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Watershed moment

Bell: telephone

1876

Tesla: multi-phase AC

1888 Both started as natural monopolies

Both provided a single commodity

Both grew rapidly through two WWs 1980-90s

1980-90s

Deregulation

started

Deregulation

started

Power network will undergo similar architectural

transformation that phone network went through

in the last two decades

IoT

1969:

DARPAnet

Internet
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12.5

Inflection
point

Source: Cisco 
IBSG, 2011

50 Billion

smart devices

Adoption 5x faster

than electricity, telephony



Challenges & opportunities

Industries will be destroyed and created 
AT&T, MCI, McCaw Cellular, Qualcom

Google, Facebook, Twitter, Amazon, eBay, Netflix

Infrastructure will be reshaped
Centralized intelligence, vertically optimized

Distributed intelligence, layered architecture

What will drive power network transformation ?



Advances in power electronics

Deployment of sensing, control, comm

Four drivers

Proliferation of renewables

Electrification of transportation
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Outline

Big picture
 Energy stats and trends

Challenges and opportunities
 Implications on smart grid

Sample Caltech research
 Control and optimization

 Power flow and dynamics



World energy stats (2011)
Consumption 519 quad BTU

petroleum 34%

coal 29%

gas 23%

renewable (elec) 8%

nuclear 5%

Consumption 519 (quad BTU) per capita (mil BTU)

China 20% 78

US 19% 313

Russia 6% 209

India 5% 20

Japan 4% 164

total 54%

top 5

countries

Source: EIA



World energy stats (2011)

Consumption 519 (quad BTU) CO2 emission

China 20% 27%

US 19% 17%

Russia 6% 5%

India 5% 5%

Japan 4% 4%

total 54% 58%

top 5

countries

Consumption 519 quad BTU

petroleum 34%

coal 29%

gas 23%

renewable (elec) 8%

nuclear 5%

Source: EIA



quadrillion BTU

8%

US Primary Energy Flow 2014 

Source: EIA March 2015

Monthly Energy Review



U.S. Electricity Flow, 2014
(Quadrillion Btu)

1 Blast furnace gas and other manufactured  and waste gases derived from fossil fuels.
2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies,

and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived
fuels).

3 Electric energy used in the operation of power plants.
4 Transmission and distribution losses  (electricity losses that occur between the  point of

generation and delivery to the customer).
5 Data collection frame differences and nonsampling err or.
6 Use of electricity that is 1) self-generated, 2) produced by either the same entity that

consumes the power or an affiliate, and 3) used in direct support of a service or industrial

process located within the same facility or group of facilities that house the generating equip-
ment.  Direct use is exclusive of station use.  

Notes:  •  Data are preliminary.  •  See Note 1, “Electrical System Energy Losses,” at the
end of EIA, Monthly Energy Review (March 2015), Section 2.  •  Net generation of electricity
includes pumped storage facility production minus energy used for pumping.  •  Values are
derived from source data prior to rounding for publication.  •  Totals may not equal sum of
components due to independent rounding.

Sources: U.S. Energy Information Administration, Monthly Energy Review (March 2015),
Tables 7.1, 7.2a, 7.3a, 7.6, and A6; and EIA, Form EIA-923, "Power Plant Operations
Report."

US electricity flow 2014

Source: EIA March 2015

Monthly Energy Review

Conversion loss: 

63%

quadrillion Btu

Plant use: 2%

T&D losses: 2.4%

Gross gen: 

37%

Nuclear: 21%

Renewable: 13%

US total energy use: 98.3 quads

For electricity gen: 39%

Fossil : 65%

End use: 

33%



Sustainability challenge

US CO2 emission

 Elect generation: 40%

 Transportation: 20%

Electricity generation 1971-2007

1973: 

6,100 TWh

2007: 

19,800 

TWh

Sources: International Energy Agency, 2009

DoE, Smart Grid Intro, 2008

In 2009, 1.5B people

have no electricity

DoE:

Smart Grid Intro 2008



US electricity use

total

commercial industrial

residential

4 trillion kWh

2

Source: 
US EIA

2013 (billion kWh)



