SAMSUNG

VELES Machine Learning Platform

Intelligent Data Processing Group, Algorithm Lab, Samsung Research Russia (SRR)

Lyubov Podoynitsina

Table of Contents

- What is Veles?
- Modular structure
- Algorithms
- Easy to use
- Rapid training
- Distributed operations
- Export on device
- Applications
- Veles is Open Source
- Competitors
- Future directions

What is Veles?

VELES is a Machine Learning platform that

- provides machine learning and data processing services to users
- facilitates creation of applications by non-expert users •
- was started in Mart 2013 by Samsung
- was released as Open Source in July 2015 by Samsung

Veles platform is built on top of many open source projects.

- Isaac Newton

- VELES has modular structure
- Deep neural networks and Genetic algorithm
- It is easy to use
- Allows rapid development of ML applications
- Supporting of distributed operations
- Trained model can be exported on device (DTV, Web, Cloud, Mobile)

Modular structure

VELES uses modular paradigm for Quick and Easy Development of Machine Learning Algorithms and Models.

VELES includes ~225 predefined elementary building blocks - Units. User can construct any dataflow algorithm including Neural Network model.

Veles algorithms

Veles algorithms

Convolutional Autoencoder NN (with pretraining of each layer and fine tuning)

Recurrent Neural Network (RNN)

Extras:

- 1. Last Models: AlexNet, VGG
- 2. Loss functions: mse, softmax
- 3. Stochastic gradient descent so lver with momentum
- 4. AdaGrad/AdaDelta solvers
- 5. Grouping

Long short-term memory (LSTM)

Easy to use

VELES provides different services to user to facilitate the application creation process, such as:

Allows using predefined models and creation of model without writing any code

validation (8) train (5,000

Run stats

Labels l'airplane', 'bird'

- Provides plotting service for debugging and control ٠
- Can be used with Ipython •
- Can automatically select best parameters for algorithm ٠
- Provides publishing of the results ٠

. . .

train (5,000 - 38%)				Nu	mber	of erro	rs	
Labels							45		Udabla
l'airplane', 'bird', 'car',	'cat', 'd	eer', 'dog', 'horse',	'monkey', 'ship', 'truck	') (total: 10)				- va	lidatio
Li	abel	5	L	abels			40		•
deg	inuación		dog						
deer		horse	deer	horse			25		
cat	\mathbf{X}	monicey	cat	monuey			35		
C.M	\sim	truck	car-	- ship - truck					
bird		airplane	brd	airplane			30		
airplane (800 - 10	%) = bi	rd (800 - 10%)	airplane (500 - 1	0%) 🔳 bird (500 - 10%)					
<pre>car (800 - 10%) deer (800 - 10%)</pre>	cat (80	0 - 10%) ROD - 10%)	car (500 - 10%)	cat (500 - 10%)			25		
horse (800 - 10%)	mon	key (800 - 10%)	horse (500 - 109	6) <mark>–</mark> monkey (500 - 10%)				-	
ship (800 - 10%)	truck	(800 - 10%)	ship (500 - 10%)	truck (500 - 10%)			20		
Normalization							53	54	55
type of normalizatio	n	internal_mean							
normalization parar	neters	0			tra	In ma	trix		
					Va	lue	irplane	bird	car
Run stats					airj	plane	426 8.52%	12 0.24%	5 0.10%
elapsed time	0.0 da	iys, 0.0 hours, 21.0	0 minutes, 8.5 secs		t t	bird	14 0.28%	389 7.78%	0.06%
number of epochs	62					car	12 0.24%	0.04%	433 8.66%
		Unit r	un time			cat	1 0.02%	28 0.56%	0.00%
					d	leer	1 0.02%	12 0.24%	0.02%
Decision	GD			A BALLY A	c	dog	3 0.06%	26 0.52%	10.02%
				ALPAINORMAX	h	orse	5 0.10%	6 0.12%	10.02%
				Conv	ma	onkey	1	22	0.005
GradientDescentCon	w			AvgPooling	s	ship	25	3	7
				EvaluatorSoftmax			12	0.06%	49
				PorwardStrictRELU	tr	UCK	0.24%	0.00%	0.98%
				GDMaxPooling GDAvaPooling					
				BackwardStrictRELU		Idaila	n matel		
NNSnapshot	ter		Aller .	LRNormalizerBackward	ta	arget	irplane	bird	car
				Repeater Weights2D	W	nue	676	123	48
				MatrixPlotter	bir	plane	8.45%	1.54%	0.60%

