

Deep Machine Intelligence and its Applications SkolTech, Moscow, June 4, 2016

# Computer vision in CNN era: New challenges and opportunities

Ivan Laptev *ivan.laptev@inria.fr* WILLOW, INRIA/ENS/CNRS, Paris VisionLabs, Moscow

Joint work with: Maxime Oquab – Piotr Bojanowski – Vadim Kantorov – Rémi Lajugie Jean-Baptiste Alayrac – Leon Bottou – Francis Bach – Minsu Cho Simon Lacoste-Julien – Jean Ponce – Cordelia Schmid – Josef Sivic

# Computer Vision Grand Challenge: Dynamic scene understanding



# Computer Vision Grand Challenge: Dynamic scene understanding

# **Recent Progress: Convolutional Neural Networks**

#### **Object classification**

#### **Face Recognition**

ILSVRC'12: 1.2M images, 1K classes mite leopard motor scooter mite motor scooter leopard jaguar black widow go-kart cockroach moped cheetah tick bumper car snow leopard starfish golfcart Egyptian cat

SIFT + FVs [7]

#### Top 5 error:

26.2%

16.4%

Same Different

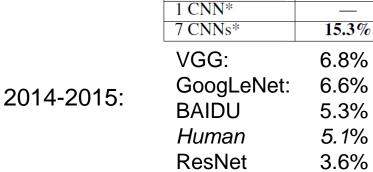
--2013:

2014-2016:

| Accuracy:      |  |  |
|----------------|--|--|
| 87.3%<br>93.0% |  |  |
| 07.00/         |  |  |

DeepFace 97.3% 99.1% 99.2% VisionLabs 99.3% 99.6% FaceNet 99.7%

2012:



1 CNN

5 CNNs



LBP

**FVF** 

VGG

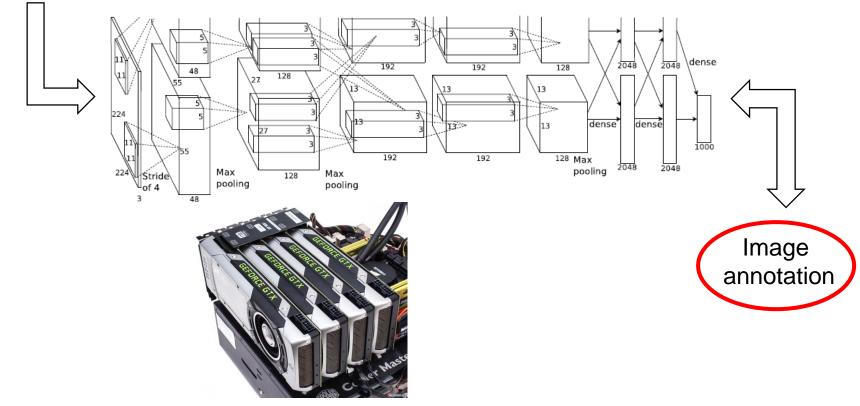
Human

BAIDU

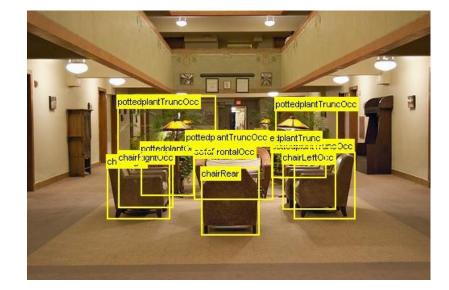
# How does it work?



#### AlexNet [Krizhevsky et al. 2012] ~60M parameters



# **Problems with annotation**



• Expensive



• Ambiguous

Table? Dining table? Desk? ...

## **Problems with annotation** What action class?







## **Problems with annotation** What action class?







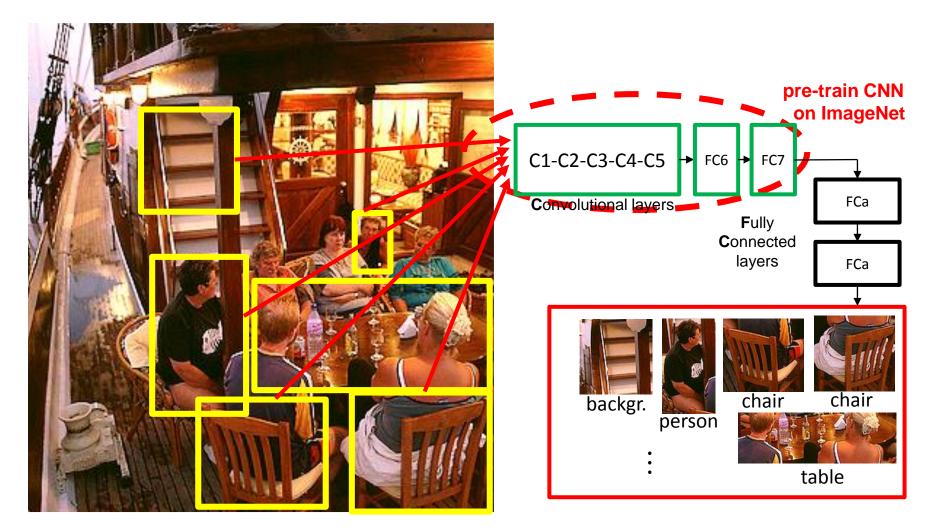
# This talk:

# How to avoid manual annotation?



# Weakly-supervised learning from images and video

# **Train CNNs for object detection**



[Girshick'15], [Girshick et al.'14], [Oquab et al.'14], [Sermanet et al.'13], [Donahue et al. '13], [Zeiler & Fergus '13] ...



