortex at adolescence are related 
to myelin, lipid synthesis, the antioxidant system, and 
energy metabolism (Harris et al., 2009).

In schizophrenia patients, the direct role of redox 
control for myelin is supported by the positive correla-
tion found between prefrontal cortex GSH levels and FA 
along the cingulum bundle, which connects the anterior 
cingulate to limbic structures (Monin et al., 2014). Inter-
estingly, this correlation is present only in individuals 
younger than age 30 years and is lost when older sub-
jects are included (Monin et al., 2014). The third decade 
of life corresponds to the final stage of prefrontal cortex 
maturation and cingulum myelination (Bartzokis et al., 
2001; Lebel & Beaulieu, 2011; Lenroot & Giedd, 2006).

The importance of redox control for white matter integ-
rity and oligodendrocyte development is further sup-
ported by animal models and in vitro research. Redox state 

controls oligodendrocyte maturation as well as the switch 
between proliferation and differentiation (Monin et al., 
2014; Noble, Smith, Power, & Mayer-Proschel, 2003). In 
reduced state, oligodendrocytes proliferate while they dif-
ferentiate in oxidized state (Noble et al., 2003). Abnormal 
redox control would interfere with oligodendrocyte devel-
opment. Consistently, GCLM-deficient mice, which pres-
ent a 70% GSH deficit within the brain and an increase in 
oxidative stress marks in prefrontal cortex and ventral hip-
pocampus (Cabungcal, Steullet, Kraftsik, Cuenod, & Do,  
2013; Steullet et al., 2010), have reduced levels of mature 
oligodendrocytes and of myelin in the prefrontal cortex at 
peripubertal period (Monin et al., 2014). Although myelin-
ation reaches similar levels in adult GCLM-deficient and 
wild-type mice, DTI study shows persistent impairment 
of white matter integrity in fornix and anterior commis-
sure (Corcoba et al., 2014). At functional levels, conduction 
velocity is reduced in both white matter tracts (Corcoba 
et al., 2014). Therefore, a delay in oligodendrocyte matu-
ration and myelination generated by a redox dysregula-
tion may induce permanent disturbance of FA values. At 
the cellular level, GSH deficiency in oligodendrocyte pro-
genitors leads to cell-cycle arrest and reduces proliferation 

FIGURE 2 Regulation of oligodendrocyte maturation. (A) Oligodendrocyte maturation and markers used to characterize each step of oligo-
dendrocyte development. PDGFR, receptor of platelet-derived growth factors; GalC, galactocerebroside; CNP, 2′,3′-cyclic nucleotide 3′-phospho-
diesterase; MAG, myelin associated protein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein; MBP, myelin basic protein. (B) 
Redox state influences the switch between proliferation and differentiation of oligodendrocytes via the modulation of Fyn kinase. (1) In conditions 
of low GSH levels or oxidative stress, protein tyrosine phosphatases (PTPs) may be oxidized to sulfenic acid (S-OH), inactivating PTPs. (2) Via 
other signaling pathways or through the inactivation of PTP, Fyn kinase may be activated via autophosphorylation of Fyn activation loop. (3) Fyn 
kinase phosphorylates Cbl ubiquitin ligase, which (4) ubiquitinylates PDGFR. (5) Tagged PDGFR is targeted and degraded by the proteasome. (6) 
In response to PDGFR degradation, OPC lost sensitivity to growth factors and (7) switch to early differentiation.

http://braincloud.jhmi.edu/
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that can be reversed by the antioxidant N-acetylcysteine 
(Monin et al., 2014; Noble et al., 2003). In presence of 
growth factors, GSH depletion favors the early differen-
tiation of oligodendrocytes as indicated by the increase 
of O4 and CNP markers (Monin et al., 2014; Noble et al., 
2003) but, in presence of differentiating factor, a deficit in 
GSH prevents full oligodendrocyte maturation (Monin 
et al., 2014). Consistently, pharmacological inhibition of 
GCL decreases the expression of genes that promote oli-
godendrocyte differentiation and increases expression of 
those that inhibit differentiation (French, Reid, Mamontov,  
Simmons, & Grinspan, 2009). At the molecular level, 
the switch from proliferation to early differentiation is 
controlled by the PDGFR-Fyn pathway (Figure 2(B)) 
(Li, Dong, Proschel, & Noble, 2007; Monin et al., 2014). 
Indeed, redox dysregulation induced by a GSH deficit or 
oxidative stress generated by toxicants (methylmercury, 
paraquat, and lead) activates Fyn pathway. Activation 
of Fyn, a nonreceptor tyrosine kinase, induces phos-
phorylation of the ubiquitin ligase Cbl known to target 
PDGFR degradation through proteasome (Figure 2(B))  
(Li et al., 2007). The mechanisms underlying the activation 
of Fyn remain elusive. Phosphorylation and dephosphor-
ylation of Fyn at different tyrosine residues are needed 
to drive its activity, which could be regulated by protein 
tyrosine phosphatases (PTPs). PTPs can either negatively 
or positively modify tyrosine kinases (Ostman & Bohmer, 
2001). Although it has been shown that PTPα member 
activates Fyn (Ponniah, Wang, Lim, & Pallen, 1999), other 
members of PTPs family could, in contrast, inactivate 
Fyn. Interestingly, these PTPs have a cysteine residue on 
their active site, which is sensitive to oxidation (Salmeen 
& Barford, 2005). In conditions of redox dysregulation or 
oxidative stress, the inactivation of PTPs via their redox-
sensitive site could trigger the activity of tyrosine kinases 
as Fyn (Figure 2(B)). Interestingly, regulation of Fyn 
expression is impaired in early psychosis patients associ-
ated with a vulnerability to redox dysregulation (Monin 
et al., 2014). Postmortem studies in prefrontal cortex of 
schizophrenia patients also reveal abnormal expression of 
Fyn (Stanley database) (Ohnuma, Kato, Arai, McKenna, &  
Emson, 2003).

In conclusion, a proper timing of redox regulation is 
crucial to control the proliferation and differentiation 
of oligodendrocyte. Oxidative stress or abnormal redox 
control during the development could therefore contrib-
ute to myelin disruptions associated with schizophrenia.

Role of Nonredox Risk Factors in Oxidative 
Stress and Myelin Impairment

Contribution of Genetic Factors
NRG1

Genetic association studies of schizophrenia identi-
fied several alleles of NRG1 as risk factors for the disease 

(Mei & Nave, 2014). Specifically, the C allele at rs35753505 
and the T allele at rs6994992 were widely associated with 
the disease (Mei & Nave, 2014). Few studies investigate 
the relation between NRG1 and oxidative stress in brain. 
However NRG1 is known to regulate the level of ROS 
in vitro (Goldshmit, Erlich, & Pinkas-Kramarski, 2001) 
and several evidences indicate a protective role of NRG1 
against oxidative stress by regulating endoplasmic retic-
ulum stress in myocardial cells (Xu et al., 2014).

In schizophrenia patients, carriers of C allele at 
rs35753505 present a reduction in white matter volume 
within tracts binding frontal to posterior areas (Cannon 
et al., 2012). In contrast, T carrier patients have a lower 
FA in the anterior cingulum (Wang, Jiang, et al., 2009). 
The relation between NRG1 risk variants and micro-
structural integrity was further investigated in healthy 
subjects to avoid bias because of antipsychotic drugs. 
White matter integrity in the subcortical white matter of 
the medial frontal and in the anterior thalamic radiation 
is reduced in carriers of the schizophrenia risk allele C at 
rs35753505 (Sprooten et al., 2009; Winterer et al., 2008). 
In addition, healthy subjects with the risk-associated T 
variant of NRG1 at rs6994992 display a decreased FA in 
thalamic connecting tracts and in the fornix (Douet et al., 
2014; McIntosh et al., 2008; Sprooten et al., 2009). More-
over, this T allele is associated with differential devel-
opmental trajectories of frontal, temporal, and parietal 
lobes (Douet et al., 2014). At the molecular level, NRG1 
gene is required to promote specification of oligoden-
drocyte lineage (Wood, Bonath, Kumar, Ross, & Cunliffe, 
2009). NRG1-deficient mice are hypomyelinated in the 
prefrontal cortex (Makinodan, Rosen, Ito, & Corfas, 
2012). NRG1, which is axonally bound or secreted, pro-
motes oligodendrocyte survival and modulates myelin 
thickness through ErbB signaling (Mitew et al., 2013).

