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"I THINK IT’D BE COOL IF ONE DAY AN 
AI WAS INVOLVED IN FINDING A NEW 

PARTICLE."

Demis Hassabis
http://bit.ly/1sVqIMF
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Large Hadron Collider and the LHCb

The idea of LHC – accelerate 
particles (e.g. protons) to 
insane speeds and watch 
them collide.

velocity ~10^9 km/h

~10^7 events (collisions) per 
second

We're never low on insane numbers :)
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Particles and decays

 Particles:

●  Protons(p), Kaons(K), Pions(π) others alike
●  Charge: {-1,0,+1}. denoted as π+, π , π- 
●  Life cycle: get born, fly, decay into other stuff.

Decays:

● A nonsuspecting particle flies along, than snap! And you got 
several other particles

● Denoted as  <before> → <after>
● e.g. K → ππ  - Kaon decay into 2 pions
● Bd →  J/ψ K0

S,  J/ψ → μμ, φ→ KK, D*+ → D0 π+, D0 →K0
S ππ

● Piece'o'cake, right? wrong
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Which decays do we want and why?

K0
S  (K short, kaons) – leave almost no trace; tend fly a bit 

and decay into something more visible. Example of 
'long lived' particles:

∙ K0
S → π+ π- (69.2%) : most frequent decay

∙ K0
S → 2π0 (30.69%) : almost untraceable

∙ K0
S → other ( ~0.11%): too rare

Such decays are not interesting per se, but methods 
developed are quite different from state-of-the-art and can lead 
to new discoveries (new physics)



6

K0
S Vertices

● Density of K0
S → π+π-  

Origin

Decay
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Machine learning perspective

∙ Event classification

∙ K0
S decay reconstruction

→

→
Relevant K0

S decays :
 x, y, z, px, py, pz

Metric: cross-entroy

{1 - some K0
S,  0 - no K0

S}

Metric: ROC
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Monte-carlo

Idea:
●  We cannot explicitly label real world events
●  But we want out algorithms to handle them

●  Let’s build a stochastic event simulation and train from it
●  Than use statistical tests to indirectly estimate classifier 

performance on real data
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State-of-the art approaches

● Template Matching + RANSAC

● Hough transform + track finding

● The Denby-Peterson method

● The Elastic arms method

● Kalman Filter as Local Method
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Classification problem

<LHCb> 
detector

preprocessing Classification
some Vs 
no K0

S 
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Preprocessing

● Several data types
∙ “hits”/points (e.g. Muon)
∙ Tubes (e.g. OT)
∙ Hit pairs (e.g. VELO)

● Variable amount of hits
per event

● Sparse 3D representation (mm) (mm)
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Representing Hits

● An natural solution is to use linear template grid (a.k.a. Retina)

∙ For each track in a grid, compute its activation given hits
∙ Activation of each unit is defined as

∙ Where dist(hit,line) is a geometric distance, σ is a parameter

∙ Set of 3D hits → 2d `image` [matrix] of fixed size
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Representating Hits
● A natural solution is to use linear template grid (a.k.a. Retina)

∙ Grid parameters: 
∙ anchor point (x0,y0,z0), 
∙ 2 spheric angles (alpha0,beta0)

∙ Lines are distributed uniformly in spheric space within a 
certain range around reference angles

→

grid j

gr
id

 i
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Practical Implementation

● Grid size: 32x32 lines per image
● In this study, we use several such representations to extract 

more information about the event

→

grid j

gr
id

 i

grid j

gr
id

 i

(mm)

(mm) (mm)

Retina 2
(under HCAL)

Retina 1
(near VELO)
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Practical Implementation

● Prototyping with 3~6 most relevant images
● 32 images used in the best-scoring model

– Most of them probably irrelevant
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Classifier architecture

We've tried a lot of different architectures, below is the best
performing one among small architectures
- even reinforcement learning (POMDP trick)

Retina
images

2x
Conv
(3,3)

Dropout Dense
relevant

vs
irrelevant

2 times

Batch
norm

Max
pool

2 times
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Results: K0
S  Detection

● ROC-curves

https://github.com/yandexdataschool/KSfinder 

https://github.com/yandexdataschool/KSfinder
https://github.com/yandexdataschool/KSfinder


18

K0
S decay reconstruction

LHCb 
detector

preprocessing Reconstruction “Decay maps”

K0
S decays



19

Detection Grid

Detection grid:
● Idea: throw a bunch of points on target space

• In our case, target space is decay coordinate space
● Compute likelihood of each of them being the correct answer
● (+) Can handle arbitrary amount of targets (decays) per event
● (+) Can use classification techniques
● (-) Precision depends on the amount of points:

• Scales exponentially with problem dimensionality
● (-) Computationally heavy

random distractive image
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Representing K0
S Vertices

What didn't work:
● Regression setup for coordinates
● Standard (uniform) detection grid

What does work ‘so far’
● Percentile space detection grid
● Less complex: 1D quantile-space grids for each axis 

● Independent grids for x, y, z, Px, Py, Pz

Percentile grid nodes for X/Z decay coordinates
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ML K0
S Reconstruction

•Objective: pointwise binary cross-entropy across the grid

L = H(target, prediction)

•Cross-domain regularizer H(domain,predicted domain)
MC vs real data

Network architecture, similar to classifier one

Retina
images CNN

momenta
Px,Py,Pz

(logspace) 

Decay maps 
X,Y,Z 

domain
prediction 

Decays
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ML K0
S Reconstruction

•Objective: pointwise binary cross-entropy across the grid

L = H(target, prediction)

•Cross-domain regularizer H(domain,predicted domain)
MC vs real data

Network architecture, similar to classifier one

Retina
images CNN

momenta
Px,Py,Pz

(logspace) 

Decay maps 
X,Y,Z 

domain
prediction 

Decays
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Result Evaluation
● K0

S decay maps : reference and prediction
Each map corresponds to a single event

x
y
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x
y
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x
y
z 

x
y
z 

x
y
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x
y
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y
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y
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Result Evaluation

All the metrics are tied to the detection grid bins

●  A predicted decay is qualified as true prediction of the real 
decay if it corresponds to the same or neighboring cell in the 
detection grid.

●  A ghost (false alarm) is a predicted maxima with no 
neighboring true decays

x
y
z 

x
y
z 

x
y
z 

x
y
z 

Predicted maxima (ghost) Predicted maxima (true)

True 
decay

True 
decay
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Results: K0
S Reconstruction

Overall ROC plots



26

Comparing With Baseline RECO
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Efficiency/FakeRate vs Z of the Decay

Efficiency extends beyond Z=2m
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Instead of conclusion

• New kind of problem(s)
○ decay identification
○ decay reconstruction

• Relatively accurate decay classification
○ can be proxy for the reconstruction

• Minimalistic (baseline) classifier:
 http://bit.ly/1sh5jxE

• Decay reconstruction(x, y, z, impulse) is still a major challenge

• Toolkit for deep reinforcement learning - AgentNet (see next talk)

http://bit.ly/1sh5jxE


Thank you!

anaderi@yandex-team.ru 

mailto:anaderi@yandex-team.ru
mailto:anaderi@yandex-team.ru


30

Interpretation

All the metrics are tied to the detection grid bins

●Predicted decays are maxima of the detection grid
●Prediction likelihoods are the values predicted at the maxima

x
y
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x
y
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Predicted maxima (ghost) Predicted maxima (true)

True 
decay

True 
decay
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Decay reconstruction K0
S 

● K0
S → π+π- decay frequency per event