Oquab, Bottou, Laptev and Sivic **CVPR 2014** 



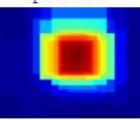
chair

pottedplant

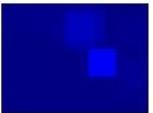
diningtable

sofa

person

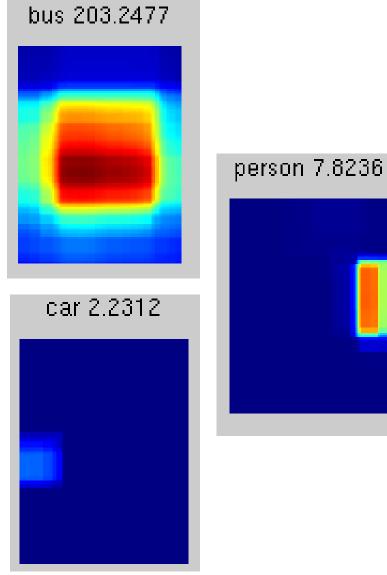


tymonitor



### **Results**





[Oquab, Bottou, Laptev and Sivic, CVPR 2014]

### Are bounding boxes needed for training CNNs?



#### Image-level labels: Bicycle, Person

### Motivation: image-level labels are plentiful



"Beautiful red leaves in a back street of Freiburg"

[Kuznetsova et al., ACL 2013] http://www.cs.stonybrook.edu/~pkuznetsova/imgcaption/captions1K.html

### Motivation: image-level labels are plentiful



#### "Public bikes in Warsaw during night"

https://www.flickr.com/photos/jacek\_kadaj/8776008002/in/photostream/

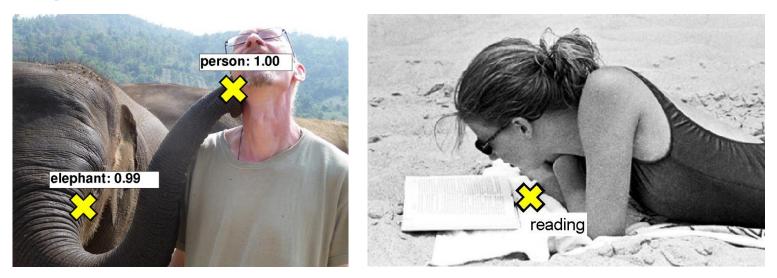


#### **Training input**





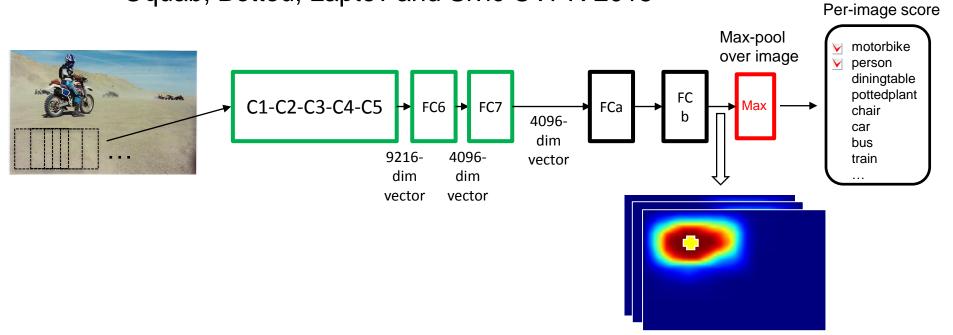
#### **Test output**



#### More details in http://www.di.ens.fr/willow/research/weakcnn/

# Approach: search over object's location at the *training time*

Oquab, Bottou, Laptev and Sivic CVPR 2015



- 1. Fully convolutional network
- 2. Image-level aggregation (max-pool)
- 3. Multi-label loss function (allow multiple objects in image)

See also [Papandreou et al. '15, Sermanet et al. '14, Chaftield et al.'14]

### Training Motorbikes

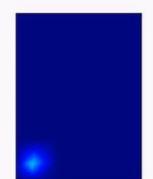
Evolution of localization score maps over training epochs







