Сколтех — новый технологический университет, созданный в 2011 году в Москве командой российских и зарубежных профессоров с мировым именем. Здесь преподают действующие ученые, студентам дана свобода в выборе дисциплин, обучение включает работу над собственным исследовательским проектом, стажировку в индустрии, предпринимательскую подготовку и постоянное нахождение в международной среде.

Нейронная сеть научилась предсказывать качество фруктов после длительного хранения

Исследователь Сколтеха и его коллеги из Германии разработали алгоритм классификации на основе нейронной сети, с помощью которого по данным мониторинга из яблоневого сада можно предсказывать их качество после длительного хранения. Результаты исследования опубликованы в журнале Computers and Electronics in Agriculture.

bb-apple_

Иллюстрация: Павел Одинев / Сколтех

 

Прежде чем всеми нами любимые фрукты и овощи попадают к нам на стол, они проводят немало времени в специальных хранилищах. За время длительного хранения их мякоть может потемнеть, а на кожице могут появиться коричневые или черные пятна, что может привести к гибели значительной части продукции. Для решения этой проблемы проводятся многочисленные исследования по разработке надежных методов предсказания возможной порчи продукции в процессе хранения. Поскольку на качество и сохранность свежих фруктов и овощей влияет множество факторов, связанных с процессом их выращивания и хранения, решить эту задачу далеко не просто.

Старший преподаватель Сколтеха Павел Осиненко (в прошлом сотрудник Лаборатории автоматического управления и системной динамики Хемницкого технического университета) и его коллеги собрали данные за три года по саду, где растут яблоки сорта Брэбурн, в Германии, включая метеоданные и информацию о содержании в плодах хлорофилла, антоцианов и растворимых твердых и сухих веществ, полученную неразрушающим методом с помощью датчиков спектроскопии видимого и ближнего инфракрасного диапазонов. Исследователи также использовали результаты оценки качества фруктов после хранения, учитывая, что покупатель предпочитает красивые на вид и крепкие, хрустящие яблоки (для оценки этих качеств существует отдельный показатель).

«Наш опыт работы с экспериментальным садом в Германии, который является типичным садовым хозяйством, показывает, что разработанную методику можно без особого труда внедрять в сельском хозяйстве», − подчеркнул Павел Осиненко.

Исследователи разработали алгоритм классификации на основе рекуррентной нейронной сети и обучили его на данных о фруктовых садах. В 80% случаев алгоритм успешно справился с задачей прогнозирования потемнений мякоти, вмятин на поверхности яблока, а также степени твердости плода. «Это, несомненно, успешный результат, поскольку речь идет об автоматизированном решении, практически не требующем участия человека. Для доработки алгоритма потребуются дополнительные данные и донастройка, но на этапе подтверждения концепции (proof of concept) достигнутый результат выглядит многообещающе», − отмечает Павел Осиненко.

Он добавляет, что разработанная методика построена по предсказательному принципу, что позволит фермерам использовать данные классификатора для повышения урожайности. Авторы методики уже получили предложения о сотрудничестве от производителей других видов фруктов и даже овощей, поскольку предложенный метод применим и для овощной продукции.

Контакты:
Skoltech Communications
+7 (495) 280 14 81

Tweet about this on Twitter0Share on Facebook0Pin on Pinterest0Share on Tumblr0Share on VK