DISC1

DISC1 has been associated with various psychiatric 
conditions, including with schizophrenia (Blackwood 
et al., 2001; Millar et al., 2000). A missense variant of 
DISC1 linked to schizophrenia is associated with low 
white matter integrity in fiber tracts interconnecting 
frontal to posterior areas (Sprooten et al., 2011). DISC1 
is a multifunctional protein known to be involved in 
the neurodevelopment, cortical thickness, gray matter, 
and white matter control (Hikida, Gamo, & Sawa, 2012). 
DISC1 also plays a role in mitochondria fusion and fis-
sion (Park et al., 2010). A reduction in its function impairs 
mitochondrial dynamic, which leads to enhanced pro-
duction of ROS and redox dysregulation (Park et al., 
2010). In transgenic mice expressing a dominant nega-
tive variant of DISC1, levels of carbonylated proteins 
and of 8-oxodG are increased in the prefrontal cortex 
(Johnson et al., 2013). Moreover, these transgenic mice, 
which display phenotypes associated with schizophre-
nia, are characterized by disturbances in oligodendrocyte 
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differentiation markers (CNP, MAG, PLP, and PDGFR) 
(Katsel et al., 2011). Indeed, DISC1 is known to be crucial 
for oligodendrocyte development (Wood et al., 2009). At 
molecular levels, DISC1 variant may induce impairment 
of oligodendrocyte development via NRG1/ErbB signal-
ing pathway (Katsel et al., 2011). These data also suggest 
a relationship between DISC1 and NRG1 for oligoden-
drocyte function.

Together, these data support the notion that schizo-
phrenia involves several genetic loci that are indirectly 
associated with both disruption of oxidative stress and 
oligodendrocyte maturation.

Contribution of Environmental Factors
Environmental factors may also lead to redox dys-

regulation, oxidative stress, and myelination defect. To 
date, few studies have focused on the relation between 
early-life adversity and the impairment of white matter 
integrity in schizophrenia patients. However, several 
evidences in healthy subjects and other myelin-asso-
ciated disorders suggest that environmental stress or 
childhood trauma alter white matter tracts.

Inflammation

Inflammation and oxidative stress widely influence 
each other (Bitanihirwe & Woo, 2011; Kirkpatrick & 
Miller, 2013; Steullet et al., 2014). Infection induces the 
formation of cytokines, inflammatory agents associated 
with free radical production that in turn promote inflam-
mation. Little is known about the impact of pre- or post-
natal inflammation on white matter in schizophrenia 
patients, but diseases with a prominent inflammatory 
component (such as multiple sclerosis and periventricu-
lar leukomalacia) are accompanied with disruption of 
white matter and marks of oxidative stress (Ferreira et al., 
2013; Gironi et al., 2014; Haynes, Folkerth, Trachtenberg, 
Volpe, & Kinney, 2009). Multiple sclerosis is an autoim-
mune disease with abnormal integrity of white matter 
and demyelinating lesions mainly in the spinal cord, in 
addition to immune cell infiltration (El Waly et al., 2014; 
Roosendaal et al., 2009). Patients also display increased 
lipid peroxidation and impairment of GSH and of 
antioxidant enzymatic defenses (Ferreira et al., 2013;  
Pasichna, Morozova, Donchenko, Vinychuk, & Kopchak, 
2007; Seven, Aslan, Incir, & Altintas, 2013). Interestingly, 
recent data strongly associate infectious agents such as 
Epstein-Barr virus and human herpes virus 6A to mul-
tiple sclerosis (El Waly et al., 2014).

In rodent, prenatal immune challenge with synthetic 
analog of double-stranded RNA (polyriboinosinic-poly-
ribocytidilic acid (poly I:C)) has been used to mimic viral 
infection. Injected in dams, this inflammatory agent gen-
erates behavioral deficits reminiscent of schizophrenia 
in the offsprings (Bitanihirwe, Peleg-Raibstein, Mouttet, 
Feldon, & Meyer, 2010; Meyer & Feldon, 2012). More-
over, poly I:C prenatal administration decreases GSH 

levels in the whole brain (Makinodan et al., 2009) and 
induces a delay in myelination (Makinodan et al., 2008). 
Indeed, myelin thickness and myelin protein levels such 
as MBP are reduced in 14-day-old mice but not in adult 
animals (Makinodan et al., 2008). Myelin impairments 
were specifically reported within the hippocampus and 
absent for the prefrontal cortex. In culture, poly I:C treat-
ment promotes oligodendrocyte apoptosis and drasti-
cally reduces the number of the mature oligodendrocytes 
(Bsibsi, Nomden, van Noort, & Baron, 2012; Steelman & 
Li, 2011).

Obstetric Complications

Oxidative stress may play a role in obstetric compli-
cations such as preeclampsia and preterm birth because 
these events are associated with inflammation and 
marks of oxidation in the placenta. Moreover, hypoxia 
and hyperoxia are reported in preterm infants (Burton 
& Jauniaux, 2011). Premature babies present reduced 
volumes of white matter compared with term children 
(Back & Rosenberg, 2014; Salmaso, Jablonska, Scafidi, 
Vaccarino, & Gallo, 2014) and abnormal white mat-
ter integrity persists in adulthood (Eikenes, Lohaugen, 
Brubakk, Skranes, & Haberg, 2011). White matter injury, 
including the periventricular leukomalacia, is the major 
cause of brain injury in preterm birth (Back & Rosenberg, 
2014; Chew, Fusar-Poli, & Schmitz, 2013). This disease 
with problems of motor control is characterized by peri-
ventricular white matter injuries and periventricular 
necrosis (Haynes et al., 2003). Interestingly, lipid peroxi-
dation and nitrosative stress marks are present in oligo-
dendrocytes of patients (Haynes et al., 2003).

In rodents, hypoxia or hyperoxia exposure, which are 
used to model the consequences of preterm birth, induce 
aberrant myelination process. Mice exposed to chronic 
hypoxia specifically present a delay in oligodendrocyte 
differentiation leading to abnormal myelin structure as 
demonstrated by electron microscopy (Jablonska et al., 
2012). Consistently, hyperoxia exposure between 6 and 
8 postnatal days generates ROS and triggers a delay in 
white matter and oligodendrocyte maturation in the cor-
pus callosum (Gerstner et al., 2008; Schmitz et al., 2011). 
Interestingly, the number of oligodendrocyte labeled 
with CC1 marker returns to normal levels by 15 days 
(Schmitz et al., 2011). Hyperoxia exposure transiently 
disrupts development of myelin and generates persis-
tent impairment in white matter integrity along corpus 
callosum as indicated by a low FA value in young adult 
rodents (Ritter et al., 2013; Schmitz et al., 2011).

Early-Life Trauma

Clinical evidences associate early trauma such as 
emotional abuse to schizophrenia. Emotional abuses 
encompass several forms, including physical and 
sexual abuse, verbal aggression, and social neglect. 
Early-life adversity deregulates the control of reaction 
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to stress by the hypothalamic-pituitary-adrenal (HPA) 
axis and therefore may contribute to oxidative stress 
(Schiavone, Jaquet, Trabace, & Krause, 2013). Indeed, 
several evidences showed a role of the oxidative stress 
in the control of HPA axis. After psychosocial stress 
conditions, reduced nicotinamide adenine dinucleo-
tide phosphate oxidase, which generates ROS, is 
increased in the hypothalamus and consequently dis-
turbs HPA axis (Colaianna et al., 2013). In addition, 
oxidative stress reduces glucocorticoids negative feed-
back loop through nuclear translocation of glucocorti-
coid receptors (Asaba et al., 2004). Moreover, in the 
serum, oversecretion of glucocorticoids induces ROS 
(Sato, Takahashi, Sumitani, Takatsu, & Urano, 2010). 
In the brain, glucocorticoids also reduce the activities 
of antioxidant defenses (SOD, catalase, and GST) and 
the level of GSH (Zafir & Banu, 2009). Thus, oxidative 
stress affects HPA axis that further induces redox dys-
regulation and oxidative stress.