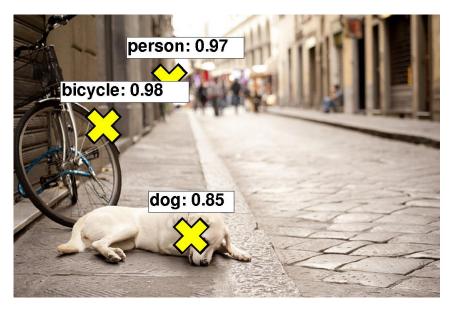


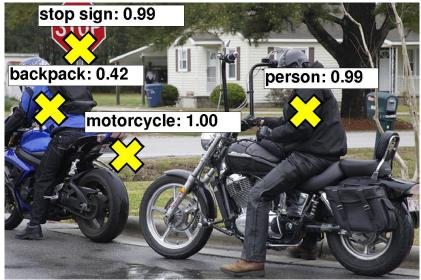


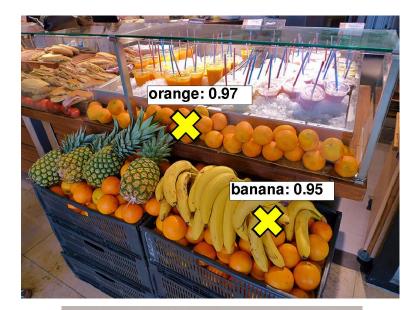


#### motorbike - training iteration 0030

### Test results on 80 classes in Microsoft COCO dataset

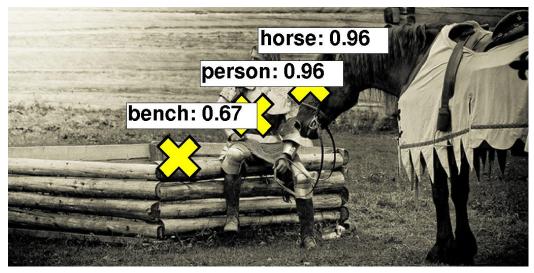


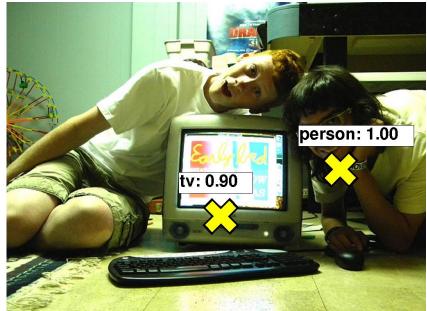


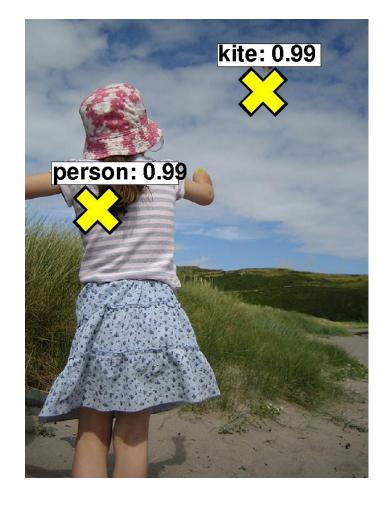




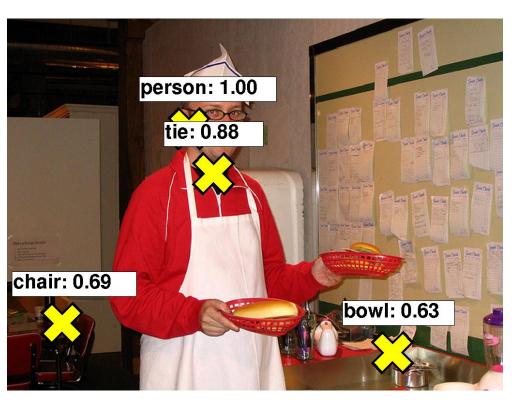
### Test results on 80 classes in Microsoft COCO dataset

