

AgentNet

Deep reinforcement learning for humans

<u>Alexander Panin</u>, Alexey Rogozhnikov, Andrey Ustyuzhanin

Why bother

- With reinforcement learning you can
- Control robots!
- Personalize medical treatment!
- Optimize advertisement!
- Tackle HEP problems!
- And of course, play games from raw images!
 - Most popular among scientists
- A lot more, ofc

The MDP formalism

Classic MDP

Agent interacts with environment

 $r_t = r(s_t, a_t)$

- Environment states: $s \in S$
- Agent actions: $a \in A$
- State transition: $P(s_{t+1}|s_t, a_t)$
- Reward:

Objective: learn optimal policy

NILL PRESS 婁 LEVER FOR FOOD

Objective: Total reward

$$R_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$R_t = \sum_i \gamma^i \cdot r_{t+i} \qquad \gamma \in (0,1) const$$

Find policy that maximizes total reward

 $\pi = P(a|s): E[R] \rightarrow max$

The Bellman Equations

Maximize full session reward

The Bellman Equations

Recurrent optimal strategy definition

The Bellman Equations

$$Q'(s_t, a_t) \leftarrow Q_t(s_t, a_t) - \alpha (Q_t^{ref} - Q(s_t, a_t))$$
$$Q_t^{ref} = r_t + \gamma \cdot max_{a'} Q(s_{t+1}, a')$$

 π : argmax_a 'Q(s,a')

Other methods: value-based

$$Q'(s_t, a_t) \leftarrow Q_t(s_t, a_t) - \alpha (Q_t^{ref} - Q(s_t, a_t))$$

Q-learning

$$Q_t^{ref} = r_t + \gamma \cdot max_{a'} Q(s_{t+1}, a')$$

SARSA

$$Q_t^{ref} = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Qlearning n-step

$$Q_{t}^{ref} = r_{t} + \gamma \cdot r_{t+1} + \dots + \gamma_{t+n-1} r_{t+n-1} + \gamma_{t+n} \cdot max_{a'} Q(s_{t+n}, a')$$

Other methods: actor-critic

$$\pi(s,a) = P(a|s) \qquad V(s) = E[R_{\pi}(s)]$$

Advantage actor-critic (a2c)

$$V_{\pi}(s_t) \leftarrow V(s_t) + \alpha \cdot (r_t + \gamma \cdot V_{\pi}(s_t + 1) - V(s_t))$$

$$\pi(s_t) \leftarrow argmax_{\pi} \log \pi(s, a) \cdot (r_t + \gamma \cdot V_{\pi}(s_t + 1) - V(s_t))$$

Idea:

- take action more frequently if it exceeds expected value.
- abandon actions that fall below expected value

Other methods: actor-critic

$$\pi(s,a) = P(a|s) \qquad V(s) = E[R_{\pi}(s)]$$

Advantage actor-critic (a2c)

$$V_{\pi}(s_t) \leftarrow V(s_t) + \alpha \cdot (r_t + \gamma \cdot V_{\pi}(s_t + 1) - V(s_t))$$

$$\pi(s_t) \leftarrow argmax_{\pi} \log \pi(s, a) \cdot (r_t + \gamma \cdot V_{\pi}(s_t + 1) - V(s_t))$$

Idea:

- take action more frequently if it exceeds expected value.
- abandon actions that fall below expected value

Exploration Vs Exploitation

Balance between using what you learned and trying to find something even better

Vs

Exploration Vs Exploitation

Strategies:

- \cdot ε-greedy
 - With probability ε take a uniformly random action; otherwise take optimal action.
- \cdot Softmax

Pick action proportional to softmax of shifted normalized Q-values.

$$P(a) = softmax(\frac{Q(a) - Qmean}{Qvariance})$$

 Some methods have a built-in exploration strategy (e.g. A2c)

Conversion: 0.2%

Conversion: 1.2%

Use cases: multi-agent MDP

Use cases: dynamic systems

Use cases: videogames

Other use cases

 Personalized medical treatment (afaik, prototypes only) http://bit.ly/1VDejIU

• Even more games (Go, chess, etc)

Conversation systems (next time maybe)

- Could save lives
- Could make money
- Could do robotics
- Chose to play games

Problem:

State space is usually large, sometimes continuous.

And so is action space;

However, states do have a structure, similar states have similar action outcomes.