Posttraumatic stress disorder (PTSD) is commonly 
reported in maltreated children who suffered of emo-
tional abuse. Maltreated children and adolescents 
diagnosed with PTSD present a reduction of the white 
matter volume in the superior temporal gyrus and the 
prefrontal cortex compared with nonmaltreated con-
trol subjects (De Bellis, Keshavan, Frustaci, et al., 2002; 
De Bellis, Keshavan, Shifflett, et al., 2002). Interestingly, 
brain volume negatively correlates with the duration 
of abuse (De Bellis, Keshavan, Shifflett, et al., 2002). 
Because these studies do not include subjects with mal-
treatments and without PTSD, consequences of mal-
treatment and/or the presence of PTSD on white matter 
cannot be distinguished. In young adults without PTSD, 
DTI analysis reveals a negative correlation between 
FA value within the inferior fronto-occipital fasciculus 
and early-life adversity (Frodl et al., 2012). Individuals 
exposed to early traumatic experiences also present a 
reduction in white matter integrity in the corpus callo-
sum compared with nonexposed group (Lu et al., 2013; 
Paul et al., 2008). In young adults, subjects exposed to 
parental verbal abuse display reduced microstructural 
integrity in the arcuate fasciculus, and around the cingu-
lum bundle and the fornix (Choi, Jeong, Rohan, Polcari, 
& Teicher, 2009). Consequently, parental verbal abuse is 
associated with alteration of the white matter integrity in 
tracts connecting parts of the limbic systems, including 
the prefrontal cortex (Choi et al., 2009). Early neglect is 
one type of trauma that has been considerably studied 
in the past few decades (Eluvathingal et al., 2006; Gov-
indan, Behen, Helder, Makki, & Chugani, 2010; Hanson 
et al., 2013). Children who experienced early neglect in 
orphanage have a decrease volume of total white matter 
(Hanson et al., 2013). Despite a greater FA in the anterior 
thalamic radiation and the forceps minor, lower FA in 

early-deprived children has been underlined in a num-
ber of white matter tracts connecting the temporal lobe 
to the prefrontal cortex (Hanson et al., 2013). In addition, 
adopted children present a decreased FA in pathways 
of the limbic system, including the uncinate fasciculus 
(Eluvathingal et al., 2006; Govindan et al., 2010). Such 
disruption of the structural integrity was negatively 
associated with the duration of stay in the orphanage 
(Govindan et al., 2010).

In adult rodents, social isolation compromises the activ-
ity of GSH-related antioxidant defenses in blood and liver, 
and increases oxidation marks such as lipid peroxidation 
(Djordjevic, Djordjevic, Adzic, & Radojcic, 2010; Goncalves, 
Dafre, Carobrez, & Gasparotto, 2008). Social isolation of 
adult mice reduces myelin thickness in the prefrontal cor-
tex (Liu et al., 2012). Early social isolation endured during 
juvenile and early adolescent periods specifically impairs 
oligodendrocyte maturation and myelination in the pre-
frontal cortex (Makinodan et al., 2012). Indeed, levels of 
MBP and MAG messenger RNA expression are reduced 
in socially deprived animals (Makinodan et al., 2012). 
In contrast, social deprivation endured after adolescent 
period, when oligodendrocyte development is completed, 
does not alter myelin contents. At the molecular level, the 
NRG1/ErbB signaling pathway has been proposed to con-
tribute to such oligodendrocyte maturation impairments 
(Makinodan et al., 2012).

Altogether, these data suggest that oligodendrocyte 
maturation and myelination are particularly sensitive 
to oxidative stress generated by trauma endured during 
childhood or adolescence, and may lead to white matter 
anomalies in adulthood.

CONCLUSIONS AND PERSPECTIVES

Marks of oxidation and lowered antioxidant defenses 
are repeatedly associated with schizophrenia, thus 
tightening the link between redox dysfunction and ill-
ness physiopathology. We suggest that redox imbalance 
in tight interaction with NMDA receptor hypofunction 
and neuroinflammation constitutes a hub on which con-
verge genetic and environmental risk factors, leading to 
brain disconnectivity (Figure 3(A)). Evidence from the 
literature indicates that risk factors for schizophrenia are 
associated with both oxidative stress and myelin defects 
in human. The sensitivity of oligodendrocytes to redox 
changes is well-demonstrated in vitro because dysregu-
lation of redox homeostasis affects the balance between 
proliferation and differentiation of precursor cells. There-
fore, a proper redox control is essential during periods 
of myelination that close window of plasticity in brain 
development. Because dynamics of maturation vary 
across brain regions, we propose that environmental 
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insults would preferentially impair myelin within 
maturing regions rather than in those fully developed. 
Different timing of environmental insults could thus 
lead to clinically heterogeneous symptoms. This model 
raises the hypothesis of a time window during which 
individuals with predisposition for redox dysfunction 
would be primed to develop schizophrenia by environ-
mental factors that occurred during key periods of brain 
development (Figure 3(B)).

This model highlights the need for early interven-
tions that prevent or limit the disruption of white mat-
ter integrity. Fyn, which participates to the switch of 

oligodendrocyte precursor proliferation to differentia-
tion (Monin et al., 2014), is an interesting drug target. 
Broader antioxidants are already tested in clinical tri-
als: some studies report positive effects of vitamins 
C and E, omega-3 fatty acid, and N-acetylcysteine on 
schizophrenia symptoms and even on psychosis pre-
vention. Exploring the effect of these add-on therapies 
on white matter parameters and on disconnectivity in 
early stages of the disease should clarify their mode of 
action and, in the long term, help avoiding transition to 
psychosis and reducing the disabilities associated with 
the illness chronicity.

FIGURE 3 Potential mechanism underlying macrocircuit impairments in schizophrenia. (A) Redox dysregulation and oxidative stress, neu-
roinflammation, and glutamatergic system constitute one hub on which converge environmental and genetic factors. Redox dysregulation and 
oxidative stress are known to impair parvalbumin interneurons and excitatory/inhibitory balance of local neuronal circuits, and alter proliferation 
and differentiation of oligodendrocytes. Together, they may lead to microcircuit and macrocircuit disconnectivity. (B) The sensitivity of oligoden-
drocytes to redox dysregulation is specific to their maturation stage. The coincidence of schizophrenia onset with late prefrontal cortex develop-
ment and the several evidences of structural abnormalities in prefrontal cortex support the hypothesis of a vulnerability window, during which 
stress would induce a myelination delay.
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INTRODUCTION

Schizophrenia is a debilitating and complex brain 
disorder of unknown etiology. Complicating our under-
standing of the causes and pathophysiology of schizo-
phrenia is the likelihood that what we call schizophrenia 
is actually a heterogeneous assemblage of etiological 
conditions across a broad spectrum (Arnedo et al., 2014). 
Reigning evidence supports a schizophrenia etio-
pathogenesis arising from and perpetuated by a multi-
sourced genetic by environmental interaction (Demjaha, 
 MacCabe, & Murray, 2012; Modinos et al., 2013; van 
Os et al., 2014; Tsuang, 2000). Although schizophrenia 
is highly heritable, the disease is polygenic, and gene 
studies to date have identified an enormous number 
of susceptibility loci (Kavanagh, Tansey, O’Donovan, 
& Owen, 2014; Schizophrenia Working Group of the 
 Psychiatric Genomics Consortium, 2014). Thus, the dis-
ease is thought to manifest when one or more of many 
possible genetic predispositions co-occurs with expo-
sure to one or more of many possible environmental 
factors. Relevant environmental factors can derive from 
a diversity of sources including exposures to infection, 
food-derived antigens, stress, smoking, cannabinoids, 
pollutants, and other toxins (Allen, Liu, Pelkowski, 
et al., 2014; Allen, Liu, Weston, et al., 2014; Fine, Zhang, 
& Stevens, 2014; Fineberg & Ellman, 2013; Fraga et al., 
2011; Severance, Yolken, & Eaton, 2014; Suarez-Pinilla, 
 Lopez-Gil, &  Crespo-Facorro, 2014; Yolken & Torrey, 
2008; Zhang et al., 2014). If these exposures coincide with 
critical periods of fetal and neonatal brain maturation, 
there is the potential to aberrantly impact important 
brain processes including neural migration, synapto-
genesis, myelination, and synaptic pruning. Coinciding 

with these neurodevelopmental landmarks are events 
crucial for the instigation and maturation of innate and 
adaptive immunity.

A possible role for immune system dysregulation 
in schizophrenia etiopathogenesis would reconcile 
both genetic and environmental hypotheses. A num-
ber of genetic loci found to associate with schizophre-
nia involve immune functions directly or implicate 
biological pathways that can influence immune func-
tion. For example, a consistently replicated locus for 
association with schizophrenia is the 6p22 chromo-
somal region that houses the major histocompatibility 
(MHC) locus and human leukocyte antigens (Corvin 
&  Morris, 2014;  Purcell et al., 2009; Shi et al., 2009; Ste-
fansson et al., 2009). The MHC/human leukocyte gene 
family functions to identify self and nonself entities 
and any dysfunction of these genes can render sus-
ceptibility to infectious disease, graft rejection, cancer, 
and autoimmunity. Environmental triggers that show 
consistently replicated associations with schizophre-
nia are also those that result in immune activation. 
Exposures to infectious pathogens, food antigens, and 
autoantigens have been especially well-studied risk 
factors for the development of schizophrenia, and spe-
cial consideration is afforded to the timing, intensity, 
and type of immune activation elicited by these expo-
sures (Jones, Mowry, Pender, & Greer, 2005; Kirch, 
1993; Knuesel et al., 2014; Meyer, 2013; Muller, 2014; 
Rothermundt, Arolt, & Bayer, 2001; Severance, Yolken, 
et al., 2014; Torrey & Peterson, 1976; Yolken & Torrey, 
2008).