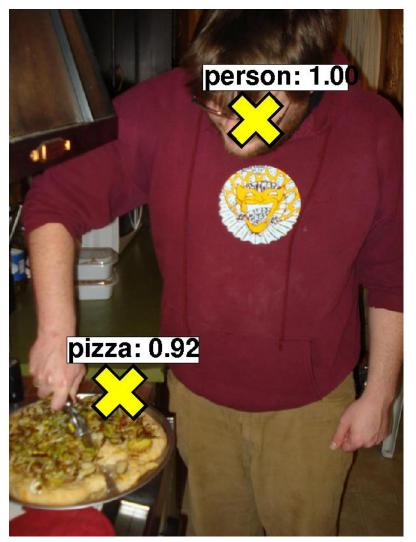






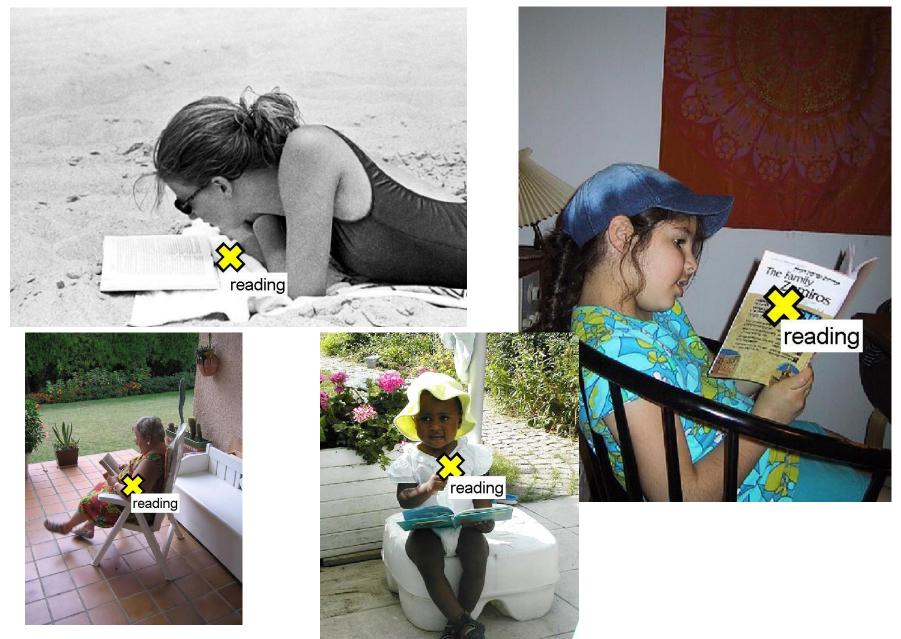
### Test results on 80 classes in Microsoft COCO dataset

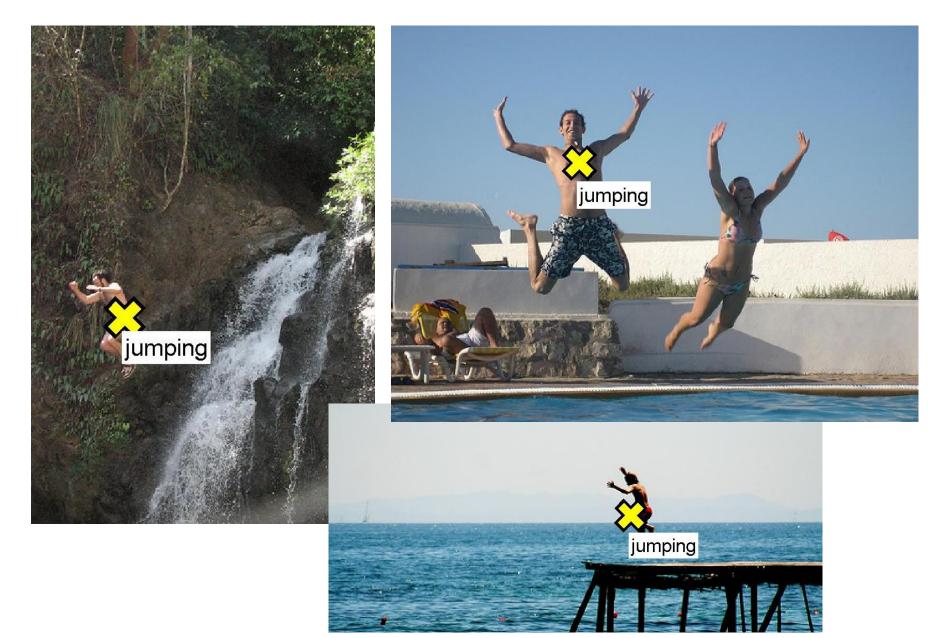




Results for weakly-supervised action recognition in Pascal VOC'12 dataset









# Context-aware deep network models for weakly supervised localization

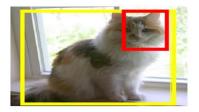
Vadim Kantorov, Maxime Oquab, Minsu Cho, Ivan Laptev

(In submission)

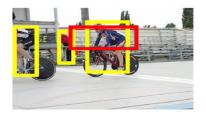




### Problems: shrinking / expansion

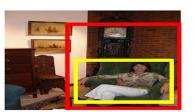


























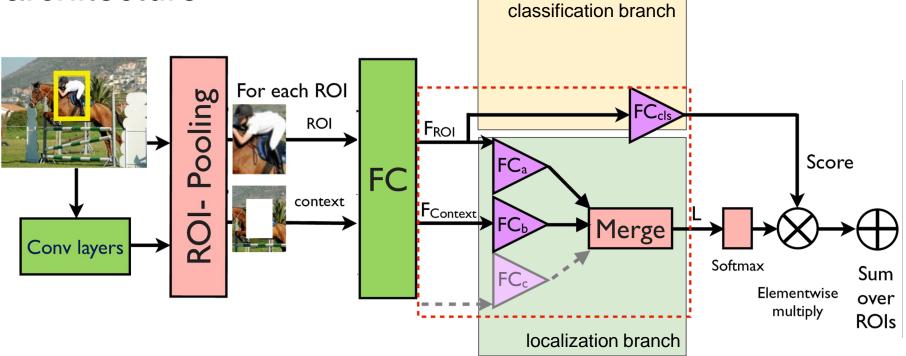






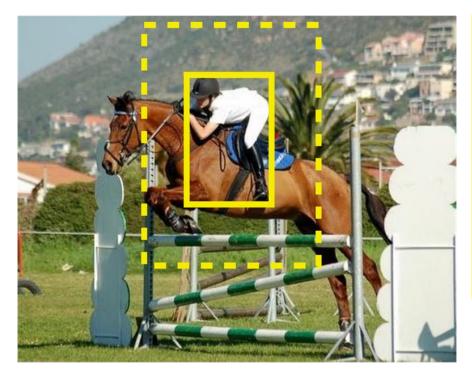
[Bilen et al., Weakly Supervised Deep Detection Networks, CVPR 2016]

