
Tensors and deep architectures

I. V. Oseledets,
Skolkovo Institute of Science and Technology, Moscow, Russia

5 June 2016

Question

What is the connection between tensor decompositions and deep
neural networks?

Disclaimer

There are no tensors (yet!) it TensorFlow.

There is a plan to fix it :)

What is a tensor

A tensor is a d-way array

𝐴(𝑖1, … , 𝑖𝑑)
and it can be huge: it is described on 𝒪(𝑛𝑑) parameters,

Which can not be stored for even medium 𝑛 and 𝑑.

Thus, compression is needed

Loss surfaces of multilayer networks

In the paper Choromanska et. al (2014), The loss surfaces of
multilayer networks, arxiv:1412.0233

A connection between DNN and spin-glass models was established.

Spin-glass

Functional to be minimized:

𝑌 = 𝑞𝜎 (𝑊 ⊤
𝐻𝜎 (𝑊 ⊤

𝐻−1 … 𝜎 (𝑊 ⊤
1 𝑋)) …) .

▶ Consider ReLU activation
▶ Assume randomness of 𝑋

Spin-glass

Functional to be minimized:

𝑌 = 𝑞𝜎 (𝑊 ⊤
𝐻𝜎 (𝑊 ⊤

𝐻−1 … 𝜎 (𝑊 ⊤
1 𝑋)) …) .

▶ Consider ReLU activation
▶ Assume randomness of 𝑋

Then, the loss surface with respect to weights can be
approximated as

Spin-glass

ℒ(𝑤) = 𝐶 ∑
𝑖1,…,𝑖𝐻

𝑋𝑖1,…,𝑖𝐻
𝑤𝑖1

… 𝑤𝑖𝐻
.

This is a polylinear loss function typical in tensor decompositions
(it corresponds to best rank-𝑟 approximation).

The optimization is non-convex, but has a lot of structure.

Exponential machines

Of the ideas how it can be used was recently proposed in Novikov,
Trofimov, Oseledets, Tensor Train polynomial models via

Riemannian optimization, arxiv:1605.03795

3-dim example:

̂𝑦(⃗𝑥) = 𝒲000 + 𝒲100 𝑥1 + 𝒲010 𝑥2 + 𝒲001𝑥3
+ 𝒲110 𝑥1𝑥2 + 𝒲101 𝑥1𝑥3 + 𝒲011 𝑥2𝑥3
+ 𝒲111 𝑥1𝑥2𝑥3.

(1)

Exponential machines: general form

̂𝑦(⃗𝑥) =
1

∑
𝑖1=0

…
1

∑
𝑖𝑑=0

𝒲𝑖1…𝑖𝑑

𝑑
∏
𝑘=1

𝑥𝑖𝑘
𝑘 . (2)

The regression will be parametrizes by a tensor with 2𝑑 entries,

which will obviously overfit if no structure is assumed.

Generalized tensor

Convolutional Rectifier Networks as Generalized Tensor
Decompositions, arxiv: 1603.00162, Choen-Shashua.

Statement: A score generated by as shallow ConvNet is given as

𝐴(ℎ𝑆
𝑦) =

𝑍
∑
𝑠=1

𝑎𝑦
𝑧(𝐹𝑎𝑧,1) ⊗ … ⊗ (𝐹𝑎𝑧,𝑁),

where

𝒜(ℎ𝑦)𝑑1,…,𝑑𝑁
= ℎ𝑦(𝑥(𝑑1), … , 𝑥(𝑑𝑁)).

It basically encoded the function of 𝑁 variables.

Classical tensor decomposition

The classical tensor decomposition is the CP (canonical polyadic)
decomposition of the form

𝐴(𝑖1, … , 𝑖𝑑) ≈
𝑟

∑
𝛼=1

𝑈1(𝑖1, 𝛼) … 𝑈𝑑(𝑖𝑑, 𝛼),

and for 𝑑 = 2 it boils down to rank-𝑟 approximation, which can
be done by the SVD.

Classical tensor decomposition

The classical tensor decomposition is the CP (canonical polyadic)
decomposition of the form

𝐴(𝑖1, … , 𝑖𝑑) ≈
𝑟

∑
𝛼=1

𝑈1(𝑖1, 𝛼) … 𝑈𝑑(𝑖𝑑, 𝛼),

and for 𝑑 = 2 it boils down to rank-𝑟 approximation, which can
be done by the SVD.

The loss surface of the CP can be better than the loss surface of
backpropagation (see papers by Anima Anandkumar), but still

there can be huge problems!

Problems with CP decomposition

▶ Best approximation may not exist
▶ Thus, swap convergence of the algorithms or convergence to

the local minima.

Tensor train decomposition

These problems are solved with another polylinear model, named
tensor train (TT) decomposition (Oseledets, 2009), also known as

matrix product states for more than 50 years in physics.

𝐴(𝑖1, … , 𝑖𝑑) ≈ 𝐺1(𝑖1) … 𝐺𝑑(𝑖𝑑),
where 𝐺𝑘(𝑖𝑘) is a matrix of size 𝑟𝑘−1 × 𝑟𝑘 for any fixed 𝑖𝑘,

and 𝑟0 = 𝑟𝑑 = 1.

TT-decomposition

𝐴(𝑖1, … , 𝑖𝑑) ≈ 𝐺1(𝑖1) … 𝐺𝑑(𝑖𝑑),
It has the properties of multilinear SVD (similar algorithms, low

complexity if the TT-ranks are small).