The focus of this chapter is to review some of 
the evidence in support of an immune and autoim-
mune dysfunction in the etiology, pathogenesis, and 
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pathophysiology of schizophrenia. From a historical 
perspective, a recurrent immune theme predominated 
the early literature with a particular emphasis on schizo-
phrenia-associated immunoglobulins and antibrain anti-
bodies. These ideas still formulate the basis of current 
immune topics in schizophrenia, but over the years the 
scope has widened beyond the adaptive immune sys-
tem to encompass also innate immunity. Advances in 
our understanding of inflammation and mediators of 
both the adaptive and innate immune system and their 
functional roles in standard brain physiology provide an 
important context by which schizophrenia might arise as 
the result of the coupling of immune and neurodevelop-
mental dysregulation.

PRIMER ON BASIC IMMUNOLOGY

The focus of this review on immune system aberra-
tions in schizophrenia requires a review of basic knowl-
edge of the major molecules and cells involved in the 
highly regulated balance of interacting innate and adap-
tive immune pathways. The function of the immune 
system is to protect the organism from disease and 
allow distinction between self and nonself entities, a 
process that is generally classified into the innate (non-
specific, always present) and adaptive (specific, trig-
gered) immune systems. The innate immune system is 
composed of physical epithelial barriers,  monocytes/
macrophages, dendritic cells, natural killer cells, and 
circulating plasma proteins. Microbial invaders or 
compromised cells interact with recognition recep-
tors found on monocytes/macrophages and dendritic 
cells. Pattern recognition receptors can be cytoplasmic, 
membrane-bound, and secreted and include Toll-like 
receptors, complement receptors, nucleotide-binding 
 oligomerization domain (NOD)-like receptors, pen-
traxins, and C-reactive protein. The adaptive immune 
system is composed of two immune response types: 
humoral (antibody) immunity and T-lymphocyte-
mediated immunity. During activation of the adaptive 
immune system, binding of the invading antigen to B 
lymphocytes precipitates its differentiation into plasma 
cells that produce immunoglobulin antibodies specifi-
cally targeted to the invading antigen (Alberts, 2008; 
 Rothermundt et al., 2001). The complement system acts 
in conjunction with the humoral immune system to form 
immune complexes with the antibody bound antigens 
and clear these from the body (Walport, 2001a, 2001b). 
Upon binding to monocytes/macrophages, pathogenic 
and other antigens also trigger the T-cell cascade, where 
T cells differentiate into cytotoxic T cells, T-helper cells, 
and natural killer cells. The lysis of cells containing 
the invading antigen is accompanied by the produc-
tion of pro- and anti-inflammatory cytokines, signaling 

proteins that function in immune regulation (Alberts, 
2008; Rothermundt et al., 2001).

Dysregulation of any of these molecules, proteins, 
or cells at any stage of these pathways irrespective of a 
genetic or environmental origin can result in disorders of 
the immune system, which generally can take the form 
of inflammatory diseases, immunodeficiency, autoim-
munity, or some forms of neoplasia. For complex psychi-
atric disorders such as schizophrenia, it is also necessary 
to understand how perturbations of these immune pro-
cesses might impact the brain. Because schizophrenia 
is thought to originate as a result of aberrant neurode-
velopment, it is important to note that for a number of 
these classic immune factors, including complement, 
MHC, Toll-like receptors, and pentraxins, additional 
functions in the developing brain are continuously being 
identified (Benoit & Tenner, 2011; Bialas & Stevens, 2013; 
Boulanger, 2009; Fourgeaud & Boulanger, 2007; Frodl & 
Amico, 2014; Garate et al., 2013; Nagyoszi et al., 2010; 
Pribiag & Stellwagen, 2014; Stephan et al., 2013; Stevens 
et al., 2007; Trotta, Porro, Calvello, & Panaro, 2014). It 
is also becoming increasingly evident that circulating 
endogenous peripheral immune entities may directly 
access the central nervous system (CNS) as a result of 
directed regulation or compromised endothelial bar-
riers. At the same time, it is possible that invading or 
resident pathogens or their products could directly exert 
detriment to the CNS by similarly penetrating these 
barriers. As such, the spectrum of psychiatric dysfunc-
tions known as schizophrenia may be the compilation of 
different stages of an immunoneurological intersection 
gone awry from both external and internal pathological 
molecules and pathways.

HISTORICAL PERSPECTIVE OF 
THE IMMUNE–SCHIZOPHRENIA 

ASSOCIATION

Early observations prepared a foundation for the 
studies of today where the role of immune activation 
is no longer questioned but understood to be the most 
parsimonious etiological explanation that encompasses 
a gene by environment landscape of schizophrenia. In 
this section, we will review the history of these immune 
associations and especially illuminate adaptive humoral 
immune system dysregulation because immunoglobu-
lin abnormalities were the focus of early investiga-
tions (Kirch, 1993; Rothermundt et al., 2001). Although 
many of these early studies are inconsistent regarding 
the impact of any single infectious pathogen or autoim-
mune reaction against brain tissue, these investigations 
offer snapshots of how the immune process might be rel-
evant to and influence brain function. Importantly, they 
bring to light issues that are still relevant today and that 
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are now studied without previous restrictions such as 
unrecognized disease heterogeneity, constricted study 
designs, and limited laboratory technologies.

Activation of the adaptive immune system and spe-
cifically of humoral immunity generally is manifested by 
changes in the levels of immunoglobulin antibodies with 
respect to the disease state. Schizophrenia-associated 
changes in the levels of plasma and cerebrospinal fluid 
(CSF) proteins were repeated findings that implicated 
immunoglobulins and solidified the idea that in schizo-
phrenia, either an infectious or an autoimmune process 
might be occurring (Amkraut, Solomon,  Allansmith, 
McClellan, & Rappaport, 1973; Bock &  Rafaelsen, 
1974; Burian, Kubikova, & Krejcova, 1964; Durell & 
Archer, 1976; Fessel, 1962a, 1962b; Gammack &  Hector, 
1965;  Hendrie, Paraskevas, & Varsamis, 1972; Selecki, 
Todd, Westwood, & Kraus, 1964; Solomon, Allansmith, 
 McCellan, & Amkraut, 1969; Strahilevitz & Davis, 1970). 
Of particular interest were reports that people with 
schizophrenia who had elevated immunoglobulin levels 
were also the least likely to show clinical improvement 
over the course of hospitalization compared with those 
with lower immunoglobulin levels (Amkraut et al., 1973).

An infectious disease component contribution to 
psychotic mental disorders is often first attributed to 
Esquirol (1845), who suggested that the dissemination of 
psychoses unfolds similarly to an epidemic-like process 
(Esquirol, 1845). This observation was followed by other 
reports of psychotic epidemics in the decades following 
World War I and the 1918 influenza epidemic (Kirch, 
1993; Menninger, 1919, 1926; Torrey & Peterson, 1973, 
1976). The possible role of an antigen derived from a 
pathogenic organism such as a virus or bacteria took root 
in various forms and the early years of the viral hypoth-
esis of schizophrenia is well-reviewed by Torrey and 
Peterson (1973, 1976) and Kirch (1993), with exposures 
to neurotropic viruses such as herpes simplex virus 1, 
measles, and rubella figuring prominently (Kirch, 1993; 
Torrey & Peterson, 1973, 1976).

There was also an extensive literature base primarily 
from the 1940s to 1950s that describe a variety of anti-
body reactions in people with schizophrenia including 
the Rosenow antibody–antigen skin reaction. This reac-
tion was based on a hypothesis that several brain dis-
eases such as epilepsy and schizophrenia were the result 
of alpha-hemolytic streptococci as measured by a cuta-
neous reaction to a streptococcal antibody or antigen 
that was obtained and cultured from nasopharynx sam-
ples (Rosenow, 1948). Results from these studies were 
varied, with some showing greater immune response 
(cutaneous reaction) associated with schizophrenia and 
others showing no difference (Gurassa & Fleischhacker, 
1958; Rosenow, 1948). We will revisit this idea of a  
pathogen-derived viral or bacterial source of immune 
activation in schizophrenia in its current form in a later 

section, because it is still a relevant hypothesis that is 
being explored with the benefit of modern tools such as 
high throughput sequencing.