# Context-aware architecture



- → We process context around a proposal separately
- → Everything else in the architecture is pretty much like in [Bilen et al]

### **ROI** transforms

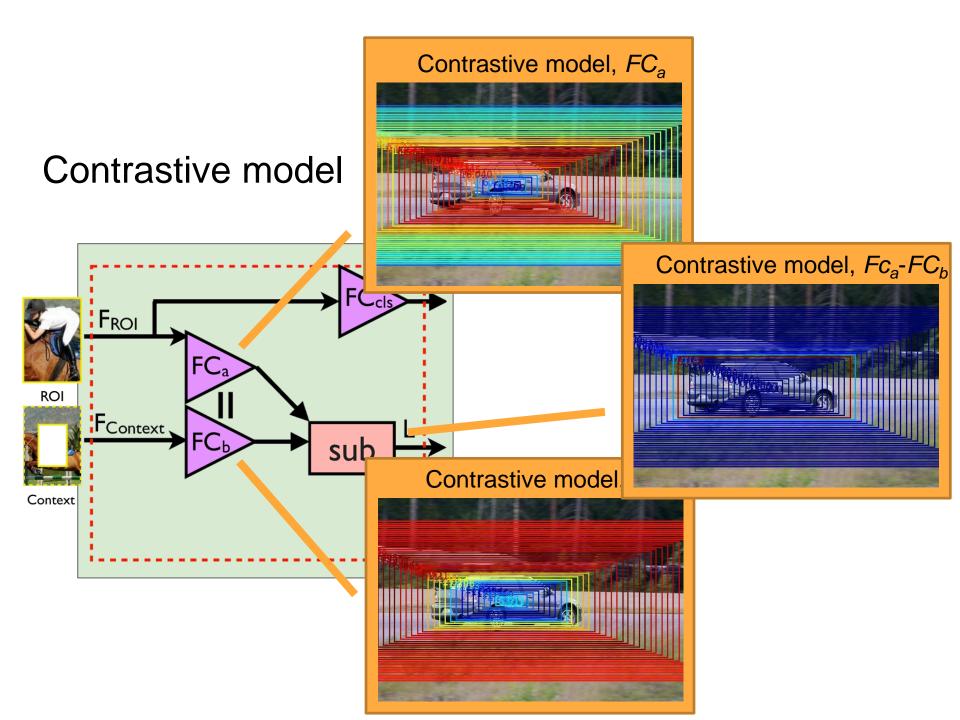






ROI





Results

### PASCAL VOC 2007

|     | Model         | CorLoc                  | mAP          |
|-----|---------------|-------------------------|--------------|
| (a) | additive      | 49.42                   | 31.13        |
| (b) | contrastive A | 50.07                   | 31.94        |
| (c) | contrastive S | <b>52.15</b>            | <b>33.66</b> |
| (d) | our WSDDN-8 6 | 48.09                   | 28.19        |
| (e) | ensemble      | 54.14                   | 34.76        |
| (x) | WSDDN-ens 6   | $51.0 \ \sim 49 \ 48.5$ | 30.6         |
| (y) | WSDDN-8 6     |                         | 28.7         |
| (z) | Wang et al. 1 |                         | 30.9         |

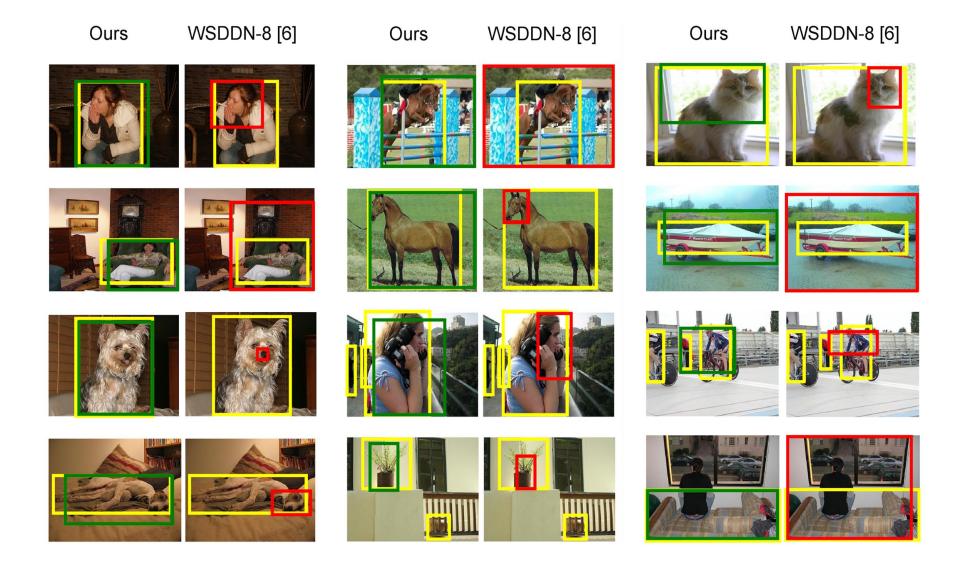
[1] Wang et al., Weakly supervised object localization with latent category learning, ECCV 2014][6] Bilen et al., Weakly Supervised Deep Detection Networks, CVPR 2016]

