Методы машинного обучения помогут предсказывать вредные мутации

Ученые из России и Индии предложили метод на основе машинного обучения, позволяющий предсказывать вредные мутации в атомарных структурах белков. Новый метод нацелен на мембранные белки человека и поможет в развитии персонализированной медицины.  Результаты исследования опубликованы в журнале Plos One.

Технология секвенирования нового поколения стала основоположником новой эры в медицине. Теперь можно довольно легко узнать последовательность нуклеотидов в ДНК или последовательность аминокислот в белках конкретного человека и использовать эту информацию для лечения и диагностики. Совсем маленькие, точечные изменения в этих последовательностях – мутации, могут служить индикаторами порой тяжелых заболеваний.

Ученые из Сколтеха, Технического университета Мюнхена, Санкт-Петербургского политехнического университета и Индийского технологического института Мадрас (Ченнай, Индия) разработали метод на основе машинного обучения, позволяющий анализировать атомарные структуры белков и предсказывать болезнетворность встречающихся мутаций. Метод адаптирован для белков, встраивающихся в клеточные мембраны; такие белки составляют 25-30% от всех белков в клетке, и именно они чаще всего служат мишенями для лекарств.

«В этой работе мы использовали сочетание 1D-информации об аминокислотных последовательностях белков и 3D-информации об атомарных структурах этих белков для создания эффективной модели на основе машинного обучения, которая позволяет выявлять аминокислотные замены в мембранных белках, непосредственно связанные с различными заболеваниями», ‒ рассказывает первый автор исследования, старший преподаватель Сколтеха Петр Попов.

 

 

Контакты:
Skoltech Communications
+7 (495) 280 14 81

Tweet about this on Twitter0Share on Facebook0Pin on Pinterest0Share on Tumblr0Share on VK