Skoltech is an international graduate research-focused university that was founded by the group of world-renowned scientists in 2011. Skoltech's curriculum focuses on technology and innovation, offering Master's programs in 11 technological disciplines. Students receive rigorous theoretical and practical training, design their own research projects, participate in internships and gain entrepreneurial skills in English. The faculty is comprised of current researchers with international accreditation and achievements.

Data Science

Master of Science Program

Skoltech CDISE

 

Machine learning techniques are at the forefront of modern data science and, therefore, courses on different aspects of machine learning constitute an integral component of the program. The application component of the program includes several important topics such as:

  • Computer vision
  • Industrial data analytics
  • Natural language processing
  • Image and signal processing

The main scope of the data science program is to train students in using state-of-the-art techniques of machine learning and data analytics, with a focus on real-world applications of these emerging technologies. Students will learn how to develop automated methods to analyze massive amounts of data with the goal of extracting knowledge from them to create an impact on organizational decisions. The graduates of the program are trained to perform original research in their chosen area of machine learning and data analytics and apply the results of their research in an industrial context.

Key information

Program starts
September 1
 Application dates  
Modes and duration
Full time:
 2 years
Tuition fees
No tuition fee
 for applicants who pass the selection process
 

Awarded degree
Master of Science in Data Science

Field of Science and Technology
02.04.01 Mathematics and Computer Science

Language of instruction
English
Accreditation
The program is accredited by the Russian Government, certificate № 2568 from April 14, 2017. License № 2534 from February 7, 2017.

Entry requirements

IT-related Bachelor’s degree, or it’s equivalent in mathematics, computer science, information and communication technology, applied physics or other technical areas.

  1. Calculus
  2. Differential equations
  3. Linear algebra
  4. Basic probability, random processes and mathematical statistics
  5. Discrete mathematics (including graph theory and basic algorithms)
  6. Programming
English language requirements
If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.

Aim and objectives

The aim of the program is to prepare the technological leaders of the future. The objective of the Data Science MSc program is to bridge the gap between fundamental science and cutting edge computational techniques.

Content
The curriculum of the program contains a balanced combination of topics developed very recently (e.g. deep learning) together with in-depth teaching of mathematical foundations (advanced linear algebra, optimization, high-dimensional statistics etc.).

MSc Program Structure

msc-program-structure

Download curriculum


Learning and professional outcomes

A successful graduate of the program will know:

  • Mathematical and algorithmic foundations of data science, and a balanced vision on mathematical foundations and practical tools and applied problems in data science;
  • Statements of all major data analysis problems as well as the main approaches to solve them;
  • State of the art techniques of data analysis and related areas. Knowledge of main classes of applied problems;
  • Main methodological aspects of both scientific research and application development in data science.

A successful graduate of the program will be able to:

  • Formulate/model real-world tasks as data analysis problems;
  • Choose the most appropriate method to solve a particular data analysis problem;
  • Apply data analysis methods in practice using modern data analysis software tools;
  • Develop new methods or adapt existing methods to a particular problem;
  • Implement algorithms as computer programs;
  • Evaluate results of data analysis processes;
  • Work with technical literature (e.g. conduct bibliographical research, read and critically analyze scientific articles, use scientific metrics and important databases);
  • Present results to different audiences (specialists, users, stakeholders, etc.) in an effective oral and written manner.

Career opportunities and paths
The Data Science MSc program was developed to meet the high demand for data science specialists in the growing national and international high-tech market. Graduates of the program may begin an international research career or work with a company (even during the period of study).

Data science MSc graduates significantly enhance their employability by developing their subject-specific knowledge in the field of data science and machine learning, as well as their analytical and research skills. Students gain the opportunity to obtain early access to the national and international research and innovation landscapes and can approach international employers with confidence. In addition, the program enhances students’ soft skills, enabling them to compete effectively in the job market.

  1. PhD positions in academic & research institutions
  2. Specialist positions such as data analyst, data scientist, consultant in various economy sectors:
  • Finance
  • TeleCom
  • IT
  • Skolkovo resident companies and startups


Faculty

Program Director
ivanoseledets
Ivan Oseledets Full Professor, Director of the Center for Artificial Intelligence Technology, Head of the Laboratory of Computational Intelligence
Program Coordinator
Aleksandr Katrutsa
Research Scientist

    Research
    Students are actively involved into research activity starting from Term 3.

    Main research areas:

    • Machine Learning and Deep Learning
    • Industrial Analytics
    • Computer Vision
    • Image Processing
    • High-dimensional statistics and Statistical learning
    • Next Generation Multi-scale Modeling
    • Fast Solvers for Large Scale/High-Dimensional Problems

    Industrial partners:

    • Sberbank
    • Yandex
    • RusAgro
    • VisionLabs
    • Datadvance
    • ScanEx
    • Geoscan
    • Gazprom Neft

    Student success stories

    • Oleg Grinchuk and Aijan Ibraimova have NIPS* papers accepted that are based on their MSc thesis works.
    • Alexander Anikin, Andrey Rykov, Vladislav Ishimtsev and Denis Volkhonskiy became prize winners at International Data Science Game 2016-2017.

     

    Contacts

    Apply now!