### PASCAL VOC 2012

| Model                                        | Avg. mAP                                   |
|----------------------------------------------|--------------------------------------------|
| additive contrastive S ensemble $^{\dagger}$ | 58.7 32.6<br>60.6 <b>35.4</b><br>60.7 35.4 |
| WSDDN-8 <sup>*</sup> 1                       | 56.4 31.2                                  |

[1] Bilen et al., Weakly Supervised Deep Detection Networks, CVPR 2016]

### Results



# Weakly-supervised learning of actions *in video* from scripts and narrations

# Intelligent analytics for a large video surveillance systems

The goal of the project is the R&D for creating a software which provides:

- Video stream recognition and indexing
- Information retrieval in large-scale video surveillance systems and image/video storages



This research is supported by the Russian Ministry of Science and Education grant RFMFFI57914X0071

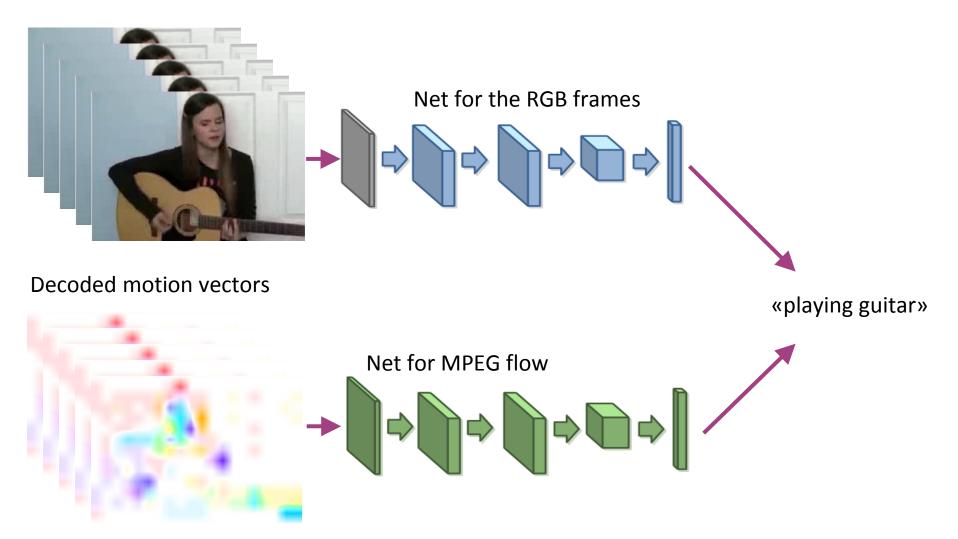
In conjuction with:



Skolkovo Institute of Science and Technology

### **Two-stream neural network**

**RGB** frames



#### Results

#### UCF101 benchmark

101 action classes 13K videos



#### Results

| Method                                   | UCF 101 accuracy | Speed         |
|------------------------------------------|------------------|---------------|
| CNN RGB, Simonyan et al. [1]             | 72.8%            | real-time     |
| CNN RGB + opt. flow, Simonyan et al. [1] | 87.0%            | non real-time |
| C3D RGB, Tran et al. [2]                 | 85.2%            | real-time     |
| Ours CNN RGB + MPEG flow                 | 82.5%            | real-time     |
| Ours C3D RGB + MPEG flow                 | 86.8%            | real-time     |