Source: 
US EIA

US electricity use

total

commercial industrial

residential

4 trillion kWh

2

2013 (billion kWh)



US dirty supply
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Source: US EIA

US renewable generations

750 billion kWh

500

250

hydro

wind

nuclear

solar

0%

2%

4%

6%

8%

10%

12%

hydro

wind

solar

Bernstein Research 2014 



Source: Deutsche Bank 2014

2014 forecast savings in 2016 from 1 kWh of solar
• solar has reached grid parity in 10 states in 2013



Technical potential of renewable sources

Source: Tsao, 

Lewis, Crattree, 2006

solar can supply

total world 

energy demand



Area to power the world by solar
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Power system overview

2/66



High Levels of Wind and Solar PV Will 

Present an Operating Challenge!

Source: Rosa Yang, EPRI

Renewables  uncertainty



Source: Leon Roose, University of Hawaii

Development & demo of smart grid inverters for high-penetration PV applications

 Solar Forum 2013 High 

Penetration 
F e b  1 3 - 1 4 ,  S a n  D i e g o ,  C A  17 

Initial Research Findings & Hypotheses 

68 meters (residential) 

Sept 2012 (23 days) 

240 volts 

+-5% min-228/max-252 

Hourly by meter # 

A few “high” meters 

Larger # of low meters 

 

Hourly Voltage Overview1 

1. Data collected over 23 days at 15 minute intervals from SSN Smart Meters in Maui, showing Voltage &  Load information Voltage violations are frequent



 Solar Forum 2013 High 

Penetration 
F e b  1 3 - 1 4 ,  S a n  D i e g o ,  C A  17 

Initial Research Findings & Hypotheses 

68 meters (residential) 

Sept 2012 (23 days) 

240 volts 

+-5% min-228/max-252 

Hourly by meter # 

A few “high” meters 

Larger # of low meters 

 

Hourly Voltage Overview1 

1. Data collected over 23 days at 15 minute intervals from SSN Smart Meters in Maui, showing Voltage &  Load information 

Source: Leon Roose, University of Hawaii

Development & demo of smart grid inverters for high-penetration PV applications

“Energiewende”



Global trends

1 Proliferation of renewables
 Driven by sustainability

 Enabled by policy and investment

2 Migration to distributed arch
 2-3x generation efficiency

 Relief demand on grid capacity



Global trends

1 Proliferation of renewables
 Driven by sustainability

 Enabled by policy and investment

2 Migration to distributed arch
 2-3x generation efficiency

 Relief demand on grid capacity

3 Rise of Internet of Things (IoT)
 5x adoption rate of electricity & phone

 Impact on industry and residential



network of 

billions of active

distributed energy 

resources (DERs)

DER: PV, wind tb, EV, storage, smart bldg / appl

Solar power over land: 

> 20x world energy demand



Risk: active DERs introduce rapid random

fluctuations in supply, demand, power quality

increasing risk of blackouts

Opportunity: active DERs enables realtime

dynamic network-wide feedback control,

improving robustness, security, efficiency

Caltech research: distributed control of networked DERs  

• Foundational  theory, practical algorithms, concrete 

applications

• Integrate engineering and economics

• Active collaboration with industry



Implications

Current control paradigm works well today
 Centralized, open-loop, human-in-loop, worst-case 

preventive

 Low uncertainty, few active assets to control

 Schedule supplies to match loads

Future needs
 Closing the loop, e.g. real-time DR, Volt/VAR 

control, EV/storage mgt

 Fast computation to cope with rapid, random, 
large fluctuations in supply, demand, voltage, freq

 Simple algorithms to scale to large networks of 
active DERs



ligence

everywhere

connected



Recap

Global energy demand will continue to grow

Traditional supply is unsustainable

There is more renewable energy than the world ever 
needs

 Someone will figure out how to capture and store it

There will be connected intelligence everywhere

 Cost of computing, storage, communication and 
manufacturing will continue to drop

 Power system will transform into the largest and 
most complex Internet of Things 

 Generation, transmission, distribution, consumption, 
storage



Recap

To develop technologies that will enable and guide 
the historic transformation of our power system