11 26 2 3 0.22% 0.52% 0.04% 0.06%

396 21 20 8 1 7.92% 0.42% 0.40% 0.16% 0.02%

7 21 30 407 17 1 4 0.14% 0.42% 0.60% 8.14% 0.34% 0.02% 0.08% **31** 16 **33** 13 **384** 2 1 62% 0.32% 0.66% 0.26% 7.68% 0.04% 0.02%

2 1 1 1 2 446 20 0.04% 0.02% 0.02% 0.02% 0.04% 8.92% 0.40%

2 1 1 7 0.04% 0.02% 0.02% 0.14%

20 339 29 37 2 2 40% 6.78% 0.58% 0.74% 0.04% 0.04%

izer@ackward	target value	airplane	bird	car	cat	deer	dog	horse	monkey	ship	truck
ter	airplane	676 8.45%	123 1.54%	48 0.60%	17 0.21%	15 0.19%	16 0.20%	9 0.11%	9 0.11%	74 0.93%	56 0.70%
in di Lakor		2	350	6	30	13	75		43		

Rapid training

- VELES uses optimization with CUDA or OPENCL backends on GPU and with Numpy on CPU to speed up calculations.
- Backend can be set for the entire model and for a particular unit.
- All backends have the same interface and produce the same results as the calculation of single and double precision.

__global__ void Unpack1D(const dtype *data, dtype *unpack_data, const int l imit) {

Distributed operations and deployment

- Any user can run the Model using parallel mode on Cluster
- VELES has Universal system of deployment on Cluster or User's computer.
- You can install VELES with one command.

Export on device

VELES can export trained core of Model to tar archive. Exported core can be executed on devices, Cloud or Web as application or service (tested on DTV, Web and Mobile).

Veles applications

Channel logo recognition

😣 🖃 💷 New Tab - Chromium					
New Tab	×				
< > ⊂ ☆ < ☆ =					
8 Google 💈 Python Style Gu 👻					
	sse	kanji	kr_r		
	5.315746	本	bon		
	7.770697	木	mog, mo		
• 十 9.823499 水 su					
Chromium	P Recently clos	ed 🗢 🐧	Web Store 👝		

Music genre recognition

Veles is Open Source

G Samsung/veles: Distributed machine learning platform - Chromium					
G Samsung/veles: Dist × Samsung/veles: Dist × GitHub, Inc. [US]	https://github.com/Samsung/veles	± ☆ ≡			
requirements-dev.3.txt	Added more reqs	10 mc			
requirements.txt	Fixed lpython version in reqs	10 mc			
setup.py	Fixed Debian packaging of web_status service	а			
sonar-project.properties	Added SonarQube config	а			
E README.md					

Veles

Distributed platform for rapid Deep learning application development

Consists of:

- Platform https://github.com/Samsung/veles
- Znicz Plugin Neural Network engine
- Mastodon Veles <-> Java bridge for Hadoop etc.
- SoundFeatureExtraction audio feature extraction library

Home page: https://velesnet.ml

Named after https://en.wikipedia.org/wiki/Veles_(god)

Released under Apache 2.0 license. Copyright © Samsung Electronics Co., Ltd., 2013-2015.