Deep learning approach: DQN

Mnih et al.http://bit.ly/25DqgkH

Deep learning approach: DQN

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Deep learning approach: DQN

DQN problem: autocorrelations

DQN problem: autocorrelations

Experience replay

- Maintain a large pool of (s,a,r,s') tuples from prior MDP sessions.
- Sample random batch from the pool each time when training NN
 - Or use a prioritized sampling strategy to emphasize most important samples

Silver et al. http://arxiv.org/abs/1511.05952

Target networks

- Obtain "Qreference(s,a)" term from an older neural network snapshot.
 - Alternatively, maintain an exponential moving average of weights

DQN problem: autocorrelations

Asynchronous methods

• Launch several parallel agents with shared weights in hope that they will be exploring different environment parts.

Mnih et al. https://arxiv.org/pdf/1602.01783.pdf

Bootstrap DQN

- Maintain several "heads", top layers of NN responsible for Qvalues prediction.
- At the beginning of new game session, choose one of the "heads" at random. This head decides what action to take during current session.
- All other heads are trained on that session without taking real actions

Van Roy et al. https://arxiv.org/pdf/1602.04621.pdf

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state (e.g. human field of view).

hidden state

• We now receive observations instead of actual environment states

 $o \in O; O \neq S$

• However, we can try to infer hidden states from sequences of observations.

$$\mathbf{s}_t \simeq m_t : P(m_t | o_t, m_{t-1})$$

• Intuitively that's agent memory state.

Deep Recurrent RL

3500

3000

2500

2000

1500

1000

500

0

5000

Recurrent agent memory

- \cdot Agent has his own hidden state.
- \cdot Trained via BPTT with a fixed depth
- Problem: next input depends on chosen action
- Even more autocorrelations :)

http://arxiv.org/pdf/1507.06527.pdf http://arxiv.org/abs/1507.06527

15000

10000

Deep Recurrent RL

Learning curves for KungFuMaster

Problem:

Rewards are usually sparse (temporally rare) and delayed.

It takes exponentially more random exploration to learn optimal policy in case of rare rewards.

Spoiler, in real life things are even more sparse and delayed

Humans:

- Don't seem to follow epsilon-greedy exploration policy (e.g. random limb tremble)
- Think in several layers of abstraction
 - "Push gas pedal (while driving)"
 - "Take left turn in 15 meters"
 - "Drive to school",
 - "Give your children education"
 - ...
 - PROFIT

Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1

Hierarchical deep RL

Tenenbaum et al. https://arxiv.org/abs/1604.06057v1

Expected rabbit hole depth

33

Most important slide

RL isn't magical

- It won't learn everything in the world given any data and random architecture.
- Sparse & delayed rewards still a problem
- Less playing Atari, more real world problems No, doom is not a real world problem, dummy!
- Slowly getting rid of heuristics towards mathematical and neurological soundness
- High entry threshold
 A lot of technical issues to solve;
 Environment simulation or hardware;
 Deep learning libraries;

AgentNet

```
In [2]: #agent observation input (blue triangle)
        observation layer = InputLayer(observation size,name="obs input")
        #previous state input (left green)
        prev state layer = InputLayer(rnn size,name="prev state input")
        #new RNN state (middle and right green)
        rnn = RNNCell(prev state,
                      observation,
                      name="new rnn state")
        #Qvalues estimator (red square)
        q values = DenseLayer(rnn, name="QEvaluator",
                              num units = n actions,
                              nonlinearity=None,)
        #Epsilon-greedy action picker (red triangle)
        resolver = EpsilonGreedyResolver(q values,name="resolver")
        #all together
        agent = Agent(observation layer,
                      {rnn:prev state layer},
                      q values, resolver)
```

AgentNet

https://github.com/yandexdataschool/AgentNet

Basically a library to quickly experiment with different agent compositions and learning methods.

- · MDP abstractions: agent, environment, etc
- \cdot Various recurrent and LTM augmentations
- · Several RL algorithms:
 - · SARSA, Q-I, K-step QI, Advantage A2c, ...
- Full lasagne compatibility
- \cdot User defines one agent step
 - Processing observations
 - \cdot Taking actions
 - \cdot Updating memory states

Lasagne

- Minimalistic DL library
- Built above Theano
- Direct theano integration
- Great docs, recipes

OpenAl Gym

- Opensource RL problem zoo
- Atari, MujoCo, classic games, etc
- Gone open-source

Contributors **VERY** welcome

</speech>

- Any questions?
- Ideas, feedback and contributions are very welcome.
- https://github.com/yandexdataschool/AgentNet
- See ./examples for... examples