Word-sense Induction using
Latent Variable Skip-gram

Dmitry Vetrov
Associate professor in Skoltech and HSE
Head of Bayesian methods research group

http://bayesqgroup.ru

p(B|A)yesgroup.ru

http://bayesgroup.ru/

Outline

* Word2vec model

* Latent variable modeling

* Adaptive skip-gram (AdaGram)
* Stochastic optimization

* Large-scale training in AdaGram

Word2vec model (Mikolov2013)

* Designed for word prediction according to its context
* Transforms words to points in 255-dimensional vector space

INPUT PROJECTION OUTPUT
4 a
(“
v -
\ w
1

Skip-gram

Mathematical formulation XY

w(t) w(t-C)

w(t) w(t-C+1)
. w(t-C) ... w(t) ... w(t+C) ... |:> w(t)

w(t) w(t+C-1)

w(t) w(t+C)

w(t+1) w(t+1-C)

B exp (In TOut)
p(y‘ﬂ?) o Zy’ exp (IT?,()TOUt(y,))

p(Y|X) — max
{In,Out}

This is how it should work in ideal case. The problem is with
denominator which ensures normalization. It requires O(V) to compute
it for each X

Hierarchical soft-max

e Let us construct binary Huffman tree for our dictionary
e FEach word y to be predicted corresponds to a leaf in the tree
e Denote Path(y) the sequence of internal nodes from root to leaf y

e Denote d. , the direction of further path from c to y:

i +1 gy is in right subtree
Y —1 y is in left subtree

e Then
pyle) =[] o (deyIn(z)"Out(c)),
ceEPath(y)
where o(x) = —1—|—exi'l)(—:c)

e Reduce complexity from O(V) to O(log V')

Semantic properties of representations

e Most known property of word2vec model: algebraic operations on vectors
correspond to semantic operations on senses:

In(’Paris’) — In(’France’) + In(’Russia’) = In(’Moscow’)
Thousands of examples!

e Word2vec seems to capture notions of gender, geogaphy, number, and
many other attributes

e Can it be useful for Q&A models? WOMAN

MAN/ /’

UNCLE

AUNT

QUEEN

KING

Word ambiguity

e Suppose we want to answer the question
When was the Battle of Waterloo?

e Well... It depends on whether the following holds true:

In(’Waterloo’) — In(’Battle’) + In(’Date’) =~ In(’1815°)

e Even if we succeed we will not be able to answer any questions about the
song or the railway station

In(’Waterloo?’) =7

/ \ In(>ABEA)

In(’Euston’) In(,%Woﬁlf.eaz,—)vous ’)

In(’ Lond%() Station’)

In(’Napoleon’)
In(’Austerlitz’)
In(’Battle’)

Word2vec summary

Pros
e Learns untrivial and abstract concepts

e Extremely computationally effective (less than an hour of training on the
whole Wikipedia using SGD)

e Usable not only for the words (sentences, abstracts, graphs, etc.)
Cons

e Unique representation for each word regardless of the meaning of the
particular word occurence

e Dependant on the choice of a tree in hierarchical soft-max

Latent variable modeling: example

* Consider the following problem
* We have a set of points generated from a Gaussian

1 o 2
i~ Nailso?) = e (-0

* We need to estimate its parameters pand o

Latent variable modeling: example

* Consider the following problem
* We have a set of points generated from a Gaussian

1 (x — p)?
L4 ~ N(ZE%“J’& 02) — \/%O' exp (_ 252))

* We need to estimate its parameters pand o

* Solution is simple: we estimate sample mean and variance

Latent variable modeling: example

* Now suppose we're given several sets of points from different
guassians

* We need to estimate the parameters of those gaussians

Latent variable modeling: example

* Now suppose we're given several sets of points from different
guassians

* We need to estimate the parameters of those gaussians and their
weights

* The problem is as easy if we know what objects were generated from
each gaussian

Latent variable modeling: example

* Now what if we do not know what objects were generated by each
gaussian

* Of course we could still try to use a single gaussian model...

Latent variable modeling: example

* Now what if we do not know what objects were generated by each
gaussian

* Of course we could still try to use a single gaussian model...
* ... but there is a better way: latent variable model!