Meanwhile, early literature on the topic of autoimmu-
nity received similar effort and attention. One very early 
study of postmortem brain tissue identified the pres-
ence of autoantibodies to brain proteins and launched 
the idea that schizophrenia and other psychoses may 
have an autoimmune basis (Lehmann-Facius, 1937). This 
theme continued in later decades when the role of auto-
antibodies to brain proteins was actively studied and 
disputed (Boehme, Cottrell, Dohan, &  Hillegass, 1973; 
Durell & Archer, 1976; Fessel, 1962a, 1962b; Heath, 1967; 
Heath & Krupp, 1967; Heath, Krupp, Byers, & Lijekvist, 
1967a, 1967b; Jones et al., 2005; Kirch, 1993; Mellsop, 
 Whittingham, & Ungar, 1973). In some of these studies, 
the observation again came that levels of antibrain anti-
bodies seemed to correlate with the intensity of psychotic 
symptoms and were generally higher during the early 
disease state and during acute attacks (Glebov, 1972; 
Gurevich, 1969; Stamboliev, 1970; Stoimenov, 1969).

WHERE ARE WE TODAY WITH THE 
ADAPTIVE IMMUNE HYPOTHESES?

Dysregulation of the adaptive immune system and 
especially of humoral immunity still figures prominently 
in today’s literature examining immune-based hypoth-
eses for schizophrenia. Speculation that medication is 
behind changes in immune marker levels is unavoidable; 
however, studies of patients who are antipsychotic naive 
or who have a recent onset of the disease support specific 
immune activation early in the course of disease, even 
before medication is administered (Beumer et al., 2012; 
Drexhage et al., 2010; Drexhage et al., 2011;  Leonard, 
Schwarz, & Myint, 2012; Miller, Mellor, & Buckley, 2012; 
Mondelli & Howes, 2014; Severance, Alaedini, et al., 
2012; Severance, Gressitt, et al., 2012;  Severance et al., 
2013b; Steiner et al., 2012; Stojanovic et al., 2014). Next 
we describe some current evidence available regarding 
schizophrenia-specific immune responses to external 
antigens and autoantigens.

Pathogens

Exposure to infectious disease pathogens during the 
pre- and postnatal period as defined by an antibody 
response is significantly associated with the future 
development of or current status of schizophrenia 
(Arias et al., 2012; Brown & Derkits, 2010; Buka, Cannon,  
Torrey, & Yolken, 2008; Fellerhoff, Laumbacher, Muel-
ler, Gu, & Wank, 2007; Mortensen et al., 2010; Niebuhr 
et al., 2008; Xiao et al., 2009; Yolken et al., 2001; Yolken &  
Torrey, 2008). We include both pre- and postnatal 
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exposure references in this section and in a later sec-
tion will review the implications on neurodevelopment 
of strictly maternal-occurring immune activation from 
a variety of sources including pathogens. Pathogenic 
microorganisms are relevant to schizophrenia patho-
physiology because they or their products can be neu-
rotropic as well as cytotoxic or because the process of 
immune system activation is pathogenic in schizophre-
nia. Certain viruses known to be neurotropic include the 
herpes simplex viruses, cytomegalovirus, and Epstein–
Barr virus; these viruses are also of interest because 
their life cycle can contain a latent state from which 
they can be periodically reactivated (Kirch, 1993; Torrey 
& Peterson, 1973, 1976). To date, the strongest associa-
tion of an infectious disease agent with schizophrenia is 
Toxoplasma gondii, a neurotropic parasite, and this rela-
tionship is well-reviewed in numerous analyses and 
meta-analyses (Arias et al., 2012; Monroe, Buckley, & 
Miller, 2014; Torrey, Bartko, Lun, & Yolken, 2007; Tor-
rey, Bartko, & Yolken, 2012). Other pathogens that have 
shown significant associations with schizophrenia and 
psychoses also include Epstein–Barr virus, measles, 
polio, influenza, coronaviruses, human herpesvirus 2, 
Borna disease virus, human endogenous retrovirus, and 
Chlamydophila spp (Arias et al., 2012; Brown, Begg, 
et al., 2004; Dickerson,  Stallings, Origoni, Copp, et al., 
2010; Karlsson et al., 2001; Karlsson,  Schroder, Bach-
mann, Bottmer, & Yolken, 2004;  Khandaker, Stochl, Zam-
mit, Lewis, & Jones, 2014;  Mednick, Machon, Huttunen, 
& Bonett, 1988; Perron et al., 2012; Prasad, Shirts, Yolken, 
Keshavan, &  Nimgaonkar, 2007; Severance et al., 2011; 
Suvisaari, Haukka, Tanskanen, Hovi, & Lonnqvist, 1999).

Of note, exposure to the process of infection may be 
as or more important than the virulence or neurotropism 
of any single pathogen. A large study of the Swedish 
national birth registry suggested that exposure to viral 
CNS infections during childhood could result in the later 
development of schizophrenia (Dalman et al., 2008). 
Unlike other investigations, this study did not support a 
link of bacterial infections with the development of sub-
sequent psychoses. A different study, however, found 
that urinary tract infections (likely of bacterial origin) 
were found to occur with increased prevalence in schizo-
phrenia and associated with acute relapse of psychosis 
(Graham, Carson, Ezeoke, Buckley, & Miller, 2014; Miller 
et al., 2013). Other conditions typically characterized by 
bacterial infection (sinusitis, tonsillitis, and pneumonia) 
were associated with the development of schizophrenia 
in the prenatal exposure scenario, as were genital and 
other reproductive infections (Babulas, Factor-Litvak, 
Goetz, Schaefer, & Brown, 2006; Sorensen, Mortensen, 
Reinisch, & Mednick, 2009).

It is expected that if schizophrenia in some people is 
the result of a specific virus or parasite, then evidence 
in the form of DNA sequences would be found in the 

brain. These data, however, have thus far been elusive. 
The ability to efficiently search for this needle in a hay-
stack came several years ago with the advent of high-
throughput sequencing. The infancy of this field has not 
yet uncovered evidence for a causative pathogen, but 
ongoing investigations have brought about findings in 
unexpected places, including microbes associated with 
the gut microbiome.

Food Antigens

The connection between food sensitivity and propen-
sity for schizophrenia was pioneered by F. Curtis Dohan, 
who hypothesized that wheat glutens and bovine milk 
caseins were broken down into bioactive exorphins that 
could penetrate through gut barriers, enter systemic 
circulation, and have access to the CNS. His work was 
based on observations of celiac disease overlap with 
schizophrenia, with strong correlations of hospitaliza-
tion rates for schizophrenia with wheat availability dur-
ing wartime and improvement of psychotic symptoms 
following removal of wheat and dairy products from 
the diet (Dohan, 1969, 1970, 1973, 1980; Dohan, Harper, 
Clark, Rodrigue, & Zigas, 1984). A recent resurgence in 
this field is exemplified by the numerous antibody stud-
ies that confirm an increased immune response directed 
at these food antigens, including a role for maternal anti-
bodies to food antigens and the possible presence of an 
antigen-specific immune reaction up to 2 years before 
diagnosis of the disease (Cascella et al., 2011; Dickerson, 
Stallings, Origoni, Vaughan, et al., 2010; Jackson et al., 
2012; Karlsson et al., 2012; Lachance & McKenzie, 2014; 
Niebuhr et al., 2011; Samaroo et al., 2010; Severance et al., 
2010; Severance, Gressitt, et al., 2012). The presence of 
food-derived exorphins or antibodies against them have 
been documented in the CSF of individuals with a vari-
ety of psychoses including schizophrenia and coupled 
with a propensity for blood–brain and CSF–brain bar-
rier defects might implicate a neurotropic role of these 
peptides in the etiology or pathophysiology of the dis-
ease (Axelsson, Martensson, & Alling, 1982; Bauer &  
Kornhuber, 1987; Kirch et al., 1992; Lindstrom, Besev, 
Gunne, & Terenius, 1986; Lindstrom et al., 1984).

Autoantigens

Autoimmune disease epidemiology and schizophre-
nia have been strongly linked for some time, with the 
first vestiges of the association coming in the form of 
findings suggestive of an inverse correlation between 
rheumatoid arthritis and schizophrenia (Benros, Eaton, 
& Mortensen, 2014; Eaton, Hayward, & Ram, 1992; Tor-
rey & Yolken, 2001). Observations of a co-occurring 
psychosis with a number of autoimmune diseases 
including celiac disease, multiple sclerosis, systemic 
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lupus erythematosus, autoimmune thyrotoxicosis, auto-
immune hepatitis, and psoriasis also lent credence to the 
idea of an interrelated component of autoimmunity and 
the brain (Benros et al., 2014; Eaton et al., 2006). Celiac 
disease perhaps provides the strongest association with 
schizophrenia and reinforces the idea that for some, 
immune activation and autoimmunity have roots in the 
gut (Baldwin, 1980; Dohan, 1970, 1973, 1980; Eaton et al., 
2004). Celiac disease is a disease whereby the ingestion 
of wheat gluten launches an immune reaction that dam-
ages the epithelial lining of the small intestine through 
an autoimmune attack on tissue transglutaminase that 
breaks down the gluten peptide (Alaedini & Green, 2008; 
Green et al., 2005; Guandalini & Assiri, 2014).

