Сколтех — новый технологический университет, созданный в 2011 году в Москве командой российских и зарубежных профессоров с мировым именем. Здесь преподают действующие ученые, студентам дана свобода в выборе дисциплин, обучение включает работу над собственным исследовательским проектом, стажировку в индустрии, предпринимательскую подготовку и постоянное нахождение в международной среде.

Оптические компьютеры: решение сложных вычислительных задач путем перемножения световых сигналов

В приложениях, основанных на использовании нейронных сетей, искусственного интеллекта и корректирующих кодов, существует обширный класс сложных вычислительных задач, которые можно решить, используя перемножение световых сигналов, считают исследователи из Кембриджского университета и Сколковского института науки и технологий (Сколтех).

В своей статье, опубликованной в журнале Physical Review Letters, ученые предлагают новый вычислительный метод, который благодаря резкому сокращению количества необходимых световых сигналов с одновременным  упрощением процедуры поиска оптимальных математических решений может произвести настоящую революцию в аналоговых вычислениях, открывая перспективы для использования сверхбыстрых оптических компьютеров.

В отличие от классических ЭВМ, в которых используются электроны, оптические (фотонные) компьютеры основаны на использовании фотонов, генерируемых лазерами или диодами. Поскольку фотоны не имеют массы и движутся с большей скоростью, нежели электроны, считается, что оптический компьютер будет обладать сверхвысокой скоростью, энергоэффективностью и способностью обрабатывать информацию, используя  сразу  несколько временны́х или пространственных оптических каналов.

Если в цифровом компьютере в качестве вычислительного элемента используются единицы и нули, то оптический компьютер оперирует непрерывной фазой светового сигнала. Вычисления в оптическом компьютере обычно выполняются путем сложения двух световых волн от разных источников и проецирования полученного результата на состояния «0» или «1».

Однако в реальной жизни нередко возникают сложные нелинейные задачи с  множеством неизвестных, которые при перемножении одновременно изменяют значения других неизвестных, и традиционная схема оптических вычислений с линейным сложением световых волн в такой постановке уже не работает.

Профессор факультета прикладной математики и теоретической физики Кембриджского университета и Центра Сколтеха по фотонике и квантовым материалам (CPQM) Наталья Берлова и аспирант Сколтеха Никита Строев установили, что в оптических системах функции, описывающие световые волны, можно не складывать, а умножать,  получая таким образом другой тип взаимодействия между волнами.

Исследователи проиллюстрировали этот феномен с помощью поляритонов – квазичастиц, состоящих наполовину из света и наполовину из материи, а также рассмотрели эту идею применительно к более широкому классу оптических систем, таких как световые импульсы в волокне. Поскольку поляритоны частично состоят из материи, то, находясь в пространстве, сверхбыстрые когерентные поляритоны могут генерировать очень слабые импульсы или образовывать кластеры, нелинейно перекрывая друг друга.

«Оказалось, что самое главное  ̶это найти способ объединить эти импульсы», – отмечает Никита Строев. «Если правильно их объединить и добиться нужной интенсивности света, свет будет усиливаться, оказывая влияние на фазы отдельных импульсов и тем самым подсказывая решение для нелинейных задач».

Перемножение волновых функций с целью определения фазы светового сигнала в каждом элементе оптической системы обусловлено нелинейностью, которая возникает естественным образом или привносится в систему извне.

«Для нас стал неожиданностью тот факт, что проецировать непрерывные световые фазы на состояния« 0» и «1» (как это делается при решении задач в двоичных переменных)  больше не нужно», – рассказывает Никита Строев. «Система, как правило, сама генерирует эти состояния в результате поиска конфигураций с минимальной энергией. Возникновение этого эффекта как раз связано с перемножением световых сигналов. В исследованных ранее оптических машинах, напротив, использовалось резонансное возбуждение, с помощью которого световые фазы извне фиксировались на двоичных значениях».

Авторы также предложили и реализовали метод, позволяющий подводить систему к лучшему решению за счет временного изменения силы взаимодействия между сигналами.

«Теперь нам нужно определить классы задач, которые можно решать с помощью специального физического процессора», – поясняет профессор Сколтеха Наталья Берлова. «Одним из таких классов задач являются задачи бинарной оптимизации более высокого порядка, и оптические системы могут быть построены таким образом, чтобы  с высокой эффективностью решать такие задачи».

Однако прежде чем будет доказано превосходство оптических систем над существующими компьютерами в решении сложных вычислительных задач, предстоит разобраться с такими серьезными проблемами, как снижение шума, исправление ошибок, улучшение масштабируемости, поиск объективно оптимального решения и т.д.

«Если наш подход адаптировать под конкретные типы задач, не исключено, что оптические компьютеры можно будет использовать для решения реальных проблем, с которыми классические компьютеры уже не в состоянии справиться»,  ̶  сказала в заключение Наталья Берлова. 

Материал предоставлен Кембриджским университетом.

Share on VK