
 1

AgentNet
Deep reinforcement learning for humans

Alexander Panin, Alexey Rogozhnikov, Andrey Ustyuzhanin

 2

Why bother

With reinforcement learning you can

● Control robots!

● Personalize medical treatment!

● Optimize advertisement!

● Tackle HEP problems!

● And of course, play games from raw images!
● Most popular among scientists

● A lot more, ofc

 3

The MDP formalism

s∈S
a∈A

Classic MDP
Agent interacts with environment
● Environment states:
● Agent actions:
● State transition:
● Reward:

P(st+1∣st , at)

r t=r (st , at)

 4

 5

Objective: learn optimal policy

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i γ∈(0,1)const

π=P (a∣s) : E [R]→max

Find policy that maximizes total reward

 6

Maximize full session reward

 7

Recurrent optimal strategy definition

 8

One approach:
action Q-values

Q ' (s t , a t)←Q t(s t , a t)−α(Q t
ref

−Q(s t , a t))

Qt
ref

=rt+γ⋅maxa' Q(st+ 1 , a ')

π : argmaxa ' Q(s , a ')

 9

Other methods: value-based

Q ' (s t , a t)←Q t(s t , a t)−α(Q t
ref

−Q(s t , a t))

Qt
ref

=rt+γ⋅maxa' Q(st+ 1 , a ')

Q-learning

SARSA

Qt
ref

=rt+γ⋅Q(st+1 , a t+1)

Qlearning n-step

Qt
ref

=rt+γ⋅rt+1+...+γ t+n−1 rt+n−1+γ t+n⋅maxa' Q(s t+n , a ')

 10

Other methods: actor-critic

V (s)=E[Rπ(s)]

Advantage actor-critic (a2c)

V π (st)←V (st)+α⋅(r t+γ⋅V π(st+1)−V (st))

π (s , a)=P(a∣s)

π (st)←argmaxπ log π(s , a)⋅(rt +γ⋅V π (st+1)−V (st))

Idea:
● take action more frequently if it exceeds expected value.
● abandon actions that fall below expected value

 11

Other methods: actor-critic

V (s)=E[Rπ(s)]

Advantage actor-critic (a2c)

V π (st)←V (st)+α⋅(r t+γ⋅V π(st+1)−V (st))

π (s , a)=P(a∣s)

π (st)←argmaxπ log π(s , a)⋅(rt +γ⋅V π (st+1)−V (st))

Idea:
● take action more frequently if it exceeds expected value.
● abandon actions that fall below expected value

 12

Exploration Vs Exploitation

Balance between using what you learned and trying to find
something even better

Vs

 13

Exploration Vs Exploitation
Strategies:

• ε-greedy
• With probability ε take a uniformly random
action; otherwise take optimal action.

• Softmax
Pick action proportional to softmax of shifted
normalized Q-values.

• Some methods have a built-in
exploration strategy (e.g. A2c)

P(a)=softmax (
Q (a) –Qmean

Qvariance
)

 14

Use cases: MAB

 15

Use cases: multi-agent MDP

 16

Use cases: dynamic systems

 17

Use cases: videogames

 18

Other use cases

● Personalized medical treatment
(afaik, prototypes only) http://bit.ly/1VDejIU

● Even more games (Go, chess, etc)

● Conversation systems (next time maybe)

 19

● Could save lives
● Could make money
● Could do robotics
● Chose to play games

 20

Problem:

State space is usually large,

sometimes continuous.
And so is action space;

However, states do have a structure, similar
states have similar action outcomes.

 21

Deep learning approach: DQN

Mnih et al.http://bit.ly/25DqgkH

 22

Deep learning approach: DQN

 23

Deep learning approach: DQN

 24

DQN problem: autocorrelations

 25

DQN problem: autocorrelations

Experience replay
● Maintain a large pool of (s,a,r,s') tuples from prior MDP sessions.
● Sample random batch from the pool each time when training NN

● Or use a prioritized sampling strategy to emphasize most important
samples

Target networks
● Obtain “Qreference(s,a)” term from an older neural network snapshot.