In the same way that the type of pathogen infection is 
probably not as important as the infectious process itself 
in causing brain pathologies such as schizophrenia, the 
specific type of autoimmune disease may not be the pri-
mary determinant of brain pathology. Instead, the occur-
rence of a state of autoimmunity and its association with 
schizophrenia is rather likely to be a suggestion of the 
pathophysiology or faulty mechanism that is at work, 
perhaps as a disjunctive operation of an immune system 
pathway that has failed to function. Large Danish popu-
lation-based studies, in fact, confirm that individuals or 
first-degree family members who had any history of an 
autoimmune disease have a 45% increased relative risk 
for schizophrenia (Eaton et al., 2006). The autoimmune 
link with schizophrenia was further solidified in an even 
larger investigation of this registry, and interestingly, this 
risk was further elevated in those with a history of an 
infection (Benros et al., 2011). This finding is not surpris-
ing given the fairly established literature base support-
ing the idea that exposure to infectious agents generates 
an autoimmune response (Ercolini & Miller, 2009).

As mentioned in a previous section, documenting 
and characterizing autoantibodies directed at brain pro-
teins has been intriguing researchers for decades with 
generally mixed results. Among the many autoantigens 
analyzed for an association with schizophrenia and 
psychosis are N-methyl-d-aspartate (NMDA) receptors 
(Deakin, Lennox, & Zandi, 2014; Ezeoke, Mellor, Buck-
ley, & Miller, 2013; Jones et al., 2005; Masdeu et al., 2012; 
Muller, 2014; Pearlman & Najjar, 2014; Steiner et al., 
2014; Steiner et al., 2013). This NMDA receptor anti-
body quest was fueled by findings that antibodies to the 
NMDA receptor were elevated in women with ovarian 
teratoma and psychoses-related encephalitis (Dalmau 
et al., 2007). Other targets of autoimmune investigations 
include Neuregulin-2, human endogenous retroviruses, 
cholinergic muscarinic receptors, nicotinic acetylcholine 
receptors, dopamine D2 receptors, mu-opioid receptors, 
serotonin receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors, gamma-aminobutyric 
acid receptors, glutamic acid decarboxylase, potassium 

channel receptors, cardiolipin, DNA, histones, and 
mitochondria (Deakin et al., 2014; Ezeoke et al., 2013; 
Jones et al., 2005; Masdeu et al., 2012). An increased 
understanding of the underlying immunopathological 
processes and an improved characterization of reac-
tive epitopes involved in disease pathogenesis might 
improve the predictive value of autoantibody assays and 
provide for reliable markers of disease susceptibility.

MOVING TOWARD INNATE IMMUNITY 
AND “THE PROCESS OF IMMUNE 

ACTIVATION”

The Gut, Inflammation, and Endothelial Barrier 
Dysfunction

A movement away from schizophrenia as a solely 
brain-centric disease is an active one in psychiatric 
research circles where an increasing awareness of the 
importance of the gastrointestinal (GI) tract, the body’s 
largest immune organ, may share a bidirectional path-
way with the brain. The strong association between 
food-based sensitivities and schizophrenia implicates 
the GI tract as an important site to search for immuno-
logical dysfunction. Food antigen sensitivity is but one 
of a number of risk factors for schizophrenia that are 
related to gut inflammation, and this immunoglobulin G 
(IgG) sensitivity joins other gut-related risk factors such 
as endothelial barrier defects, celiac disease, and expo-
sure to T. gondii (Severance, Yolken, et al., 2014). Research 
at this interface has shown in translational models that 
intestinal inflammation is a significant comorbidity of 
schizophrenia, and markers of this inflammation corre-
late with antibodies to food antigens such as gluten and 
casein at heightened rates in people with schizophre-
nia (Severance, Alaedini, et al., 2012; Severance, Yolken, 
et al., 2014). It has been demonstrated in rodent mod-
els that the schizophrenia-associated pathogen T. gondii 
has many effects on the gut and during infection allows 
the passage of gluten peptides to translocate into circu-
lation and provoke an antibody response (Severance,  
Kannan, et al., 2012). In the presence of compromised 
epithelial and endothelial barriers, not only do food-
based peptides but also bacteria and other related harm-
ful substances cross into the systemic circulation and 
generate more inflammation and propagate autoimmu-
nity. Markers of bacterial translocation are elevated in 
schizophrenia and also found to correlate with the anti-
body response to food antigens (Severance et al., 2013a). 
Thus gut-based inflammation can be added to the grow-
ing list of studies that implicate both peripheral and CNS 
inflammatory pathways associated with schizophrenia 
(Dickerson et al., 2013; Drexhage et al., 2010; Fillman 
et al., 2013; Fillman, Sinclair, Fung, Webster, & Shannon 
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Weickert, 2014; Gibney & Drexhage, 2013; Leonard et al., 
2012; Linderholm et al., 2012; Miller, Buckley, Seabolt, 
Mellor, & Kirkpatrick, 2011; Miller et al., 2012; Monji 
et al., 2013; Muller, 2014; Muller, Myint, & Schwarz, 2012; 
Torrey et al., 2012; Yolken & Torrey, 2008).

The burgeoning field of gut brain axis analyses is the 
subject of investigations directed at the understanding 
of how gut microbes might impact neuronal connections 
in the CNS. Importantly, the gut microbiome functions 
to regulate the immune system. The ability of intestinal 
epithelial cells to actively respond to microbes is medi-
ated by innate immune pattern recognition receptors 
(Toll-like receptors), NOD-like receptors, and helicases 
expressed on cell surfaces. During times of mucosal 
stress, gut homeostasis becomes disrupted (Stockinger, 
Hornef, & Chassin, 2011). Although there are numer-
ous reports of autism-related altered communities of 
the intestinal microbiome (Adams, Johansen, Powell, 
Quig, & Rubin, 2011; Finegold et al., 2010; Finegold, 
Downes, &  Summanen, 2012; Kang et al., 2013;  Parracho, 
 Bingham, Gibson, & McCartney, 2005; Williams et al., 
2011; Williams, Hornig, Parekh, & Lipkin, 2012), studies 
of the microbiome in schizophrenia are scant. Prelimi-
nary clinical studies report altered pharyngeal and intes-
tinal microbiomes in individuals with schizophrenia as 
compared to controls (Yolken & Dickerson, 2014). Some 
insight can be gleaned from rodent studies, where manip-
ulations of gut microbiota do in fact result in behavioral, 
biochemical, and molecular changes (Collins, Surette, & 
Bercik, 2012; Foster & McVey Neufeld, 2013; Hsiao et al., 
2013; Stilling, Dinan, & Cryan, 2014). Diaz-Heijtz et al. 
(2011), for example, illustrated that behavioral effects 
accompanied changes in synaptic markers, synaptophy-
sin and PSD95, in the striatum (Diaz Heijtz et al., 2011). 
In these rodent studies, animal phenotypes were recov-
ered with manipulations of gnotobiotic (germ-free) ani-
mals, vagotomy, probiotics, and/or antibiotics.

The ability of an extrinsically or intrinsically derived 
microbe, cell, protein, or other product normally found 
in peripheral circulation to enter to the CNS renders dis-
cussion of epithelial and endothelial barriers an impor-
tant topic. Barrier permeability of the gut, blood–brain 
barrier, or blood–CSF barrier (Axelsson et al., 1982; Bauer 
& Kornhuber, 1987; Kirch et al., 1992) can arise from a 
variety of environmental factors or from genetic muta-
tions in the many biological pathways that impact this 
cellular architecture. Barrier structures are composed of 
tight junctions (zonula occludens) that occur between 
the epithelial cells of the GI lumen of the GI tract; similar 
tight junction structures comprise the blood–brain bar-
rier (Deli, 2009; Jong & Huang, 2005). The CSF–brain and 
CSF–blood barrier are slightly different, but these inter-
faces at the choroid plexus and arachnoid membrane are 
also relevant areas of access to the brain from the CSF 
(Laterra, Keep, Betz, & Goldstein, 1999). For schizo-
phrenia, CNS barrier dysfunction has been evaluated 

in studies of CSF dynamics and is often attributed to a 
low-grade, systemic inflammation (Bauer & Kornhuber, 
1987; Bechter, 2013; Bechter et al., 2010; Kirch et al., 1992; 
Severance, Gressitt, Alaedini, et al., 2015). In conjunc-
tion with analyses of plasma and CSF protein dynam-
ics, it has been possible to detect evidence for barrier 
defects or restricted flow, as is particularly evident by 
the high prevalence of plasma-derived albumin. Abnor-
mal measures of plasma-derived albumin in the CSF are 
noteworthy because the CNS does not synthesize albu-
min and its elevation would require transport across 
the blood–brain or blood–CSF barrier (Tibbling, Link, & 
Ohman, 1977). An increased albumin ratio can be indica-
tive of either an anatomical barrier defect or a decreased 
CSF flow rate, a dysfunction with numerous physiologi-
cal causes (Reiber, 1994; Whedon & Glassey, 2009). The 
presence of pathological CNS structures such as choroid 
plexus calcification, arachnoid cysts, and decreased brain 
volume all can disrupt CSF flow patterns and all of these 
conditions have been previously associated with psy-
choses and schizophrenia (Arango et al., 2012; Kuloglu, 
Caykoylu, Yilmaz, & Ekinci, 2008; Laterra et al., 1999; 
Marinescu, Udristoiu, & Marinescu, 2013; Narr et al., 
2003; Reiber, 1994; Rimol et al., 2012; Sandyk, 1993; Shiga 
et al., 2012; Veijola et al., 2014; Whedon & Glassey, 2009).

