Международная группа исследователей разработала методику, которая самостоятельно настраивает математическую модель магнитного взаимодействия. Новый алгоритм позволит более реалистично моделировать и проектировать материалы с требуемыми свойствами и предсказывать их свойства перед экспериментальной проверкой. Результаты опубликованы в журнале Physical Review B.
В последние годы активно развивается разработка машинно-обучаемых межатомных потенциалов. Они способны обеспечить быстроту и точность моделирования структуры и свойств материалов. Квантово-механические методы, например теория функционала плотности, дают высокую точность вычислений, однако требуют значительных вычислительных ресурсов и времени. Машинное обучение ускоряет вычисления для больших систем, практически не уступая в точности. Одна из острых проблем в применении машинного обучения — обеспечить физическую достоверность.
В своей новой работе учёные из Сколтеха, МФТИ, ВШЭ и их иностранные коллеги предложили алгоритм автоматического обучения машинно-обучаемого межатомного потенциала с магнитными степенями свободы. Он ускоряет трудоёмкие квантово-механические расчёты при исследовании парамагнитных материалов, при этом сохраняя высокую точность.
Магнитные моменты становятся новой переменной, что усложняет обучение потенциала. Процесс моделирования с использованием магнитного межатомного потенциала состоит из двух этапов. На первом этапе оптимизируется величина магнитных моментов при фиксированных координатах атомов и параметрах решётки так, чтобы полная энергия системы была минимальна. На втором этапе магнитные моменты фиксируются и выполняется молекулярно-динамическое моделирование, в ходе которого изменяются координаты атомов и параметры решётки с учётом магнитного взаимодействия.
Кроме того, наличие магнитных моментов в функциональной форме потенциалов усложняет его обучение. Для решения этой задачи исследователи разработали алгоритм, который автоматически выбирает оптимальные конфигурации для обучающей выборки. Алгоритм отслеживает конфигурации, возникающие прямо в процессе моделирования с обучаемым потенциалом, и для отобранных конфигураций проводятся расчёты с помощью теории функционала плотности. Полученные данные добавляются в выборку, на основе которой происходит обучение потенциала.
«Главной особенностью разработанного нами потенциала является возможность отбора конфигураций прямо во время моделирования с обучаемым потенциалом, например, в ходе молекулярной динамики. Таким образом, появляется возможность автоматизировать процесс составления обучающей выборки, так как потенциал сам отбирает релевантные конфигурации для последующего их расчёта с помощью теории функционала плотности и дообучения на них. Ещё одной особенностью является учёт магнитных моментов конфигураций при отборе в ходе активного обучения», — рассказал Иван Новиков, доцент факультета компьютерных наук НИУ ВШЭ, доцент кафедры химической физики функциональных материалов МФТИ, старший научный сотрудник Центра искусственного интеллекта Сколтеха.