Distributed platform for rapid Deep learning application development. VELESNET.ML

© 2016. Samsung R&D Russia, Algorithms Lab

Specific focus

CAFFE

specified for images recognition

TENSOR FLOW Google

specified for large scaled applications

Deep Learning library produced by Amazon

specified for sparse calculations and amazon services

Future directions

Automatic support of large deep machine learning algorithms on Samsung devices

Thank you!

Contacts

Appendix

Veles history

Comparison table

	VELES	TensorFlow	Torch, Caffe
Data preprocessing/collectio n	Dataset Analysis & Validation Tool; Collaborative Image Marking Tool	N/A *Requires separate tools	N/A *Requires separate tools
Distributed training	Multi nodes, multi devices	Single node, multi devices	Single node, single device
Model analysis	Advanced (Web-Based Graphics, Report Generator)	Advanced (Graphical display, graph visualization)	Basic (Error rate, etc)
Production	Web-based output (REST API) or Mobile-ready archive (JNI)	Model graph protobuf (JNI)	N/A *Requires separate tools
Languages	Python2.7, Python3.4	C++, Python2.7	С, С++
Backends	CUDA, OpenCL, Numpy	CuDNN, BLAS	CuDNN, CUDA
GUI	Web Status dashboard, Front end, Forge, Plots, Logging/Events status	Graph Visualization, Graphica l Display, Visualization of Inc eption training	N/A *Requires separate tools
Data/control flow paradigm	+	+	-
Benchmarks (AlexNet, 1 mini batch 128x3x224x224)	344 msec	507 msec	360 msec (R2), 149 (R3)

Ipython

In [1]: import veles

In [2]: launcher=veles("veles/znicz/samples/MnistSimple/mnist.py", stealth=True, backend="ocl", matplotlib_backend="WebAgg")

/ ___ | Version 0.8.9 Tue, 12 May 2015 11:51:57 +0300 \`--. Copyright © 2013 Samsung Electronics Co., Ltd. \`--. \ Released under Apache 2.0 license. /__/ https://velesnet.ml /___/ https://github.com/samsung/veles/issues

INFO:Main:Loading workflow "/.../znicz/samples/MnistSimple/mnist.py"... INFO:Main:Applying the configuration from /.../znicz/samples/MnistSimple/mnist config.py... INFO:Launcher:My Python is CPython 3.4.1 INFO:Launcher:My PID is 32514 INFO:Launcher:My time is 2015-05-14 09:52:16.789127 INF0:Launcher:Mv ID is 7bc792aa-e93e-4819-88f9-53c64a970ec5 INF0:Launcher:My log ID is 7bc792aa-e93e-4819-88f9-53c64a970ec5 INFO:Main:Created </housingle.mnist.MnistWorkflow object at 0x7f8fc4f18f60> with 21 units INFO:GraphicsServer:Publishing to inproc://veles-plots; ipc:///tmp/veles-ipc-plots-ws2s7i8s; epgm://eth2;239.192.1.1:16080; epg INF0:OpenCLDevice:Selected the following OpenCL configuration: +----+---+ | dtype | rating | BLOCK SIZE | version | device NVIDIA Corporation/GeForce GTX TITAN/4318 | double | 1.000 | 27 1.1 NVIDIA Corporation/GeForce GTX TITAN/4318 | float | 1.000 | 30 1.1 INFO:MnistWorkflow:Initializing units in MnistWorkflow... INFO:MnistLoader:Loading from original MNIST files... INFO:MnistLoader:Minibatch size is set to 88 INFO:MnistLoader:Samples number: test: 0, validation: 10000, train: 60000 INFO:MnistLoader:Normalizing to linear... INFO:MnistLoader:There are 10 unique labels INFO:MnistLoader:train label cardinalities: min: 5421 ("5"), max: 6742 ("1"), avg: 6000, σ: 322 (5%) INFO:MnistLoader:validation label cardinalities: min: 892 ("5"), max: 1135 ("1"), avg: 1000, σ: 59 (5%) INFO:MnistLoader:OK: train and validation labels have the same distributions (X-square test's p-value is 1.000)

