Map of Tibet, aka Xizang Zizhiqu. The six sample collection sites are marked with triangles (▲) for saline lakes and upside-down triangles (▼) for soils. The small framed map indicates the position of Tibet (shown in red) relative to the rest of China (blue). The four satellite images on the right are photos of the lakes. Credit: Modified from Shao-Wei Liu et al./Microorganisms and Lifang Liu et al./Frontiers in Microbiology
The samples first went to Beijing Key Laboratory of Antimicrobial Agents. There, the researchers cultivated the samples in a nutrient-rich medium known as culture broth. The liquid cultures obtained by the team were then tested for antimicrobial activity. The bacterial strains found to produce antibiotic compounds underwent genetic analysis. The researchers then pitted the analyzed strains against clinically important bacterial strains known to cause disease in humans.
The next stage is where the Skoltech laboratory took over. After receiving the dry extracts of the cultural liquids containing antibiotic compounds, Lukianov and his colleagues set out to determine the mechanisms of antimicrobial action involved using a so-called reporter system, developed by study co-author and Bio Center Professor Petr Sergiev, among other researchers.
“There are several ways antibiotics can harm bacteria: by affecting protein synthesis, DNA replication, RNA transcription, cell wall synthesis, or key metabolic processes,” Lukianov explains. “Skoltech and MSU scientists created a reporter system that enables us to distinguish compounds with two mechanisms of action. First, antibiotics that suppress the production of protein by bacteria. Second, compounds that affect DNA replication or RNA transcription.” All the other mechanisms of action were classified as the third group.
To determine which mechanism was at play in any given case, the system relies on a double “reporter strain” of the E. coli bacterium. It’s a laboratory strain artificially devoid of certain defense mechanisms, making the effects of antibiotics easier to discern and measure.
To run the test, the scientists cultivated the reporter strain on petri dishes and subjected it to the Tibetan cultural liquid extracts, as well as to controls — standard antibiotics that represent each of the two main mechanisms. Based on how deadly the analyzed compounds proved to the reporter strain, when compared with commonly used antibiotics, the team could determine which mechanism was involved.
The researchers then used two highly precise analytical techniques for identifying compounds — chromatography and mass spectrometry — to tell which chemical species were contained in the extracts. Among them were hedamycins and kidamycins, in saline lake water, as well as rifamycins from the Tibetan soil samples.
“While compounds from these families are known antibiotics, their presence in such remote regions and at such an elevation above sea level is not something you would readily suspect,” Lukianov comments. “There might be other, unfamiliar antibiotics lurking out there, too. And perhaps next time we’ll be lucky enough to find them.”