Skoltech is an international graduate research-focused university that was founded by the group of world-renowned scientists in 2011. Skoltech's curriculum focuses on technology and innovation, offering Master's programs in 11 technological disciplines. Students receive rigorous theoretical and practical training, design their own research projects, participate in internships and gain entrepreneurial skills in English. The faculty is comprised of current researchers with international accreditation and achievements.

Researchers unlock new CRISPR system for targeting RNA

DISCOVERED IN BACTERIA AS VIRAL DEFENSE MECHANISM, RESEARCHERS PROGRAM C2c2 TO MANIPULATE CELLULAR RNA USING CRISPR

Researchers from the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, the National Institutes of Health, Rutgers University- New Brunswick and the Skolkovo Institute of Science and Technology have characterized a new CRISPR system that targets RNA, rather than DNA.

The new approach has the potential to open a powerful avenue in cellular manipulation. Whereas DNA editing makes permanent changes to the genome of a cell, the CRISPR-based RNA-targeting approach may allow researchers to make temporary changes that can be adjusted up or down, and with greater specificity and functionality than existing methods for RNA interference.

In a study published in Science on the 2nd June, Feng Zhang and colleagues at the Broad Institute and the McGovern Institute for Brain Research at MIT, along with co-authors Eugene Koonin and his colleagues at the NIH, and Konstantin Severinov of Rutgers University-New Brunswick and Skoltech, report the identification and functional characterization of C2c2, an RNA-guided enzyme capable of targeting and degrading RNA.

The findings reveal that C2c2—the first naturally-occurring CRISPR system that targets only RNA to have been identified, discovered by this collaborative group in October 2015—helps protect bacteria against viral infection. They demonstrate that C2c2 can be programmed to cleave particular RNA sequences in bacterial cells, which would make it an important addition to the molecular biology toolbox.

The RNA-focused action of C2c2 complements the CRISPR-Cas9 system, which targets DNA, the genomic blueprint for cellular identity and function. The ability to target only RNA, which helps carry out the genomic instructions, offers the ability to specifically manipulate RNA in a high-throughput manner—and manipulate gene function more broadly. This has the potential to accelerate progress to understand, treat and prevent disease.

“C2c2 opens the door to an entirely new frontier of powerful CRISPR tools,” said Feng Zhang, senior author, and Core Institute Member of the Broad Institute. “There are an immense number of possibilities for C2c2 and we are excited to develop it into a platform for life science research and medicine.”

“The study of C2c2 uncovers a fundamentally novel biological mechanism that bacteria seem to use in their defense against viruses,” said Eugene Koonin, senior author, and leader of the Evolutionary Genomics Group at the NIH’s National Center for Biotechnology Information. “Applications of this strategy could be quite striking.”

Currently, the most common technique for performing gene knockdown is small interfering RNA (siRNA). According to the researchers, C2c2 RNA-editing methods suggest greater specificity and hold the potential for a wider range of applications, such as:

  • Adding modules to specific RNA sequences to alter their function—how they are translated into proteins—which would make them valuable tools for large-scale screens and constructing synthetic regulatory networks, and
  • Harnessing C2c2 to fluorescently tag RNAs as a means to study their trafficking and subcellular localization.

In this work, the team was able to precisely target and remove specific RNA sequences using C2c2 – lowering the expression level of the corresponding protein. This suggests C2c2 could represent an alternate approach to siRNA, complementing the specificity and simplicity of CRISPR-based DNA editing and offering researchers adjustable gene “knockdown” capability using RNA.

C2c2 has advantages that make it suitable for tool development:

  • C2c2 is a two-component system, requiring only a single guide RNA to function, and
  • C2c2 is genetically encodable—meaning the necessary components can be synthesized as DNA for delivery into tissue and cells.

“C2c2’s greatest impact may be made on our understanding the role of RNA in disease and cellular function,” said co-first author Omar Abudayyeh, a graduate student in the Zhang Lab.

Paper cited:

Abudayyeh, O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. Online First: June 2, 2014. DOI:10.1126/Science.xxxxx

The Skolkovo Institute of Science and Technology (Skoltech) is a private graduate research university in Skolkovo, Russia, a suburb of Moscow. Established in 2011 in collaboration with MIT, Skoltech educates global leaders in innovation, advances scientific knowledge, and fosters new technologies to address critical issues facing Russia and the world. Applying international research and educational models, the university integrates the best Russian scientific traditions with twenty-first century entrepreneurship and innovation.

* Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

 

Contact information:

Alina Chernova,

Skoltech Communications Team

89055653633, alina.chernova@skolkovotech.ru

 

 

Contact information:
Skoltech Communications
+7 (495) 280 14 81

Share on VK