# How to define actions?

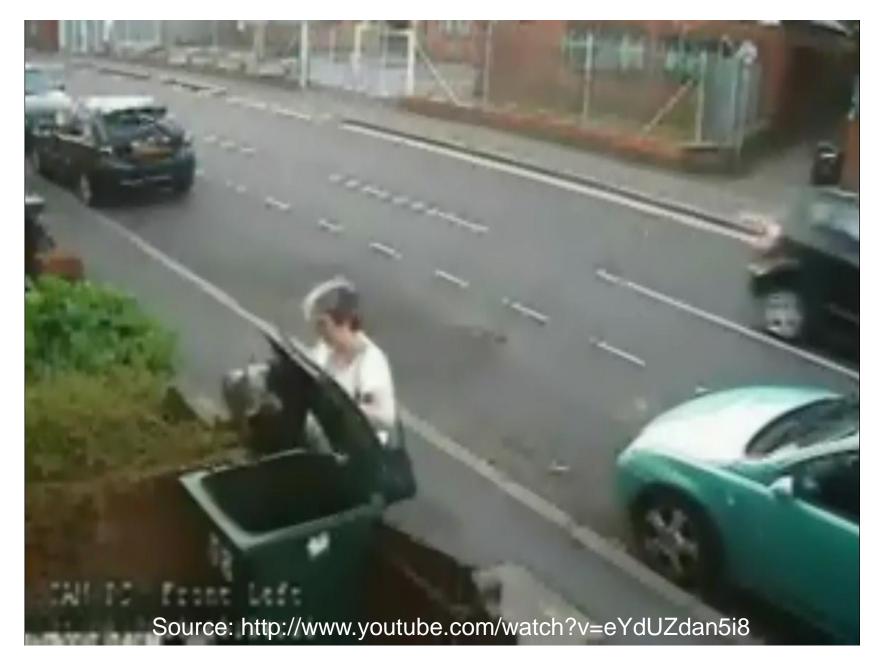
• Is action vocabulary well-defined?

Examples of "Open" action:



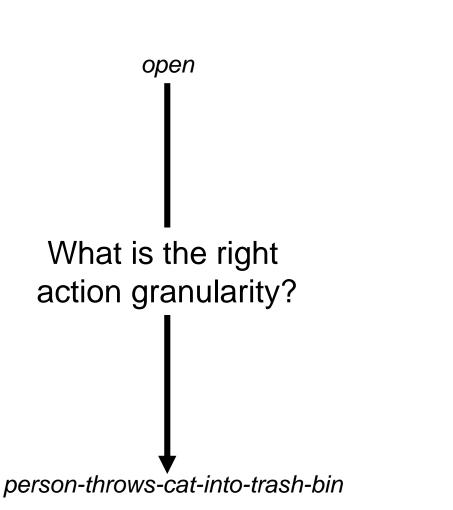
• What granularity of action vocabulary shall we consider?

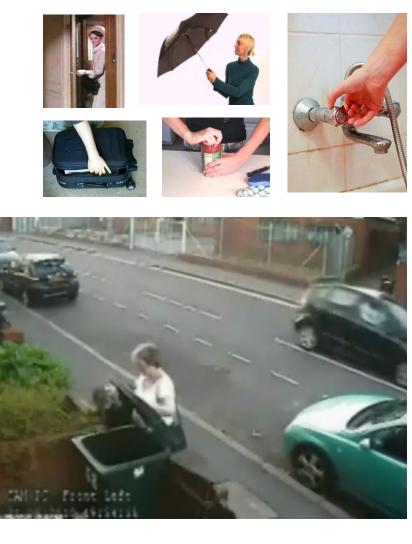




Current solution: learn person-throws-cat-into-trash-bin classifier

# What are action classes?





Less ambiguity if actions are defined in relation to concrete tasks

# Learning from narrated instruction videos

J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev and S. Lacoste-Julien

CVPR 2016

### Goals

Given a set of narrated instruction videos of a task

- Discover main steps
- Learn their visual and linguistic representation
- Temporally localize each step in input videos



"How to" instruction videos: changing tire

### **Motivation**



[Darpa robot challenge]



[Microsoft HoloLens]

Learning from Internet for robotics

Personal assistant

# Why is this difficult?

- Variation in appearance (viewpoint, tools, actions, ...)
- 2. Variation in natural language narration
- 3. Variability in temporal structure of videos

Example Task: Changing car tire



so that you can remove the flat tire.

Sample

 $\sim$ 

Sample

### Changing a car tire

"all the way around before we jack the car. so now what we're gonna..." so that it lifts the car by the frame ..." " Make sure the jack is lifting nice and square ... \* At this stage

the car is being raised to a safe heigth ... " "we can

jack the car up ....





"placing the replacement wheel on ..." "The wheel is then removed and replaced with the spare wheel ... " your spare tire is now ready to install ... Line up the Spare and ligt it to place ... " "make sure you DUt the new tire on the ....

"Then tighten down each nut with the tire iron..." "Tight one nut a few turns and then do one opposite until each lug nut." "Just tighten these UD now ... " "finally SCI'EW the wheel tight ... " give them that final tight...





"all the way around before we jack the car. so now what we're gonna..." " so that it liftS the car by the frame ..." " Make sure the jack is lifting nice and square ... " "At this stage