▶ It defines a manifold in a 𝑑-dim space
▶ It is easy to optimize over such manifold in the framework of

Riemannian optimization, and the algorithms converge very
well (still under investigation).

Tensor-train: basic facts

We can do a lot in the TT-format
▶ Computation of the quasi-optimal approximation by TT-SVD
▶ Optimal recovery from sampling (TT-cross approximation)
▶ There is an open-source software for working with tensors in

the TT-format (TT-Toolbox).

Optimization over TT-manifolds

A simple approach is alternating least squares.

Update one 𝐺𝑘 at a time, since it is polylinear, the optimization is
cheap.

For non-quadratic optimizations, Riemannian optimization is a
method of choice.

Riemannian optimization: problem setting

Illustrate for 𝑑 = 2, matrices of rank-𝑟:

𝑋 = 𝑈𝑆𝑉 ⊤,
where 𝑈 and 𝑉 have 𝑟 orthonormal columns, 𝑆 is 𝑟 × 𝑟.

We need to minimize

𝐹(𝑋) → min, 𝑋 ∈ ℳ𝑟.

Riemannian optimization(2)

𝐹(𝑋) → min, 𝑋 ∈ ℳ𝑟.
where

𝑋 = 𝑈𝑆𝑉 ⊤.
We can differentiate with respect to 𝑈 , 𝑆 and 𝑉 by it is not a

good idea, because it is overparametrized:

𝑈𝑉 ⊤ = 𝑈ΦΦ−1𝑉 ⊤

for any Φ.

Riemannian optimization (3)

Instead, we make a step in 𝑋:

𝑌𝑘+1 = 𝑋𝑘 + 𝛼∇𝐹(𝑋𝑘),
and project it onto the tangent space:

𝑋𝑘+1 = 𝑃𝒯(𝑌𝑘+1).
We are not yet on the manifold, so we need to do retraction onto

the manifold,

𝑋𝑘+1 = 𝑅(𝑋𝑘 + 𝛼𝑃𝒯(∇𝐹(𝑋𝑘).

Using Riemannian optimization

It all applies with technical changes to TT-format (but not to the
CP-format).

It has been applied:
▶ Matrix completion
▶ Exponential machines
▶ Several papers on NIPS/ICML use it.

Exponential machines: results

̂𝑦(⃗𝑥) =
1

∑
𝑖1=0

…
1

∑
𝑖𝑑=0

𝒲𝑖1…𝑖𝑑

𝑑
∏
𝑘=1

𝑥𝑖𝑘
𝑘 . (3)

Here we introduce a TT-regularization: the weight tensor 𝒲 is
restricted to the case of rank-𝑟 tensors and updated via stochastic

Riemannian approach.

Results (synthetic data with high-order interaction)

https://github.com/bihaqo/exp-machines

Method Test AUC Training
time (s)

Inference
time (s)

Log. reg. 0.50 ± 0.0 0.4 0.0
RF 0.55 ± 0.0 21.4 1.3
SVM RBF 0.50 ± 0.0 2262.6 1076.1
SVM poly. 2 0.50 ± 0.0 1152.6 852.0
SVM poly. 6 0.56 ± 0.0 4090.9 754.8
2-nd order FM 0.50 ± 0.0 638.2 0.1
6-th order FM 0.57 ± 0.05 1412.0 0.2
ExM rank 2 0.54 ± 0.05 198.4 0.1
ExM rank 4 0.69 ± 0.02 443.0 0.1

https://github.com/bihaqo/exp-machines

Example of tensors in DNN

One of the main applications is the layer compression

Many layers of a DNN are in fact contractions with 3D, 4D, …
tensors.

Compression of a conv. layer

Speeding up convolutional neural network using fine-tuned
CP-decomposition, Lebedev et. al., ICLR 2015.

In a generalized convolution the kernel tensor is 4D
(𝑑 × 𝑑 × 𝑆 × 𝑇) (spatial, input, output).

If we construct rank-𝑅 CP-decomposition, that amounts to having
two layers of smaller total complexity, than the full layer.

The idea: use TensorLab (best MATLAB code for
CP-decomposition) to initialize these two layers, and then fine-tune

Result: 8.5x speedup with 1% accuracy drop.

TensorNet

Novikov et. al, NIPS 2015: use TT-structured layer instead of a
dense layer.

Gives a huge compression!

Tensor networks

Tensor-train is a special case of linear tensor network:

𝐴(𝑖1, … , 𝑖𝑑) ≈ ∑
𝛼1,…,𝛼𝑑−1

𝐺1(𝑖1, 𝛼1)𝐺2(𝛼1, 𝑖2, 𝛼2) … 𝐺𝑑(𝛼𝑑−1, 𝑖𝑑)

In general, there is a graph, where vertices correspond to original
indices, and edges - to the summation indices (similar to MRF).

If the graph has loops, than we have problems

Although, in particular cases we can still optimize

Algorithms for tensor networks

In physics, the algorithm for the optimization of tensor networks
are based on the so-called renormalization group.

The idea is to do local optimization while fixing the environment.

It might be the alternative/enhancement of backpropagation.

Future work

▶ Tensors are very efficient for PDEs/integral equations
▶ DNN are not (not many people are working in this area), and

if we can put tensors on TensorFlow there can be a huge
breakthough in modelling.

Conclusions

▶ Tensor factorizations as compression tools are already there
▶ Allow for efficient optimizations with few iterations
▶ Framework of Riemannian optimization is great

Links

▶ oseledets.github.io – group webpage
▶ i.oseledets@skoltech.ru – email
▶ http://github.com/oseledets – projects