● Alternatively, maintain an exponential moving average of weights

Silver et al. http://arxiv.org/abs/1511.05952

Silver et al. http://jmlr.org/proceedings/papers/v32/silver14.pdf

 26

DQN problem: autocorrelations

Asynchronous methods
● Launch several parallel agents with shared weights in hope that

they will be exploring different environment parts.

Bootstrap DQN
● Maintain several “heads”, top layers of NN responsible for Qvalues

prediction.
● At the beginning of new game session, choose one of the “heads”

at random. This head decides what action to take during current
session.

● All other heads are trained on that
session without taking real actions

Van Roy et al. https://arxiv.org/pdf/1602.04621.pdf

Mnih et al. https://arxiv.org/pdf/1602.01783.pdf

 27

Problem:
Most practical cases are partially observable:

Agent observation does not hold all information about process state
(e.g. human field of view).

● We now receive observations instead of
actual environment states

● However, we can try to infer hidden states
from sequences of observations.

● Intuitively that's agent memory state.

st≃mt : P (mt∣ot ,mt−1)

o∈O;O≠S

 28

Deep Recurrent RL

Recurrent agent memory

• Agent has his own hidden state.
• Trained via BPTT with a fixed depth
• Problem: next input depends on

chosen action
• Even more autocorrelations :)

http://arxiv.org/pdf/1507.06527.pdf http://arxiv.org/abs/1507.06527

http://arxiv.org/pdf/1507.06527.pdf

 29

Deep Recurrent RL
Learning curves for KungFuMaster

 30

Problem:
Rewards are usually sparse (temporally rare) and delayed.

It takes exponentially more random exploration to learn optimal policy in case of
rare rewards.

Spoiler, in real life things are even more sparse and delayed

Humans:
● Don't seem to follow epsilon-greedy exploration policy (e.g. random limb tremble)

● Think in several layers of abstraction

– “Push gas pedal (while driving)”

– “Take left turn in 15 meters”

– “Drive to school”,

– “Give your children education”

– …

– PROFIT

 31

Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1

 32

Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1

 33

Expected rabbit hole depth

 34

Most important slide

RL isn't magical
● It won't learn everything in the world given any data

and random architecture.

● Sparse & delayed rewards still a problem

● Less playing Atari, more real world problems
No, doom is not a real world problem, dummy!

● Slowly getting rid of heuristics towards mathematical and
neurological soundness

● High entry threshold
A lot of technical issues to solve;
Environment simulation or hardware;
Deep learning libraries;

 35

Deep Recurrent Q-network

Current
Observation

Ot

Previous
RNN
State

Next
RNN
state

Action
a_t

NN layers

RNN Update

NN layers ε-greedy

 36

AgentNet

 37

AgentNet
https://github.com/yandexdataschool/AgentNet

Basically a library to quickly experiment with different agent
compositions and learning methods.

• MDP abstractions: agent, environment, etc
• Various recurrent and LTM augmentations
• Several RL algorithms:

• SARSA, Q-l, K-step Ql, Advantage A2c, …

• Full lasagne compatibility

• User defines one agent step
• Processing observations
• Taking actions
• Updating memory states

https://github.com/yandexdataschool/AgentNet

 38

Lasagne

● Minimalistic DL library

● Built above Theano

● Direct theano integration

● Great docs, recipes

 39

OpenAI Gym

● Opensource RL problem zoo

● Atari, MujoCo, classic games, etc

● Gone open-source

 40

Contributors VERY welcome

 41

</speech>

● Any questions?

● Ideas, feedback and contributions are very welcome.

● https://github.com/yandexdataschool/AgentNet

● See ./examples for... examples

https://github.com/yandexdataschool/AgentNet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