M

Mixture of gaussians

e For each object x; we establish additional latent variable z; which denotes
the index of gaussian from which i-th object was generated

e Then our model is

n

p(X. 219) = [p(as, %16) = {Product rule} = [T plailz. O)p(=:16) =

=1 =1

e Here m; = p(z; = j) are prior probability of j-th gaussian and 6 =
{1j,0;,m;};2, are the parameters to be estimated

e If we know both X and Z we obtain explicit ML-solution:

Orr = argméixp(X, Z10) = argmgmxlogp(X, Z10)

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

log p(X10)

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. # the log of
incomplete likelihood

log p(X|0) = / 1(Z) log p(X|0)dZ

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 8 the log of
incomplete likelihood

dz

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

(X, Z10)

dZ =
(Z]1X.0)

log p(X|0) = fq(Z) log p(X6)dZ = /q(Z) 10gg

A(Z)p(X, 216)
[at2)1os (2Dp(21%,0)"

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

(X, Z]0)

p
log p(X16) = /q(Z) log p(X0)dZ = /q(Z) log o(Z]X.0) dZ =
9(Z2)p(X, Z10) ., _
[a6 -
p(X, Z|0) q(Z2)
/q(Z)log (2 dZ—I—/q(Z)logp(mX,g)dZ

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

dz =

0gp(X10) = [a(Z)togp(xX10)aZ = [4(2)10g 2220

p(Z|X,0)
q(Z)p(X Z10)
/ (2) log)p(Z| X, 0) dz = Always non-negative!

[/q(Z) log X Z|9 dz —I—[/q Z)log ng) Q)dZ]

Variational lower bound

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

log p(X0) = /Q(Z) log p(X0)dZ = /Q(Z) log pg{;'g; dZ =
«(Z)p(X, 210) .,
/ gq(Z) (Z|X, 9) Always non-negative!

[/q(Z) log X Z]@ d;]—k q(Z)log Z(é') H)dZ]:

Variational lower bound q,0) + KL(q|lp) > L(q,0)

Mixture of gaussians

e What if we do not know Z7 Then we need to maximize w.r.t. 6 the log of
incomplete likelihood

q(Z)p(X,Z10) .,
/Q(Z) log q(Z)p(Z|X,0) dz = Always non-negative!

p(X, Z|0) (%) _
[/q(Z) log (2 dZ]+[/q(Z) log o(Z|X. B)dZ]_
Variational lower bound L(q,0)+ KL(q||p) > L(q,0)

dZ =

e Instead of optimizing log p(X|0) we optimize variational lower bound £L(q, 0)
w.r.t. both 6 and ¢(Z2)

e The block-coordinate algorithm is known as EM-algorithm

EM algorithm

e To solve

L(q,0) = /q(Z) log p(i]((’ZZ)W) dZ — max

we start from initial point 6y and iteratively repeat

e E-step: find

q(Z) = argmax L(q,) = arg min K L(q||p) = p(Z] X, 6o)

e M-step: solve
0, = arg max L(q,0) = arg mnglogp(X, Z10),

set 0y = 0, and go to E-step until convergence

e The EM algorihtm monotonically increases the lower bound and converges
to stationary point of log p(X|0)

Benefits of EM algorithm

In many cases (e.g. for the mixture of gaussians) E-step and M-steps can
be performed in closed form

We may search for the best ¢(Z) in paramertic family from the exponential
class of distributions. Then E-step is simply multi-dimensional convex
optimization problem

Suitable for ML-estimation for the distributions that do not belong to the
exponetial class of distributions, i.e. cannot be represented as

h(X)
g(0)

p(X10) = 22 exp (67 u(X))

Basic idea: add latent variables until p(X, Z|#) belongs to the exponential
class

Multi-sense extension of skip-gram

For simplicity assume we know the number of meanings for each word

Define the latent variable z; that indicates meaning of particular word
occurence T;

Let us search for vector representations of meanings rather than words
In(x;, z;)

Now it is easy to define the probability of y; given the context word and
its meaning:

p(yilxi, zi) = H o (dey; In(z;, zi)TOut(c)) :
cePath(y;)

1

where O'(CC) = H@(—M

Multi-sense extension of skip-gram

We have defined p(y;|z;, z;). To finish model we need to set p(z;|z;) that
is prior probability of particular meaning for a given word

In case of absense of any knowledge we may just set it to uniform distribution

p(z = k|z;) = @)’

where K(z;) is total number of meanings for word x;

Now we have complete discriminative model
p(Yi, zilz:) = p(yilzs, z:)p(2i|:)

If we knew z; this would be just standard skip-gram model with additional
context words

Since we do not know it we can now use EM-algorithm that will both
estimate our parameters { In(x, z), Out(c)} and the probabilities of meanings
of x; given its neighbour: p(z;|z;,y;)

Naive EM algorithm

e E-step: For each training object estimate the distribution on latent variable

p(yil|zi, k)p(z; = k|x;)
p(zi = klwi, vi) = s

=1 Pyl Dp(z = U|z;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

Our train arrived to Waterloo at Z2pm

 Station 0.76
Waterloo - ? 4 Battle 0.21
_Song 0.03

Naive EM algorithm

E-step: For each training object estimate the distribution on latent variable

p(yilzi, k)p(z; = k|x;)
p(zi = klzi, y;) = K(x;)
=1)p(yi|$z’7 l)p(Zz' = l|337:)

We can do this in explicit manner assuming the number of meanings is
reasonably small

M-step: Optimize w.r.t. {In(x, z), Out(c)}

Elog p(Y|Z. X)p(Z|X) —
ogp(Y|Z, X)p(Z|X) nax

Equivalent to training standard skip-gram with increased number of context
words

Seems computationally efficient?..