Workflow example

Plotters (1)

Valuation matrix Image: Construction matrix Image: C	
Image: Contract of the state of the st	
control 0 1 2 3 4 5 6 7 8 9 10 0 0.84% 0.00	
0 0.634% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 0.033% 1.026% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	
- 1 0.03%10.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% - 2 2 0.07% 0.00% 0.	
2 0.07% 0.00% 10.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	
	-
³ 0.10% 0.00% 0.00% 9.00% 0.00% 0.00% 0.00% 0.00% 0.00%	
4 0.10% 0.00	-
⁵ 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	-
7 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	
⁸ 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	-
	7 8
x=0.00665557 y=0.929742	,
Con Train matrix	
🟠 🛇 🕹 🕂 🖗 🚍 🗹 🛛 👘 🏠 🖉	
target 0 1 2 3 4 5 6 7 8 9 10	0.04 sec
	/snapsnots/rus_5
1 0.00% 1738 0.00% 0.0	
1 a.00x10738 a.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x - Wb.pickle 2 0.02% 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x - 0.015623 3 0.02% 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x - 2 3 0.02% 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x - -	61 sec 1.57 sec
1 a.dbx10723% a.dbx 0.dbx 0.d	61 sec 1.57 sec shots/rus_54_11_
1 0.00x 10728 0.00x 0.0	61 sec 1.57 sec shots/rus_54_11_ /snapshots/rus_5
 1 0.000 10728% 0.00% 0.	61 sec 1.57 sec shots/rus_54_11_ /snapshots/rus_5
1 a.down 10.723 a.down 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	61 sec 1.57 sec shots/rus_54_11_ /snapshots/rus_5 52 sec
1 0.00x 0.0228 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 2 0.02x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 3 0.05x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 4 0.05x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 5 0.02x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 7 0.05x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 8 0.05x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.00x 0.	61 sec 11.57 sec shots/rus_54_11_ /snapshots/rus_5 .52 sec .63 sec shots/rus_5
1 0.00x 10728 0.00x 0.0	61 sec 1.57 sec sshots/rus_54_11_ /snapshots/rus_5 52 sec .63 sec shots/rus_5
1 0.00000000000000000000000000000000000	61 sec 1.57 sec shots/rus_54_11_ /snapshots/rus_5 52 sec .63 sec shots/rus_5 /snapshots/
 1 0.00xx 10/25% 0.00x 0	.61 sec 21.57 sec sshots/rus_54_11 /snapshots/rus_5 52 sec .63 sec shots/rus_5 /snapshots/

Web Service

Frontend

RUN --device 1:0 --verbose warning --stealth --manhole --background --async mn

Mode	Mandatory
Standalone -	Selects VELES operation mode. Standalone is the best choice for debugging workflows and relatively small tasks. Master mode runs VELES workflow server which accepts slaves. Slave mode is the headless VELES instance which requests jobs from a master and returns results.
workflow file	Mandatory
workflow mn	Path to Python script with the VELES model.
veles/znicz/samples/mnist.py veles/znicz/tests/research/mnist.py	
configuraticveles/znicz/tests/research/mnist7.py	Mandatory
config -	Path to the configuration file(pass "-" to set as _config.py).

override configuration	
config_list None	Configuration overrides separated by a whitespace, for example: root.global_alpha=0.006 root.snapshot_prefix='test_pr'.

async		Optional
Yes	Activate asynchronous master-slave protocol on slaves.	
-b,background		Optional
Yes	Run in background as a daemon.	