Although a systemic state of inflammation that might 
impact barrier integrities is most likely the result of 
immune activation from an environmental source, cellu-
lar barrier proteins and related biological pathways may 
also be the result of genetic associations. Specific barrier-
related genes that have been significantly associated 
with schizophrenia include the tight junction protein 
claudin-5, cytoskeletal elements such as actin, hapto-
globin, and nitric oxide synthetase (Burghardt, Grove, 
& Ellingrod, 2014; Hall, Trent, Thomas, O’Donovan, & 
Owen, 2014; Horvath & Mirnics, 2014; Maes et al., 2001; 
Sun et al., 2004; Wan et al., 2007; Wei & Hemmings, 2005; 
Yang et al., 2006; Ye et al., 2005; Zhao et al., 2014).

The Maternal–Fetal Environment

The etiology and pathogenesis of schizophrenia likely 
stem from aberrant neurodevelopment (Lewis &  Levitt, 
2002; Piper et al., 2012; Rapoport, Giedd, & Gogtay, 
2012). Perinatal-occurring environmental disturbances 
such as maternal stress, infection, or obstetric complica-
tions may interact adversely in genetically predisposed 
offspring to impact neural migration, synaptogenesis, 
myelination, and synaptic pruning (Knuesel et al., 2014). 
Epidemiological and preclinical studies clearly indicate 
that exposure to maternal immune activity is associated 
with pathological brain development and thus maternal 
immune activation has become a strong risk factor for 
the development of schizophrenia (Bauman et al., 2014; 
Brown & Derkits, 2010; Canetta et al., 2014; Garbett, 
Hsiao, Kalman, Patterson, & Mirnics, 2012; Meyer, 2013; 
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Shi, Smith, et al., 2009). Specifically, maternal exposure 
to cytomegalovirus, herpes simplex virus type 2, influ-
enza, rubella, T. gondii, and wheat glutens have all been 
documented to increase the risk of development of psy-
chosis or schizophrenia (Blomstrom et al., 2012; Brown, 
Begg, et al., 2004; Brown, Cohen, Greenwald, & Susser, 
2000; Brown, Hooton, et al., 2004; Buka et al., 2008; 
 Ellman, Yolken, Buka, Torrey, & Cannon, 2009; Karlsson 
et al., 2012; Mortensen et al., 2010; Pedersen, Stevens, 
 Pedersen, Norgaard-Pedersen, & Mortensen, 2011; Xiao 
et al., 2009). This repertoire was recently expanded to 
include exposure to general inflammation and innate 
immunity based on measures of C-reactive protein and 
complement C1q (Canetta et al., 2014; Severance, Gres-
sitt, Buka, Cannon, & Yolken, 2014). In this section, we 
will review the timelines of brain and immune develop-
ment and review the evidence where these trajectories 
might intersect and result in brain disorders (Figure 1).

Neural development is a highly regulated process and 
since molecules and proteins of the immune system are 
continually being found to participate in mechanisms 
of normal brain development, any immune overactiva-
tion, or failure of the immune system to activate will 
impact brain circuitry. The immune environment dur-
ing pregnancy is a complex balance aimed at preserving 

immune protection of both sides of the maternal–fetal 
interface. Several good reviews are available of how this 
interface is skewed maternally toward inhibiting fetal 
immunity and regulating and maintaining a protective 
Th2 environment over the pro-inflammatory cytotoxic 
Th1 immune response needed to fight infectious dis-
ease (Belderbos, Levy, Meyaard, & Bont, 2013; Morein, 
Blomqvist, & Hu, 2007). Maternal immunity is antibody 
based and functions to maintain immune tolerance in the 
fetus and breast-feeding neonate. As a result, all antibod-
ies including autoantibodies are passed to the offspring 
during this period. Furthermore, while under maternal 
immune protection, the antigen recognition system of 
the fetus is immature. Once maternal-derived immune 
factors are depleted, the immune system of the neonate 
must be redirected to become competent, including a 
more active Th1 component. Maturation of the innate 
and adaptive immune systems is a process that occurs 
from the fetal stage through adulthood (Belderbos et al., 
2013; Knuesel et al., 2014; Morein et al., 2007).

Molecules and proteins of the immune system are 
intrinsically intertwined with important brain processes 
during development. These processes include initial  
proliferation of glia and neurons, consequent migra-
tion, programmed cell death, formation of synapses, 

FIGURE 1 Developmental timelines of the brain and the immune system. Complex disorders such as schizophrenia are thought to arise when 
one or more neurodevelopmental processes are interrupted because of genetic and/or environmental factors. Various immune molecules, pro-
teins, and cells such as C1q and major histocompatibility complex function in the brain during neurodevelopment, suggesting that any disruption 
in the immune system during pregnancy or postnatally has the ability to compound synaptic misconnections. Compiled from Belderbos et al. (2013), 
Dietert et al. (2010), Kneusel et al. (2014), and Morein et al. (2007).
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myelination, and synapse pruning with the overall end-
point to establish functional neuronal circuits (Knuesel 
et al., 2014). Here, we present the case of complement 
C1q as an example of an immune molecule that is highly 
active in the developing brain and that is also implicated 
in schizophrenia-associated gene and environmental stud-
ies. In the developing immune system, relevant processes 
include immune cell appearance, colonization, expansion, 
and maturation. Complement C1q and MHC1 were some 
of the first immune molecules identified to function in syn-
apse development and pruning in the brain (Boulanger, 
2009; Fourgeaud & Boulanger, 2007; Huh et al., 2000; Shatz, 
2009; Stevens et al., 2007). Complement pathway-related 
genes that have been associated with schizophrenia 
include the C1QB gene, complement control-related genes, 
and complement surface receptor gene CD46 (Havik et al., 
2011; Zakharyan et al., 2011). Biologically, complement-
containing circulating immune complexes were elevated 
in individuals with schizophrenia compared to controls 
and a primary antigenic component of these immune 
complexes was often found to be casein or gluten (Arake-
lyan et al., 2011; Boyajyan,  Khoyetsyan, Tsakanova, & Sim, 
2008;  Mailian, Boiadzhian, Sogoian, Sim, & Manukian, 
2005; Mayilyan, Weinberger, & Sim, 2008; Severance, Gres-
sitt, et al., 2012; Vetlugina,  Logvinovich, Maslennikova, & 
Vasil’eva, 1984). Finally, elevated levels of maternal C1q 
IgG have been found to increase the odds for psychosis 
in offspring (Severance, Gressitt, Buka, et al., 2014). Given 
that maternal IgG antibodies begin transfer to the fetus at 
13 weeks’ gestation and approach maternal levels at time 
of birth (Malek, Sager, Kuhn, Nicolaides, & Schneider, 
1996; Simister, 2003), this study introduces the interest-
ing possibility that autoantibodies to C1q present in the 
mother might interact with fetal C1q during critical peri-
ods of brain development. Specifically, if the process of 
normal C1q-mediated synapse formation and pruning is 
interrupted, synaptic connections will presumably be per-
manently altered in the developing brain either through 
overpruning or through underpruning. Other studies 
have connected the presence of maternal autoantibodies 
and with the development of autism spectrum disorders 
where maternal autoantibodies have been found to rec-
ognize brain proteins critical to the neurodevelopmental 
process (Braunschweig et al., 2013;  Brimberg, Sadiq, Gre-
gersen, & Diamond, 2013).