 Generation, transmission, distribution, consumption, 
storage

 Devices, systems, theory, algorithms

 Control, optimization, stochastics, data, economics



Key technical challenges

Large scale
 Distributed algorithms

Uncertainty
 Risk-limiting approach

Multiple timescales
 Decomposition

Nonconvexity
 Convex relaxations



Large scale 

Example: Southern California Edison
 4-5 million customers

SCE Rossi feeder circuit
 #houses: 1,407;  #commercial/industrial: 131

 #transformers: 422

 #lines: 2,064 (multiphase, inc. transfomers)

 peak load: 3 – 6 MW

 #optimization variables: 50,000

SCE has 4,500 feeders
 ~100M variables

United States
 131M customers, 300K miles of transmission & distr

lines, 3,100 utilities



Uncertainty

Loss of 2 nuclear plants in ERCOT Kirby 2003 [ORNL/TM-2003/19]

(<1 min)

(10 min)

this can be very

expensive as

uncertainty grows

Uncertainty creates difficulty in both control and markets



Uncertainty

Real-time price can be more than 100x the average price !

Sean Meyn, 2010



Multiple timescale

Sean Meyn, 2010

System dynamics and controls at different timescales

• require different models

• they interact



Nonconvexity
Multiple solutions

11/66

Ian Hiskens, Michigan
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sec min hour day year

voltage
regulation

freq control

Caltech research

volt/var

EV charging

storage

datacenter

demand
response

control

and

optimization

economics

and 

regulations

DER
adoption

market
power

OPF

6+ faculty

infrastruc
ture



optimal power flow



theory 

Convex relaxation of OPF: 
Theoretical foundation for semi-

definite relaxations of power flow 
 

Distributed Control of Networked DER 
an              GENI project  

theory models & simulations 

demo & tech-2-market algorithms 

Caltech: Profs Chandy, Doyle, Low (PI); Drs. Bunn, Mallada; Students: 
Agarwal, Cai, Chen, Farivar, Gan, Guo, Matni, Peng, Ren,Tang, You, Zhao 

SCE: Auld, Castaneda, Clarke, Gooding, Montoya, Shah, Sherick (PI) 

Newport/Caltech: DeMartini (advisor) 

Alumni: Bose (Cornell), Chen (Colorado), Collins (USC), Gayme (JHU), 

Lavaei (Columbia), Li (Harvard), Topcu (UPenn), Xu (SUTD) 

algorithms models simulations 

Exact relaxations: Sufficient 
conditions for recovering global 

optimum of OPF from relaxations 

min
V

   tr CVV *( )

s. t.   s j £ tr Y j
*VV *( ) £ s j,   v j £ Vj

2

£ v j

Realistic simulations 
• SCE feeder model, 2,000 buses 

• DER: inverters, HVAC, pool 

pumps, EV 

• Multiphase unbalanced radial  

Relaxation algorithms:  
• single-phase balanced, multiphase 

unbalanced 

• centralized, distributed 

applications and T2M 

!!
• Increase(asset(u+liza+on(and(efficiency(

• Improve(power(quality(and(stability(

• Move(data:in:mo+on(analy+cs(to(edge(

V

SDP relaxation quadratic in V 

linear in W ! 

OPF:  

min
W

   tr CW( )

s. t.   s j £ tr Y j
*W( ) £ s j,   V j £Wjj £Vj

         W ³ 0,     rank W = 1 ignore this (only) 

nonconvex constr 

V

W Wc(G ) WG

WG

+

SOCP relaxation 

• coarsest superset 

• min # variables 

• fastest 

W
+

SDP relaxation 

• tightest superset 

• max # variables 

• slowest  

Wc(G )

+

Chordal relaxation 

• equivalent superset 

• much faster for  

     sparse networks 

relaxation 

radial 

25

(a) (b)

Fig. 4: Projections of feasible regions on p1− p2 space for 3-bussystem in (3).

P1

P
2
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+
2 )
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+
1 )

h1(F1) = h1(F2)

Fig. 5: Zoomed in Pareto fronts of the3-buscase in p1− p2 space.

