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Deep reinforcement learning for humans
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Why bother

With reinforcement learning you can

● Control robots!

● Personalize medical treatment!

● Optimize advertisement!

● Tackle HEP problems!

● And of course, play games from raw images!
● Most popular among scientists

● A lot more, ofc
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The MDP formalism

s∈S
a∈A

Classic MDP
Agent interacts with environment
● Environment states:
● Agent actions:
● State transition: 
● Reward:

P(st+1∣st , at)

r t=r (st , at)
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Objective: learn optimal policy

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i γ∈(0,1)const

π=P (a∣s) : E [R ]→max

Find policy that maximizes total reward
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Maximize full session reward
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Recurrent optimal strategy definition
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One approach: 
action Q-values

Q ' (s t , a t)←Q t(s t , a t)−α(Q t
ref

−Q(s t , a t))

Qt
ref

=rt+γ⋅maxa' Q(st+ 1 , a ')

π : argmaxa ' Q(s , a ' )
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Other methods: value-based

Q ' (s t , a t)←Q t(s t , a t)−α(Q t
ref

−Q(s t , a t))

Qt
ref

=rt+γ⋅maxa' Q(st+ 1 , a ')

Q-learning

SARSA

Qt
ref

=rt+γ⋅Q(st+1 , a t+1)

Qlearning n-step

Qt
ref

=rt+γ⋅rt+1+...+γ t+n−1 rt+n−1+γ t+n⋅maxa' Q(s t+n , a ')
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Other methods: actor-critic

V (s)=E[Rπ(s)]

Advantage actor-critic (a2c)

V π (st)←V (st)+α⋅(r t+γ⋅V π(st+1)−V (st))

π (s , a)=P(a∣s )

π (st)←argmaxπ log π(s , a)⋅(rt +γ⋅V π (st+1)−V (st))

Idea: 
● take action more frequently if it exceeds expected value.
● abandon actions that fall below expected value
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Exploration Vs Exploitation

Balance between using what you learned and trying to find 
something even better

Vs
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Exploration Vs Exploitation
Strategies:

• ε-greedy
• With probability ε take a uniformly random 
action; otherwise take optimal action.

• Softmax
Pick action proportional to softmax of shifted 
normalized Q-values.

• Some methods have a built-in
exploration strategy (e.g. A2c)

P(a)=softmax (
Q (a) –Qmean

Qvariance
)
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Use cases: MAB
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Use cases: multi-agent MDP
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Use cases: dynamic systems
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Use cases: videogames
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Other use cases

● Personalized medical treatment 
(afaik, prototypes only) http://bit.ly/1VDejIU

● Even more games (Go, chess, etc)

● Conversation systems (next time maybe)
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● Could save lives
● Could make money
● Could do robotics
● Chose to play games
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Problem:

State space is usually large,

sometimes continuous.
And so is action space;

However, states do have a structure, similar 
states have similar action outcomes.



  21

Deep learning approach: DQN

Mnih et al.http://bit.ly/25DqgkH
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Deep learning approach: DQN
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Deep learning approach: DQN
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DQN problem: autocorrelations
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DQN problem: autocorrelations

Experience replay
● Maintain a large pool of (s,a,r,s') tuples from prior MDP sessions.
● Sample random batch from the pool each time when training NN

● Or use a prioritized sampling strategy to emphasize most important 
samples

Target networks
● Obtain “Qreference(s,a)” term from an older neural network snapshot.

● Alternatively, maintain an exponential moving average of weights

Silver et al.  http://arxiv.org/abs/1511.05952

Silver et al. http://jmlr.org/proceedings/papers/v32/silver14.pdf
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DQN problem: autocorrelations

Asynchronous methods
● Launch several parallel agents with shared weights in hope that 

they will be exploring different environment parts.

Bootstrap DQN
● Maintain several “heads”, top layers of NN responsible for Qvalues 

prediction.
● At the beginning of new game session, choose one of the “heads” 

at random. This head decides what action to take during current 
session.

● All other heads are trained on that 
session without taking real actions

Van Roy et al. https://arxiv.org/pdf/1602.04621.pdf

Mnih et al. https://arxiv.org/pdf/1602.01783.pdf
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Problem:
Most practical cases are partially observable:

Agent observation does not hold all information about process state 
(e.g. human field of view).

● We now receive observations instead of 
actual environment states

● However, we  can try to infer hidden states 
from sequences of observations.

● Intuitively that's agent memory state.

st≃mt : P (mt∣ot ,mt−1)

o∈O;O≠S
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Deep Recurrent RL

Recurrent agent memory

• Agent has his own hidden state.
• Trained via BPTT with a fixed depth
• Problem: next input depends on 

chosen action
• Even more autocorrelations :)

http://arxiv.org/pdf/1507.06527.pdf  http://arxiv.org/abs/1507.06527

http://arxiv.org/pdf/1507.06527.pdf
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Deep Recurrent RL
Learning curves for KungFuMaster
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Problem:
Rewards are usually sparse (temporally rare) and delayed.

It takes exponentially more random exploration to learn optimal policy in case of 
rare rewards.

Spoiler, in real life things are even more sparse and delayed

Humans:
● Don't seem to follow epsilon-greedy exploration policy (e.g. random limb tremble)

● Think in several layers of abstraction 

– “Push gas pedal (while driving)”

– “Take left turn in 15 meters”

– “Drive to school”, 

– “Give your children education”

– …

– PROFIT
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Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1
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Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1
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Expected rabbit hole depth
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Most important slide

RL isn't magical
● It won't learn everything in the world given any data 

and random architecture.

● Sparse & delayed rewards still a problem

● Less playing Atari, more real world problems
No, doom is not a real world problem, dummy!

● Slowly getting rid of heuristics towards mathematical and 
neurological soundness

● High entry threshold
A lot of technical issues to solve;
Environment simulation or hardware;
Deep learning libraries;
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Deep Recurrent Q-network

Current
Observation

Ot

Previous
RNN
State

Next
RNN
state

Action
a_t

NN layers

RNN Update

NN layers ε-greedy
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AgentNet
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AgentNet
https://github.com/yandexdataschool/AgentNet

Basically a library to quickly experiment with different agent 
compositions and learning methods.

• MDP abstractions: agent, environment, etc
• Various recurrent and LTM augmentations
• Several RL algorithms: 

• SARSA, Q-l, K-step Ql, Advantage A2c, …

• Full lasagne compatibility

• User defines one agent step
• Processing observations
• Taking actions
• Updating memory states

https://github.com/yandexdataschool/AgentNet
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Lasagne

● Minimalistic DL library

● Built above Theano

● Direct theano integration

● Great docs, recipes
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OpenAI Gym

● Opensource RL problem zoo

● Atari, MujoCo, classic games, etc

● Gone open-source
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Contributors VERY welcome
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</speech>

● Any questions?

● Ideas, feedback and contributions are very welcome.

● https://github.com/yandexdataschool/AgentNet

● See ./examples for... examples

https://github.com/yandexdataschool/AgentNet
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