the car is being raised to a safe heigth ... " "we can

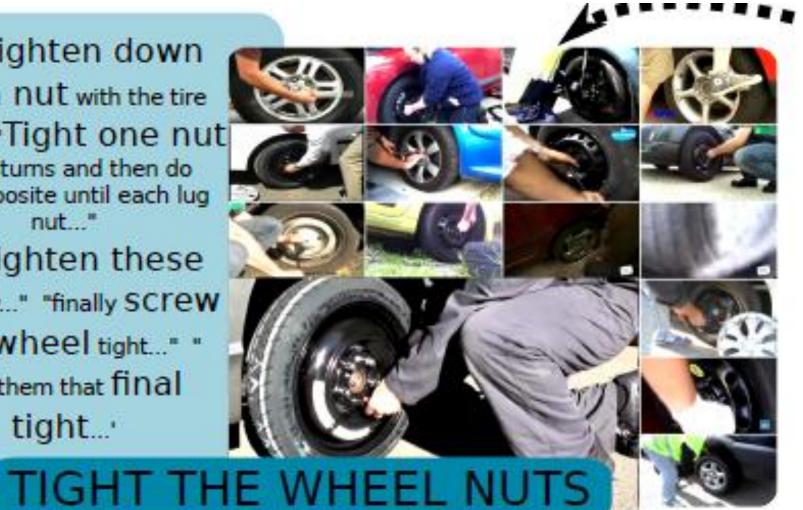
jack the car up .....



"placing the replacement Wheel on ..." "The wheel is then removed and replaced with the spare wheel..." " your spare tire is now ready to install..." "Line up the Spare and ligt it to place..." "make sure you put the new tire on the..."



"Then tighten down each nut with the tire iron..." "Tight one nut a few turns and then do one opposite until each lug nut " "Just tighten these UD now ... " "finally SCI'EW the wheel tight ... " " give them that final tight....



#### FILL WATER

"you put in water..." " you wouldn't put water more than above this valve..." "They say to fill it up to that line... -fill the bottom part up with water up"





"we have the moka pot reassembled..." "just grab it and you twist the top on..." "just SCrew it together" "Make it tight...." "Screw the top on and set it on the stove"

# Make coffee

"we're gonna SEE that the coffee is beginning to COME OUL..." "now here's a sneak peek..." "know that it is sucking the coffee up..." "when you See this you want to tum off the heat..." "after the Coffee comes out it starts..."





#### **REMOVE PLANT**

"the next step is to take the plant out of the pot ..." "I'm going to remove my plant from its old pot..." "remove it from its beginning container..."



LOOSEN ROOTS

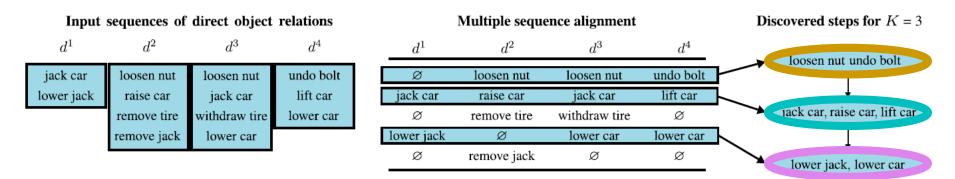
"make sure there aren't any roots..." "you need to tease them out.." "sometimes you just want to CUt the roots..." "loosen the old soil away from the roots..."

Repoting a plant

"give the plant a drink d water..." "the next step is going to be Watering..." " we are gonna put Water in here ..." " if you don't Water the plant, you will ge air pockets in the soil..."

# Approach: two linked clustering problems

#### 1. Text clustering into a sequence of common steps

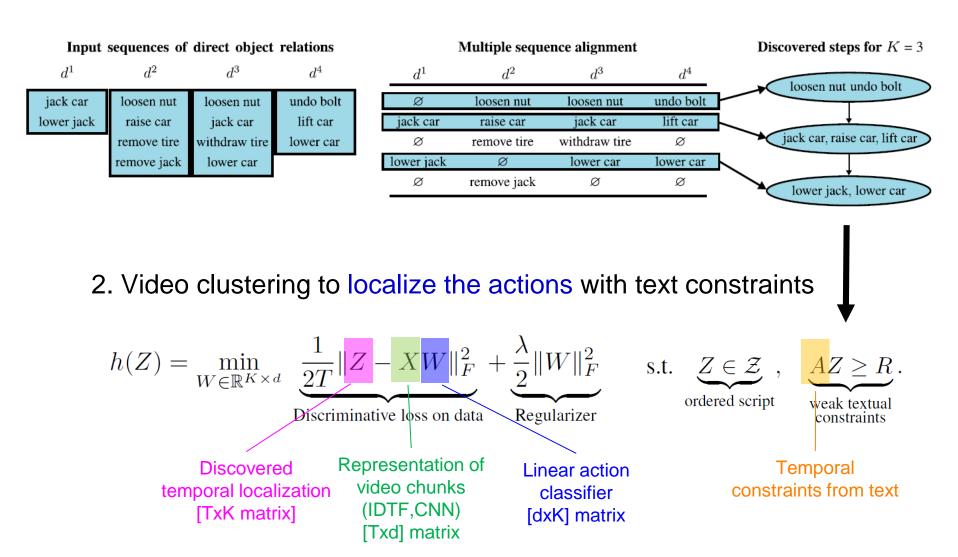


2. Video clustering to localize the actions with text constraints



# Approach: two linked clustering problems

#### 1. Text clustering into a sequence of common steps



[Bach and Harchaoui'08, Xu et al.'04, Bojanowski et al.'13,'14,'15]

# Changing a tire K = 5

# **Future challenges**

# **Future challenges**





tention of this person?