B. IEEE benchmark systems

For IEEE benchmark systems [35], [42], wesolveR1, R2 and Rch in MATLAB using CVX

[43] with the solver SeDuMi [44]. The objective values and running times are presented in

Table II. As in Theorem 1, the problems R1 and Rch have the same objective function value,

i.e., r⇤1 = r⇤ch. However, the optimal objective value of R2 is lower, i.e., r⇤2 < r⇤1. For IEEE

benchmark systems, note that R1 and Rch are exact [14]–[16], while R2 is not. As evidenced

by the running times in Table II, Rch is much faster than R1. The chordal extension of the

May 31, 2013 DRAFT

feasible sets: 

• SOCP 

• SDP 

• SOCP 

exact 

recovery 

Increased&
electricity&rates&

volt/var control with renewables 

• SCE circuits, DER forecasts 

• advanced OPF solver 

DER adoption model & software 
• Sophisticated feedback model  

• Cloud service for PV-uptake: 

http://etechuptake.appspot.com/ 

optimized 

baseline 

Lead: Prof Mushkin 
Undergrads: Chang, Li,  

Yap, Zhou 

9 EAN Proprietary & Confidential – Do Not Copy 

EAN Optimal Power Flow 

HAN PV EV 

EAN 

Cloud, IoT Foundry 

EAN 

Edge 

EAN 

Edge 

EAN 

Edge 

DER / DR 

Microgrid 

SB 
(RF mesh, PLC 

Zigbee, …) 

T / D 

Power Grid 

NB 
(3G, 4G, LTE) 

• EAN analytics, optimization 
Caltech OPF Algorithm  

Optimal DER placement 

P2V microgrid virtualization, analytics 

ISO sensitivity to peak loads 

Asset optimization 

• EAN enabled control 
Frequency Control 

DER co-optimization 

Real time optimization 
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• EAN analytics and optimization 

       DER placement, asset opt, analytics 

• EAN enabled control 
         DER co-optimization, frequency reg 

Contact: Michael Enescu, co-founder CEO, enescu@alumni.caltech.edu 

 
 

 

 
Energy Adaptive Networks Corp 



Optimal power flow (OPF)

OPF is solved routinely for

 network control & optimization decisions

 market operations & pricing

 at timescales of mins, hours, days, …

Non-convex and hard to solve

 Huge literature since 1962

 Common practice: DC power flow (LP)

 Also: Newton-Raphson, interior point, …



Optimal power flow (OPF)

OPF underlies many applications

 Unit commitment, economic dispatch

 State estimation

 Contingency analysis

 Feeder reconfiguration, topology control

 Placement and sizing of capacitors, storage

 Volt/var control in distribution systems

 Demand response, load control

 Electric vehicle charging 

 Market power analysis

 …



Bus injection model

i j k
zij = yij

-1

admittance matrix: 

Yij :=

yik
k~i

å       if  i = j

-yij         if  i ~ j

0            else

ì

í

ï
ï

î

ï
ï

s j

graph G: undirected

Y specifies topology of G and

impedances z on lines



Yj =  Y He je j
T

Bus injection model

Power flow problem:

Given            find Y, s( ) V V

In terms of :V

s j =  tr Yj
HVV H( )          for all  j

isolated solutions



min              tr CVV H( )
over             V, s( )

subject to     s j   £   s j  £   s j             V j  £  |Vj |  £   V j

                    s j  =  tr Yj
HVV H( ) power flow equation

OPF: bus injection model

gen cost,

power loss



power flow equation

OPF: bus injection model

min              tr CVV H( )
over             V, s( )

subject to     s j   £   s j  £   s j             V j  £  |Vj |  £   V j

                    s j  =  tr Yj
HVV H( )

gen cost,

power loss



min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  

nonconvex QCQP

(quad constrained quad program)

OPF: bus injection model



min            tr CW

subject to   s j £ tr YjW( ) £ s j         vi £Wii £ vi

                  W ³ 0,   rank W =1

Equivalent problem: 

Feasible set & SDP

convex in W

except this constraint

quadratic in V

linear in W 

min            tr CVV H

subject to   s j   £   tr YjVV
H( )  £   s j         v j  £  |Vj |2  £   v j

  



Equivalent feasible sets

QCQP: n variables 

V:= V: quadratic constraints  { }

W
+

V

W

idea:  W =VV H

SDP: n2 vars !