Publishing

© 2016. Samsung R&D Russia, Algorithms Lab

Logging Service

🕼 (15079) E × 🖞 🔂 VELES PL × 🖣 My Revie × 🖓 Repebolt × 🕻 🦓 Wiki-De × 🕻 🖇 VELES Co × 🕻 🖪 Compone × Č 👖 Onbit npL × Č 😭 One Stoc × Č 💈 Resynbra × Č 😵 Pesynbra × Č 🥵 Pesynbra × Č 🥵 Pesynbra × Č 🥵 Convolut × Č 😵 Google – × Č & VELES Lo × 52 🛞

smaug:8090/logs.html?session=fdf68fd8-620c-4d39-b4a7-837d180ad7b5 C 🏠

🔢 Apps 🙎 Google 🔞 Python Style Guide 💆 pypy / numpy — Bi 💆 pypy / pypy - Bitbucket 🔢 Getting Started wi 🗢 PyPy - Download a 🏠 Quick start with Ge 👌 Python 3.3.5 doc 🚊 VELES Python Vel 🗶 Log In - Confluence 🗶 Dashboard - Conflu

Veles + Hadoop

Imagenet

L	
label	value
Labrador retriever golden retriever vizsla, Hungarian pointer cocker spaniel, English cocker spaniel, cocker Rhodesian ridgeback	0.530035 0.4135 0.0154826 0.0152616 0.00767738

+ label	value
black grouse	0.998416
cock	0.000364259
partridge	0.000329289
hen	0.000294202
vulture	0.000238185

label	value
Siamese cat, Siamese	0.995305
Chihuahua	0.00133562
Persian cat	0.00114584
Angora, Angora rabbit	0.000722808
black-footed ferret, ferret, Mustela nigripes	0.000440669

VelesForge

Model created for object recognition. Dataset - CIFAR10. Self-constructing Model. It means that Model can change for any Model (Convolutional, Fully connected, different

cifar_caffe_config for Convolutional Neural Network with parameters just like in Caffe and

Model created for logotype of TV channels recognition. Dataset was generated by VELES.

Self-constructing Model. It means that Model can change for any Model (Convolutional.

Fully connected, different parameters) in configuration file. Package contains one

parameters) in configuration file. Package contains two configuration files:

Model created for logotype of TV channels recognition

configuration file: channels config for Fully-connected Neural Network

cifar config for Fully-connected Neural Network

Channels master

Author: VELES team Updated: 2014-12-11 13:16:14

Details:

ame on 💒

H 🖾 CBS

Requires

Requires

veles >= 0.5.1

veles.znicz >= 0.4.1

Glymur >= 0.5.12

veles >= 0.5.1

veles.znicz >= 0.4.1

2. Open downloaded folder.

© ⊜ © AlexNet.tar.gz Archive Edit View Help			
Key Sack Image: A state of the s			
Name *	Size	Туре	Modified
📕 imagenet.jpg	3,8 MB	JPEG Image	19 Февраль 2015, 14:40
📓 imagenet_loader.py	7,1 kB	Python script	19 Февраль 2015, 14:40
imagenet_workflow.py	2,3 kB	Python script	19 Февраль 2015, 14:40
imagenet_workflow_config.py	6,5 kB	Python script	19 Февраль 2015, 14:40
initpy	0 bytes	Python script	19 Февраль 2015, 14:40
🔝 manifest.json	785 bytes	unknown	19 Февраль 2015, 14:40
preparation_imagenet.py	18,2 kB	Python script	19 Февраль 2015, 14:40

Downloaded folder contains workflow, loader, configurati on file and snapshot of train ed Model. Alex can use sna pshot of the Model right aw ay or can train Model from scratch.

AlexNet.tar.gz

Deployment

VELES has Universal system of deployment on Cluster or User's computer. You can install VELES with one command.

Graphics & Web Service

Veles automates the process of training ensembles. It consists of 3 separate steps:

- 1. Train the models which are be included into the ensemble.
- 2. Evaluate those models on a separate part of the dataset (this ensures that the e nsemble does not adapt to the validation set).
- 3. Train the top-level classifier on a separate part of the dataset which uses the ou

User can publish the results about training process. Typical report consists of general information about the workflow, achieved results, data basic analytics,

plots, run statistics, etc.

