

Search for long-lived particles

Andrey Ustyuzhanin, Denis Derkach, Fedor Ratnikov, Alexander Panin

YSDA, HSE

Deep Machine Intelligence Workshop

4th June, 2016

"I THINK IT'D BE COOL IF ONE DAY AN AI WAS INVOLVED IN FINDING A NEW PARTICLE."

Demis Hassabis

http://bit.ly/1sVqIMF

Large Hadron Collider and the LHCb

- The idea of LHC accelerate particles (e.g. protons) to insane speeds and watch them collide.
- velocity ~10^9 km/h
- ~10^7 events (collisions) per second

We're never low on insane numbers :)

Particles and decays

Particles:

- Protons(p), Kaons(K), Pions(π) others alike
- Charge: {-1,0,+1}. denoted as π⁺, π, π⁻
- Life cycle: get born, fly, decay into other stuff.

Decays:

- A nonsuspecting particle flies along, than snap! And you got several other particles
- Denoted as <before $> \rightarrow <$ after>
- e.g. $K \to \pi\pi\,$ Kaon decay into 2 pions
- $B_d \rightarrow J/\psi K_S^0$, $J/\psi \rightarrow \mu\mu$, $\phi \rightarrow KK$, $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K_S^0 \pi\pi$
- Piece'o'cake, right? wrong

Which decays do we want and why?

 K_{S}^{0} (K short, kaons) – leave almost no trace; tend fly a bit and decay into something more visible. Example of 'long lived' particles:

·
$$K^0_{S} \rightarrow \Pi^+ \Pi^-$$
 (69.2%) : most frequent decay

·
$$K^0_{S} \rightarrow 2\pi^0$$
 (30.69%) : almost untraceable

$$K^0_{S} \rightarrow other (\sim 0.11\%)$$
: too rare

Such decays are not interesting per se, but methods developed are quite different from state-of-the-art and can lead to new discoveries (new physics)

Machine learning perspective

 $\{1 - \text{some } K^0_{\ S}, 0 - \text{no } K^0_{\ S}\}$

Metric: ROC

Relevant K⁰_S decays : x, y, z, p_x, p_y, p_z Metric: cross-entroy

Monte-carlo

Idea:

- We cannot explicitly label real world events
- But we want out algorithms to handle them
- . Let's build a stochastic event simulation and train from it
- Than use statistical tests to indirectly estimate classifier performance on real data

State-of-the art approaches

- Template Matching + RANSAC
- Hough transform + track finding
- The Denby-Peterson method
- The Elastic arms method
- Kalman Filter as Local Method

Classification problem

Preprocessing

- Several data types
 - · "hits"/points (e.g. Muon)
 - Tubes (e.g. OT)
 - · Hit pairs (e.g. VELO)
- Variable amount of hits per event
- . Sparse 3D representation

Representing Hits

- An natural solution is to use linear template grid (a.k.a. Retina)
 - · For each track in a grid, compute its activation given hits
 - Activation of each unit is defined as

$$h_{line_{j}} = \sum_{hit_{i}} e^{-dist(hit_{i}, line_{j})^{2}}$$

- · Where dist(hit,line) is a geometric distance, σ is a parameter
- Set of 3D hits \rightarrow 2d `image` [matrix] of fixed size

Representating Hits

- A natural solution is to use linear template grid (a.k.a. Retina) • Grid parameters:
 - anchor point (x_0, y_0, z_0) ,

 - 2 spheric angles (alpha₀,beta₀)
 Lines are distributed uniformly in spheric space within a certain range around reference angles

Practical Implementation

- . Grid size: 32x32 lines per image
- In this study, we use several such representations to extract more information about the event

Practical Implementation

- Prototyping with 3~6 most relevant images
- . 32 images used in the best-scoring model

- Most of them probably irrelevant

Classifier architecture

We've tried a lot of different architectures, below is the best performing one *among small architectures*

- even reinforcement learning (POMDP trick)

https://github.com/yandexdataschool/KSfinder

K⁰_s decay reconstruction

Detection Grid

Detection grid:

- . Idea: throw a bunch of points on target space
 - In our case, target space is decay coordinate space
- . Compute likelihood of each of them being the correct answer
- . (+) Can handle arbitrary amount of targets (decays) per event
- . (+) Can use classification techniques
- . (-) Precision depends on the amount of points:
 - Scales exponentially with problem dimensionality
- . (-) Computationally heavy

random distractive image 19

Representing K⁰_S Vertices

What didn't work:

- Regression setup for coordinates
- . Standard (uniform) detection grid

What does work 'so far'

- . Percentile space detection grid
- . Less complex: 1D quantile-space grids for each axis
 - . Independent grids for x, y, z, Px, Py, Pz

Percentile grid nodes for X/Z decay coordinates

ML K⁰_S Reconstruction

Objective: pointwise binary cross-entropy across the grid

 Cross-domain regularizer H(domain,predicted domain) MC vs real data

ML K⁰_S Reconstruction

- Objective: pointwise binary cross-entropy across the grid
 - L = H(target, prediction)
- Cross-domain regularizer H(domain,predicted domain) MC vs real data

Result Evaluation

• K⁰_S decay maps : reference and prediction Each map corresponds to a single event

Result Evaluation

- A predicted decay is qualified as true prediction of the real decay if it corresponds to the same or neighboring cell in the detection grid.
- A ghost (false alarm) is a predicted maxima with no neighboring true decays

All the metrics are tied to the detection grid bins

Results: K⁰_S Reconstruction

Comparing With Baseline RECO

$$Efficiency = \frac{N(ReconstructedTrueK_s^0)}{N(ReconstructedTrueK_s^0) + N(UnrecognizedTrueK_s^0)}$$

$$FakeRate = \frac{N(Reconstructed FakeK_s^0)}{N(Reconstructed FakeK_s^0) + N(Reconstructed TrueK_s^0)}$$

Efficiency/FakeRate vs Z of the Decay

Instead of conclusion

- New kind of problem(s)
 - decay identification
 - decay reconstruction
- Relatively accurate decay classification
 o can be proxy for the reconstruction
- Minimalistic (baseline) classifier: <u>http://bit.ly/1sh5jxE</u>
- Decay reconstruction(x, y, z, impulse) is still a major challenge
- Toolkit for deep reinforcement learning AgentNet (see next talk)

Thank you!

anaderi@yandex-team.ru

Interpretation

Predicted decays are maxima of the detection gridPrediction likelihoods are the values predicted at the maxima

All the metrics are tied to the detection grid bins 30

Decay reconstruction K⁰_S

• $K^0_{S} \rightarrow \pi + \pi$ - decay frequency *per event*