Equivalent feasible sets 

idea:  W =VV H

idea:  WG = VV H  only on G( )



Equivalent feasible sets 

idea:  W =VV H

idea:  WG = VV H  only on G( )



Equivalent feasible sets

V W WG

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014

Theorem: V º W º WG



Equivalent feasible sets 



W
+

Relaxations

WG

+

V W WG

Theorem

 Radial G : 

 Mesh G : 

VÍW
+ @ WG

+

VÍW
+ ÍWG

+

Bose, Low, Chandy Allerton 2012

Bose, Low, Teeraratkul, Hassibi TAC2014



W
+

Relaxations

WG

+

V W WG

Theorem

 Radial G : 

 Mesh G : 

VÍW
+ @ WG

+

VÍW
+ ÍWG

+

For radial networks: always solve SOCP !



Recap: semidef relaxations

OPF

min
V

  C(V )   subject to  V Î V

G



OPF-socp

OPF solution

Recover V*cycle
condition

Y

rank-1

OPF-ch OPF-sdp

Y

WG

* Wc(G )

*
W *

Y, mesh

2x2 rank-1

Y
radial

OPF-socp

cycle
conditionY

x*

equality

Y
radial

Y, mesh

Definition

Every optimal matrix

or partial matrix is 

(2x2) rank-1

Definition

Every optimal relaxed

solution attains equality



1.  QCQP over tree

graph of QCQP

G C,Ck( )   has edge (i, j)   Û

Cij Û0  or  Ck[ ]
ij
Û0  for some k     

QCQP

QCQP over tree

G C,Ck( )   is a tree

min          x*Cx

over         x Î C
n

s.t.            x*Ckx £   bk         k Î K     

C,Ck( )



1.  Linear separability

min          x*Cx

over         x Î C
n

s.t.            x*Ckx £   bk         k Î K     

Key condition

i ~ j :   Cij, Ck[ ]
ij
,  "k( )  lie on half-plane through 0

QCQP C,Ck( )

Theorem

SOCP relaxation is exact for 

QCQP over tree 

Re

Im

Bose et al 2012

Sojoudi, Lavaei 2013



Implication on OPF

Not both lower & upper bounds on real & reactive powers at both ends 

of a line can be finite 



2. Voltage upper bounds

p0,q0( ) p1,q1( )  given

v1

when there is no voltage constraint

• feasible set : 2 intersection pts

• relaxation: line segment

• exact relaxation: c is optimal

v0  given



2. Voltage upper bounds

p0,q0( ) p1,q1( )  given

v1
IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 2014 7

is exact if the upper bound v1 does not exclude the high-

voltage power flow solution c and is not exact otherwise.

p0

q0

c

(a) Voltage constraint not binding

p0

q0

c

(b) Voltage constraint binding

Fig. 3: Impact of voltage upper bound v1 on exactness. (a)

When v1 (corresponding to a lower bound on `) is not

binding, the power flow solution c is in the feasible set

of SOCP and hence the relaxation is exact. (b) When v1

excludes c from the feasible set of SOCP, the optimal solution

is infeasible for OPF and the relaxation is not exact.

To state the sufficient condition for a general radial net-

work, recall from [24, Section VI] the linear approximation

of BFM for radial networks obtained by setting ` jk = 0 in

(17): for each s

Slin
jk (s) = Â

i2T j

si (22a)

vlin
j (s) = v0 + 2 Â

(i,k)2P j

Re
⇣

zH
ikSlin

ik (s)
⌘

(22b)

where T j denotes the subtree at node j , including j, and

P j denotes the set of links on the unique path from j to 0.