CONCLUDING REMARKS

This chapter provides an introduction into some of 
the mechanisms by which the immune system might be 
involved in the development of schizophrenia. If schizo-
phrenia has an immune component, and if evidence 
indicates a primary rather than secondary role in disease 
pathogenesis, then interventions that target the immune 
system are warranted. Toward this end, one purpose of 

this review was to emphasize the very diverse and mul-
tiple ways in which the immune system might impact 
schizophrenia. Its etiology, pathogenesis, and patho-
physiology may not just be a function of exposure to an 
infectious agent or food antigen or dysfunctional innate 
immunity. Therefore, designing a treatment strategy to 
an extraordinarily heterogeneous disease is difficult. It is 
extremely important to be able to identify the subsets of 
people who have immune-related conditions and fully 
characterize what kind of immune anomaly is present. 
Only in this manner can tailored treatments be evaluated. 
In the future, therapeutic strategies might involve mono-
clonal or monospecific antibodies to antagonize or inac-
tivate antigenic or other protein targets or use of other 
immunosuppressive treatments. The rapid advance in 
the use of monoclonal antibodies for the treatment of 
autoimmune disorders provides hope that such thera-
pies can also have a major impact on schizophrenia as 
well. Dietary interventions have been successful in some 
instances clinically, and developmental compounds 
aimed to normalize gut function and endothelial barri-
ers in other capacities appear promising (Freeman, 2013; 
Jackson et al., 2012; Kristoff et al., 2014; Whiteley et al., 
2010, 2012). An improved understanding of the role of 
immune activation in schizophrenia may lead, not only 
to an improved understanding of disease pathogenesis 
but also to a new methods for the prevention and treat-
ment of this devastating disorder.
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OVERVIEW

The chapters in this volume indicate clearly the extent 
to which the field of models for schizophrenia and related 
psychotic disorders has advanced over the past decade. 
This field was born to meet a growing demand for behav-
ioral assays to investigate the “new” pharmacologi-
cal agents, discovered essentially by serendipity, which 
entered psychiatric practice in the late 1950s through to 
the 1970s for the treatment of schizophrenia. At that time, 
the main goal was to develop one or more models with 
high predictive validity to facilitate the search for new 
antipsychotics.

Subsequently, progress in behavioral neuroscience 
during the 1980s/1990s facilitated the emergence of 
numerous models based on various approaches to 
manipulating brain integrity and having the aim of 
recapitulating behavioral changes observed in patients. 
Hyperactivity produced by psychotomimetics such as 
amphetamine was complemented by lesion-induced 
hyperactivity as models of positive, psychotic symp-
toms. These models were subsequently elaborated to 
involve lesion- and chemically induced disruption of 
early brain development, consequent to strong evidence 
that abnormalities of brain development were an impor-
tant, even fundamental, component of the pathobiol-
ogy of schizophrenia. However, though important and 
heuristic, these lesion- and chemically induced models 
were viewed more skeptically by many clinicians, who 
questioned both the etiological validity of such models 
and the behavioral isomorphism of hyperactivity and 
positive symptoms. In counterpoint, it remained evident 
that antipsychotics had similar effects on behavior in 
both psychotic patients and hyperactive rodents, with 

little effect on elements of behavior equated with other 
aspects of schizophrenia symptomatology.

It was not until the early 2000s that fundamental 
advances in animal models emerged. This happened for 
two main reasons: first, mouse genetics had come of age 
and was now able to reliably generate various geneti-
cally modified (mutant) lines, and second, novel find-
ings from linkage and association studies had identified 
several candidate risk genes for schizophrenia. Some of 
those genes became celebrities (e.g., DISC1) as, in addi-
tion to these clinical findings, they were found to be 
involved in the regulation of brain development. There 
was widespread expectation that candidate risk factor 
models, both environmental and, particularly, genetic, 
would provide new insights into pathophysiological 
mechanisms and would lead to identification of new 
therapeutic targets. However, while genetic models were 
grouped depending on what diagnostic population was 
associated with a particular candidate gene, for example, 
genetic models for schizophrenia or for affective disor-
der, application of the “retrospectoscope” emphasizes ab 
initio that DISC1 is associated not only with schizophre-
nia but also with affective and other disorders.

CONFRONTING THE CHALLENGES

Concerns relating to model systems are heightened by 
additional complexities:
  

 1.  There is increasing recognition of the breadth of 
psychopathology manifested in psychotic illness, 
which involves at least five domains: positive 
(psychotic) symptoms, negative symptoms, cognitive 
dysfunction, depression, and mania. Furthermore, 
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psychosis can be manifested in 11 DSM-IV diagnostic 
categories in addition to schizophrenia, and there 
is emerging, though less extensive, evidence that 
the pathophysiology-neuropathology of psychotic 
illness may generalize across such diagnoses. 
Therefore, these aspects of psychopathology and 
pathophysiology-neuropathology should be reflected 
in our models, so that they can evolve beyond 
simplistic relationships to “schizophrenia” that 
are not in accordance with the clinical reality of 
psychotic illness.

 2.  There is increasing evidence from Genome-
wide association study (GWAS) that many genes 
associated with risk for schizophrenia (both common 
genes of small effect and rare genes (copy number 
variations) of large effect) are associated also, to 
varying degrees, with risk for other neuropsychiatric 
disorders, including bipolar disorder, major 
depressive disorder, autism spectrum disorder, 
attention deficit-hyperactivity disorder, learning 
disability, and epilepsy. Thus, these aspects of 
genetics should also be incorporated into our 
models, so that they can further evolve beyond 
simplistic relationships to “schizophrenia.”

 3.  There are continually evolving concepts and 
evidence that genes, which constitute our most 
substantive clues to the pathobiology of psychotic 
illness and tractable antipsychotic drug targets, 
do not operate in isolation; rather, they interact 
not only with environmental risk factors (gene–
environment interactions), but also with other 
risk genes (gene–gene interactions; epistasis) in a 
manner complementary to evidence for interactions 
between environmental risk factors. Therefore, 
such interactions also require incorporation and 
interrogation in our models.

 4.  While early models were focused primarily on 
behavioral indices, increasing understanding of 
the pathobiology of psychosis has resulted in 
broader indices that now extend to brain structure, 
neuronal cytoarchitecture, molecular and cellular 
neurobiology, and neurophysiology. Furthermore, 
models are now being extended to include 
novel cellular systems and processes that allow 
interrogation of specific mechanisms implicated in 
the pathobiology of psychotic illness.

  

In summary, both the psychopathology and genet-
ics of psychosis are disrespectful to our current nosol-
ogy. This is, to some extent, both already evident but 
underappreciated in current models based on diagnos-
tic categories. For example, some models of the positive 
symptoms of psychotic illness, such as hyperactivity, are 
used also by investigators in affective disorder as mod-
els of mania; some models of negative symptoms, such 

as anhedonia, are used also by investigators in affective 
disorder as models of depression; some models of nega-
tive symptoms, such as abnormalities of social behavior, 
arose from and were applied initially by investigators in 
autism spectrum disorder. Importantly, the complexi-
ties considered above emphasize that not every model 
should be expected to recapitulate every aspect of the 
psychopathology and pathobiology of psychotic illness; 
when juxtaposed with the clinical reality that patients 
show considerable clinical diversity, a model recapitu-
lating only one domain may be more informative on an 
underlying “core” pathobiological process than a model 
recapitulating multiple or indeed “all” domains.

Evidence increasingly suggests that we are dealing 
with a milieu of neurodevelopmental outcomes that are 
in continuity with one another, with the boundaries that 
we impose and label as diagnostic categories being sub-
stantially arbitrary. While this is at least in part reflected 
in contemporary dimensional concepts of psychotic ill-
ness and research domain criteria, this evolution does 
not yet warrant abandonment of current clinical diag-
nostic structures: psychiatrists still need to care for a 
patient with a specific diagnosis; family members still 
want to know what illness their loved one has; last but 
not least, insurance companies still reimburse the cost of 
treatment on the basis of a particular diagnostic category.

Nevertheless, the dawn of a new era of animal mod-
els of psychotic illness and related psychiatric disorders 
has arrived, and the field appears to be ready to embrace 
these perspectives. There is new realization that animal 
models do not serve to recapitulate schizophrenia in its 
entirety but, rather, should focus on specific dimensions 
or domains that transgress existing diagnostic bound-
aries to become truly translational. Furthermore, this 
changing landscape of psychiatric illness, with attendant 
advances in neurobiology and neuroimaging, empha-
sizes measurement of neurobiological entities that are 
thought to be closer to genetic mechanisms (i.e., the con-
cept of endophenotypes). Animal models are increasingly 
incorporating neurobiological indices that can be much 
more readily translated to similar measures in patients. 
We are now witnessing the emergence of many of these 
new directions. Animal models are here to stay and will 
continue to help progress across psychiatry in general 
and, particularly, for understanding and alleviating  
the debilities of psychotic illness.
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