Naive EM algorithm

E-step: For each training object estimate the distribution on latent variable

p(yilwi, k)p(z = k|z;)
p(Zz' = ’f|33z'ayz') = K (71)
=1 p(ilxs, Dp(zi = Uz;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

M-step: Optimize w.r.t. {In(z,2), Out(c)}

Elogp(Y|Z. X)p(Z|X) —
ogp(Y|Z, X)p(Z|X) (e

Equivalent to training standard skip-gram with increased number of context
words

Seems computationally efficient?.. NO!

We'll need to recompute p(z|x,y) for each object (In Wikipedia2012 there
is about 10? of words) to make just single iteration of EM

Stochastic optimization

e Extremely efficient technique for large-scale optimization of f(x)
e Uses unbiased estimates g(x) instead of true gradients V f(x)

e (Robbins, Monro, 1951) If f(x) is differentiable, Eg(x) = V f(z), Vx, and
S ap =400, ¥, o < +00, ag > 0 then

Try1 = Tp + arg(Tr)
converges to stationary point of f(x)

e Convergence is sublinear (very slow!) and slows down with the increase of

Dg(x)

Advanced techniques

e Modern stochastic optimization methods (SAG, Adam, SFO, IN, SVRG,
etc.) use either momentum, memory, or unbiased estimates of Hessian to
speed up the convergence

e Variance reduction techniques (controled variates, reparametrization, etc.)
are also crucial

e Linear and in cases even superlinear convergence

Stochastic gradients

Function Stochastic gradient
fla) =325, fila) v fila)
f(x) = Eyh(z,y) = [p(y)h(z,y)dy 5P (,90), yo ~ p(y)
f(x) =By h(z,y) = [p(yle)h(z,y)dy | 55h(z,90) + h(z, y0) 57 log p(yolx), yo ~ p(ylz)

Last example has extremely large variance!
Variance reduction is needed

Large scale EM

Remember our scheme

E-step: For each training object estimate the distribution on latent variable

p(yilri, k)p(z = k|z;)
-1 pilxs, Dp(z = lz;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

M-step: Optimize w.r.t. {In(x,z), Out(c)}

Elogp(Y|Z. X)p(Z|X) —
ogp(Y|Z, X)p(Z|X) (A

Equivalent to training standard skip-gram with increased number of context
words

Large scale EM

Remember our scheme

E-step: For each training object estimate the distribution on latent variable

p(yilzi, k)p(z = k|z;)
p(zi = klzs, vi) = ey
=1 p(yilzi, Dp(zi = l|x;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

M-step: Optimize w.r.t. {In(z, z), Out(c)}

Elog p(Y|Z. X)p(Z|X) —
ogp(Y|Z, X)p(Z|X) (e

Equivalent to training standard skip-gram with increased number of context
words

What if on M-step we try to make a single step towards stochastic gradient

of Elogp(Y|Z, X)p(Z|X)?

Large-scale EM

e Consider the gradient of Elogp(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z]X)

Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y (logp(yilzi, z:) + log p(zi|z;))
1=1

Large-scale EM
e Consider the gradient of Elogp(Y|Z, X)p(Z|X) in detail
VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(yi|zi,) + log p(z|:)) =
1=1

ZEZ?; (V 10gp(yi|zi,l‘z‘) + Vlogp(zz‘\ﬂi‘i))

1=1

Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(ys|zi, z:) + log p(zila;)) =
i—1

ZE Vlogp(yz|zza$z +[Vlogp Zz|xzi) ZEZ@ V1ng(yz|zz:xz))

1=1 =1
Does not depend on {In Out}

Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(ys|zi, z:) + log p(zila;)) =
i—1

ZE Vlogp(yz|z@,xz +[Vlogp Zz|mzi) ZE’ZZ V1ng(y@|zz:xz))

1=1 =1
Does not depend on {In Out}

e Its unbiased estimate is simply

K(x;)
E.,Vlogp(yilzi, zi) = Z p(zi = klyi,)V log p(yi|k, ;)

Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(ys|zi, z:) + log p(zila;)) =
i—1

ZE (Vlog p(y:|zi, x;) +[Vlogp ZJ%}) Z:Ezz (Vlog p(yi|2i, 7))

1=1 =1
Does not depend on {In Out}

e Its unbiased estimate is simply

K (z;) We know from E-step
EZZVIng y1|2u$'& Z[p — k'|yuxzjVIng y’a|k xz

Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(ys|zi, z:) + log p(zila:)) =
1=1

ZE (Vlog p(yi|zi, ;) +[V10gp ZJ%}) ZEz@ngp(?sz,sz))

1=1 =1
Does not depend on {In Out}

e Its unbiased estimate is simply

K (z;) We know from E-step
E.,Vlogp(yi|zi, i) = Z[p 2 = klyz,xzwlogp vilk, z;)

e But to compute it we only need to know p(z;|y;,x;) for single training
instance!

Sketch of the final algorithm

e Build Huffman tree for the dictionary
e Fix initial approximation for each 6 = {In(z, z), Out(c)}
e Do one pass through training data

— Compute the probabilities of meanings for z;

p(yz‘ |5Ez', Zi)p(?«’i |$z)
o) p(yilas, k)p(zi = k|z:)

P(Zz’%ayz) —

— Make one step towards stochastic gradient:

K(z;)

Onew = Oo1a + o Y Pz = klzi,y:)Volog p(ys|ai, k)
k=1

What was not covered in this talk

Each word occurence is present 2C' times in training set and of course the
corresponding x; should have the same meaning

We may use so-called non-parametric Bayesian inference to automatically
define the number of meanings for each word

To do this we need to set a special prior on p(z;|z;) using so-called Chinese
restaurant process

To obtain tractable approximations for p(z;|z;, y;) we’ll need to use Stochastic
variational inference (Hoffman, 2013) which is similar to large-scale EM
described above

Experiments: Multiple meanings

Closest words to " platform” Closest words to "sound”

fwd
sedan
fastback
chrysler
hatchback
notchback
rivieraoldsmobile
liftback
superoldsmobile
sheetmetal

stabling
turnback
pebblemix
citybound
metcard
underpass
sidings
tram
cityrail
trams

software
10S
freeware
netfront
linux
microsoft
browser
desktop
interface
newlib

puget
sounds
island
shoals
inlet
bay
hydrophone
quoddy
shore
buoyage

sequencer
multitrack
synths
audiophile
stereo
sampler
sequencers
headphones
reverb
multitracks

Computer is now able to assign different semantic representations to different

occurrences of same word depending on the context

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Who won the Battle of Waterloo?

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Who won the Battle of Waterloo?

Probabilities of meanings
0.0000098

0.997716

0.0000309

0.00207717

0.00016605

Experiments: word disambiguation

e We run AdaGram with o« = 0.2

e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Who won the Battle of Waterloo?

Probabilities of meanings
0.0000098

0.997716

0.0000309

0.00207717

0.00016605

Closest words:
"sheriffmuir"
"agincourt"
"austerlitz"
"jena-auerstedt”
"malplaquet”
"koniggratz"
"mollwitz"
"albuera"
"toba-fushimi"
"hastenbeck"

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Our train has departed from Waterloo at 1100pm

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Our train has departed from Waterloo at 1100pm

Probabilities of meanings
0.948032

0.00427984
0.000470485

0.0422029

0.0050148

Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Our train has departed from Waterloo at 1100pm
Closest words:

Probabilities of meanings ::padd'”§t°n"
0.948032 ”e-UStOh)
0.00427984 "\{|Ct0r|a)
0.000470485 "“verpool "
0.0422029 "n’-lo'f)rgate
0.0050148 Via
"london"
"street”
"central"

"bridge"

Downloads

* Code and documentation available
https://github.com/sbos/AdaGram.jl
* Trained models available
https://yadi.sk/d/W4FtSjA503jUL

* Paper available

S. Bartunov, D. Kondrashkin, A. Osokin, D. Vetrov. Breaking Sticks and
Ambiguities with Adaptive Skip-gram. In AISTATS 2016

http://arxiv.org/abs/1502.07257

https://github.com/sbos/AdaGram.jl
https://yadi.sk/d/W4FtSjA5o3jUL
http://arxiv.org/abs/1502.07257

Conclusion

e Latent variable modelling allows to uncover deeper dependencies in the
data that are not obvious even in the training data

e Using LVM we may use weakly-annotated data and learn from multiple
sources

e Stochastic optimization allows us to train LVM almost as fast as standard
models

Stochastic
optimization

Deep learning

Latent
variable
modelling