The key property we will use is, from [24, Lemma 13 and

Remark 9]:

Sjk Slin
jk (s) and v j vlin

j (s) (23)

Define the 2⇥2 matrix function

A jk(Sjk,v j ) := I −
2

v j
zjk Sjk

T
(24)

where zjk := [r jk x jk]
T is the line impedance and Sjk :=

[Pjk Q jk]
T is the branch power flows, both taken as 2-

dimensional real vectors so that zjk Sjk
T

is a 2⇥2 matrix

with rank less or equal to 1. The matrices A jk(Sjk,v j )

describe how changes in the real and reactive power flows

propagate towards the root node 0. Specifically, as the proof

of the theorem in [34] shows, A jk is the Jacobian of how

infinitesimal changes in the complex power on branch j ! k

affect the complex power on branch k ! l where l is the

node on the unique path from node k to node 0. Evaluate the

Jacobian matrix A jk(Sjk,v j ) at the boundary values:

A jk := A jk

✓h
Slin

jk (s)
i +

, v j

◆

:= I −
2

v j

zjk

✓h
Slin

jk (s)
i +
◆ T

(25)

Here [a]+
T

is the row vector [[a1]+ [a2]+ ] where [a j ]
+ :=

max{ 0,a j } .

For a radial network, for j 6= 0, every link j ! k identifies

a unique node k and therefore, to simplify notation, we refer

to a link interchangeably by ( j , k) or j and use A j , A j , zj

etc. in place of Ajk, A jk, zjk etc. respectively when there is

no danger of confusion.

Assume

B1: The cost function is C(x) := Ân
j= 0Cj (Resj ) with C0

strictly increasing. There is no constraint on s0.

B2: The set Sj of injections satisfies vlin
j (s) v j , j 2 N,

where vlin
j (s) is given by (22).

B3: For each leaf node j 2 N let the unique path from

j to 0 have k links and be denoted by P j :=

((ik, ik− 1), . . . , (i1, i0)) with ik = j and i0 = 0. Then

Ait
···Ait0

zit0+ 1
> 0 for all 1 t t0< k.

The following result is proved in [34].

Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires

that the cost functions Cj depend only on the injections sj .

For instance, if Cj (Resj ) = p j , then the cost is total active

power loss over the network. It also requires that C0 be

strictly increasing but makes no assumption on Cj , j > 0.

Common cost functions such as line loss or generation cost

usually satisfy B1. If C0 is only nondecreasing, rather than

strictly increasing, in p0 then B1–B3 still guarantee that all

optimal solutions of OPF (10) are (effectively) optimal for

OPF-socp (19), but OPF-socp may not be exact, i.e., it may

have an optimal solution that maintains strict inequalities in

(17c). In this case the proof of Theorem 5 can be used to

recursively construct from it another optimal solution that

attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the

upper bounds on voltage magnitudes because of (23).

B3 is a technical assumption and has a simple interpreta-

tion: the branch power flow Sjk on all branches should move

in the same direction. Specifically, given a marginal change

in the complex power on line j ! k, the 2⇥2 matrix A jk

is (a lower bound on) the Jacobian and describes the effect

of this marginal change on the complex power on the line

immediately upstream from line j ! k. The product of Ai

in B3 propagates this effect upstream towards the root node

0. B3 requires that a small change, positive or negative, in

the power flow on a line affects all upstream branch power

flows in the same direction. This condition tends to hold with

voltage lower bound (upper bound on l) does not affect relaxation

v0  given
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Fig. 3: Impact of voltage upper bound v1 on exactness. (a)

When v1 (corresponding to a lower bound on `) is not

binding, the power flow solution c is in the feasible set

of SOCP and hence the relaxation is exact. (b) When v1

excludesc from thefeasibleset of SOCP, theoptimal solution

is infeasible for OPF and the relaxation is not exact.

where T j denotes the subtree at node j, including j, and

Pj denotes the set of links on the unique path from j to 0.

The key property we will use is, from [25, Lemma 13 and

Remark 9]:

Sjk Slin
jk (s) and vj vlin

j (s) (23)

Define the 2⇥2 matrix function

Ajk(Sjk,vj ) := I −
2

vj
zjk Sjk

T
(24)

where zjk := [r jk xjk]
T is the line impedance and Sjk :=

[Pjk Qjk]
T is the branch power flows, both taken as 2-

dimensional real vectors so that zjk Sjk
T

is a 2⇥2 matrix

with rank less or equal to 1. The matrices Ajk(Sjk,vj) de-

scribe how changes in branch power flows propagate towards

the root node 0; see comments below. Evaluate the Jacobian

matrix Ajk(Sjk,vj ) at the boundary values:

Ajk := Ajk

✓h
Slin

jk (s)
i +

, vj

◆

:= I −
2

vj

zjk

✓h
Slin

jk (s)
i +
◆T

(25)

Here [a]
+ T

is the row vector [[a1]+ [a2]+ ] with [aj ]
+ :=

max{ 0,aj} .

For a radial network, for j 6= 0, every link j ! k identifies

a unique node k and therefore, to simplify notation, we refer

to a link interchangeably by ( j,k) or j and use Aj , Aj , zj

etc. in place of Ajk, Ajk, zjk etc. respectively. Assume

B1: The cost function is C(x) := Â
n
j= 0Cj (Resj ) with C0

strictly increasing. There is no constraint on s0.

B2: The set Sj of injections satisfies vlin
j (s) vj , j 2 N,

where vlin
j (s) is given by (22).

B3: For each leaf node j 2 N let the unique path from

j to 0 have k links and be denoted by Pj :=

((ik, ik−1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then

Ait
···Ait0

zit0+ 1
> 0 for all 1 t t0< k.

The following result is proved in [35].

Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires

that the cost functions Cj depend only on the injections sj .

For instance, if Cj (Resj ) = pj , then the cost is total active

power loss over the network. It also requires that C0 be

strictly increasing but makes no assumption on Cj , j > 0.

Common cost functions such as line loss or generation cost

usually satisfy B1. If C0 is only nondecreasing, rather than

strictly increasing, in p0 then B1–B3 still guarantee that all

optimal solutions of OPF (10) are (effectively) optimal for

OPF-socp (19), but OPF-socp may not be exact, i.e., it may

have an optimal solution that maintains strict inequalities in

(17c). In this case the proof of Theorem 5 can construct from

it another optimal solution that attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the

upper bounds on voltage magnitudes because of (23).

B3 has a simple interpretation: the power flows Sjk on

all branches should move in the same direction. Specifically,

given amarginal change in the complex power on line j ! k,

the 2⇥2 matrix Ajk is (a lower bound on) the Jacobian and

describes the effect of this marginal change on the complex

power on the line immediately upstream from line j ! k. The

product of Ai in B3 propagates this effect upstream towards

theroot. B3 requires that asmall change, positiveor negative,

in thepower flow on alineaffectsall upstream branch powers

in the same direction. This seems to hold with a significant

margin in practice; see [35] for examples from real systems.

Theorem 5 unifies and generalizes some earlier results in

[32], [33], [34]. Thesufficient conditions in thesepapershave

the following simple and practical interpretation: OPF-socp

is exact provided either

• there are no reverse power flows in the network, or

• if the r/ x ratios on all lines are equal, or

• if the r/ x ratios increase in the downstream direction

from the substation (node 0) to the leaves then there are

no reverse real power flows, or

• if the r/ x ratios decrease in the downstream direction

then there are no reverse reactive power flows.

The exactness of SOCP relaxation does not require con-

vexity, i.e., the cost C(x) = Â
n
j= 0Cj (Resj ) need not be a

convex function and the injection regions Sj need not be

convex sets. Convexity allows polynomial-time computation.

Moreover when it isconvex theexactness of SOCPrelaxation

also implies the uniqueness of the optimal solution, as the

following result from [35] shows.

Theorem 6: Suppose G̃ is a tree. Suppose the costs Cj ,

j = 0, . . . ,n, are convex functions and the injection regions

Sj , j = 1, . . . ,n, are convex sets. If the relaxation OPF-socp

(19) is exact then its optimal solution is unique.

Consider the model of [18] for radial networks, which is

(17) with the inequalities in (17c) replaced by equalities. Let
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where T j denotes the subtree at node j, including j, and

Pj denotes the set of links on the unique path from j to 0.

The key property we will use is, from [25, Lemma 13 and

Remark 9]:

Sjk Slin
jk (s) and vj vlin

j (s) (23)

Define the 2⇥2 matrix function

Ajk(Sjk,vj ) := I −
2

vj
zjk Sjk

T
(24)

where zjk := [r jk xjk]
T is the line impedance and Sjk :=

[Pjk Qjk]
T is the branch power flows, both taken as 2-

dimensional real vectors so that zjk Sjk
T

is a 2⇥2 matrix

with rank less or equal to 1. The matrices Ajk(Sjk,vj) de-

scribe how changes in branch power flows propagate towards

the root node 0; see comments below. Evaluate the Jacobian

matrix Ajk(Sjk,vj ) at the boundary values:

Ajk := Ajk

✓h
Slin

jk (s)
i +

, vj

◆

:= I −
2

vj

zjk

✓h
Slin

jk (s)
i +
◆T

(25)

Here [a]
+ T

is the row vector [[a1]+ [a2]+ ] with [aj ]
+ :=

max{ 0,aj} .

For a radial network, for j 6= 0, every link j ! k identifies

a unique node k and therefore, to simplify notation, we refer

to a link interchangeably by ( j,k) or j and use Aj , Aj , zj

etc. in place of Ajk, Ajk, zjk etc. respectively. Assume

B1: The cost function is C(x) := Â
n
j= 0Cj (Resj ) with C0

strictly increasing. There is no constraint on s0.

B2: The set Sj of injections satisfies vlin
j (s) vj , j 2 N,

where vlin
j (s) is given by (22).

B3: For each leaf node j 2 N let the unique path from

j to 0 have k links and be denoted by Pj :=

((ik, ik−1), . . . ,(i1, i0)) with ik = j and i0 = 0. Then

Ait
···Ait0

zit0+ 1
> 0 for all 1 t t0< k.

The following result is proved in [35].

Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then

OPF-socp (19) is exact.

We now comment on the conditions B1–B3. B1 requires

that the cost functions Cj depend only on the injections sj .

For instance, if Cj (Resj ) = pj , then the cost is total active

power loss over the network. It also requires that C0 be

strictly increasing but makes no assumption on Cj , j > 0.

Common cost functions such as line loss or generation cost

usually satisfy B1. If C0 is only nondecreasing, rather than

strictly increasing, in p0 then B1–B3 still guarantee that all

optimal solutions of OPF (10) are (effectively) optimal for

OPF-socp (19), but OPF-socp may not be exact, i.e., it may

have an optimal solution that maintains strict inequalities in

(17c). In this case the proof of Theorem 5 can construct from

it another optimal solution that attains equalities in (17c).

B2 is affine in the injections s := (p,q). It enforces the

upper bounds on voltage magnitudes because of (23).

B3 has a simple interpretation: the power flows Sjk on

all branches should move in the same direction. Specifically,

given amarginal change in the complex power on line j ! k,

the 2⇥2 matrix Ajk is (a lower bound on) the Jacobian and

describes the effect of this marginal change on the complex

power on the line immediately upstream from line j ! k. The

product of Ai in B3 propagates this effect upstream towards

theroot. B3 requires that asmall change, positiveor negative,

in thepower flow on alineaffectsall upstream branch powers

in the same direction. This seems to hold with a significant

margin in practice; see [35] for examples from real systems.

Theorem 5 unifies and generalizes some earlier results in

[32], [33], [34]. Thesufficient conditions in thesepapershave

the following simple and practical interpretation: OPF-socp

is exact provided either

• there are no reverse power flows in the network, or

• if the r/ x ratios on all lines are equal, or

• if the r/ x ratios increase in the downstream direction

from the substation (node 0) to the leaves then there are

no reverse real power flows, or

• if the r/ x ratios decrease in the downstream direction

then there are no reverse reactive power flows.

The exactness of SOCP relaxation does not require con-

vexity, i.e., the cost C(x) = Â
n
j= 0Cj (Resj ) need not be a

convex function and the injection regions Sj need not be

convex sets. Convexity allows polynomial-time computation.

Moreover when it isconvex theexactness of SOCPrelaxation

also implies the uniqueness of the optimal solution, as the

following result from [35] shows.

Theorem 6: Suppose G̃ is a tree. Suppose the costs Cj ,

j = 0, . . . ,n, are convex functions and the injection regions

Sj , j = 1, . . . ,n, are convex sets. If the relaxation OPF-socp

(19) is exact then its optimal solution is unique.

Consider the model of [18] for radial networks, which is

(17) with the inequalities in (17c) replaced by equalities. Let
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