Skoltech is an international graduate research-focused university that was founded by the group of world-renowned scientists in 2011. Skoltech's curriculum focuses on technology and innovation, offering Master's programs in 11 technological disciplines. Students receive rigorous theoretical and practical training, design their own research projects, participate in internships and gain entrepreneurial skills in English. The faculty is comprised of current researchers with international accreditation and achievements.

Colloquium May 22: Fathoming Rogue Waves, Diving Into Turbulences

The feeling is all-too familiar: Sitting in a stuffy lecture hall, audience members feel like time stretches beyond infinity. They daydream. Giant waves collapse. Turbulences swirl. Singularity takes over. But what if one could experience – and comprehend – all that by paying attention to the lecturer? Here’s an opportunity to do just that.

Come fathom the rogue waves and strong collapse turbulences at the Skoltech Colloquium.

Speaker: Professor Pavel M. Lushnikov, University of New Mexico (USA)

What: Finite time singularities, rogue waves and strong collapse turbulence.

When: May 22, 16:00pm

Where: Institute of Gene Biology RAS, Vavilova street 34/5, Conference room, 1st floor.

Abstract:

Many nonlinear systems of partial differential equations have a striking phenomenon of spontaneous formation of singularities in a finite time (blow up). Blow up is often accompanied by a dramatic contraction of the spatial extent of solution, which is called by collapse. Near singularity point there is a qualitative change in underlying nonlinear phenomena, reduced models lose their applicability and other mechanisms become important such as inelastic collisions in the Bose-Einstein condensate, optical breakdown and dissipation in nonlinear optical media and plasma, wave breaking in hydrodynamics. Collapses occur in numerous reduced physical and biological systems including a nonlinear Schrodinger equation (NLSE) and a Keller-Segel equation (KSE). We will focus on the collapse in the critical spatial dimension two (2D) which has numerous applications. For instance, 2D NLSE describes the propagation of the intense laser beam in nonlinear Kerr media (like usual glass) which results in the catastrophic self-focusing (collapse) eventually causing optical damage as was routinely observe in experiment since 1960-es. Recently such events have been also often referred as optical rogue waves.

Vortexes, turbulences, singularity and rogue waves converge at the Skoltech Colloquium

Vortexes, turbulences, singularity and rogue waves converge at the Skoltech Colloquium. Image courtesy: askamathematician.com

Another dramatic NLSE application is the formation of rogue waves in ocean. 2D KSE collapse describes the bacterial aggregation in Petri dish as well as the gravitational collapse of Brownian particles. We study the universal self-similar scaling near collapse, i.e. the spatial and temporal structures near blow up point. In the critical 2D case all these collapses share a strikingly common feature that the collapsing solutions have a form of either rescaled soliton (for NLSE) or rescaled stationary solution (for KSE). The time dependence of that scale determines the time-dependent collapse width L(t) and amplitude ~1/L(t). At leading order L(t)~ (t_c-t)^{1/2} for all mentioned equations, where t_c is the collapse time.
Collapse however requires the modification of that scaling which in NLSE has the well-known loglog type ~ (\ln|\ln(t_c-t)|)^{-1/2} as well as KSE has another well-known type of logarithmic scaling modification. Loglog scaling for NLSE was first obtained asymptotically in 1980-es and later proven in 2006. However, it remained a puzzle that this scaling was never clearly observed in simulations or experiment. Similar situation existed for KSE. Here solved that puzzle by developing a perturbation theory beyond the leading order logarithmic corrections for both NLSE and KSE. We found that the classical loglog modification NLSE requires double-exponentially large amplitudes of the solution ~10^10^100, which is unrealistic to achieve in either physical experiments or numerical simulations. In contrast, we found that our new theory is valid starting from quite moderate (about 3 fold) increase of the solution amplitude compare with the initial conditions. We obtained similar results for KSE. In both cases new scalings are in excellent agreement with simulations.
This efficiency of analytical results also allowed to study 2D NLSE-type dissipative system in the conditions of multiple random spontaneous formation of collapses in space and time.
Dissipation ensures collapse regularization while collapses are responsible for non-Gaussian tails in the probability density function of amplitude fluctuations which makes turbulence strong. Power law of non-Gaussian tails is obtained for strong NLSE turbulence which is a characteristic feature of rogue waves. We suggest the spontaneous formation optical rogue from turbulent as a perspective route to the combing of multiple laser beams, generated by a number of fiber lasers, into a single coherent powerful laser beam.

If you like to participate and for further information or questions, please e-mail Natalia Kondrashova: kondrashova@skolkovotech.ru
Please confirm your attendance. We look forward to seeing you.

Our guest lecturer at Skoltech Colloquium: Professor Pavel M. Lushnikov, Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA

 

Guest speaker: Professor Pavel M. Lushnikov, Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA.

Pavel’s research interest includes a wide range of topics in applied mathematics, nonlinear waves and theoretical physics. Among them are laser fusion and laser-plasma interaction; dynamics of fluids with free surface, Kelvin-Helmholtz instability and nonlinear interactions of surface waves; theory of the wave collapse, singularity formation and its application to plasma physics, hydrodynamics, biology and nonlinear optics; bacterial aggregation, chemotaxis, cell-cell interactions; collapse of bacterial colonies, stochastic Potts model of biological cell; pattern formation in photorefractive crystals and other nonlinear optical media; high-bit-rate optical communication; dispersion-managed optical fiber systems; soliton propagation in optical systems; high performance parallel simulations of optical fiber systems; Bose-Einstein condensation of ultra-cold dipolar gases.

 

 

* The Skolkovo Institute of Science and Technology (Skoltech) is a private graduate research university in Skolkovo, Russia, a suburb of Moscow. Established in 2011 in collaboration with MIT, Skoltech educates global leaders in innovation, advance scientific knowledge, and foster new technologies to address critical issues facing Russia and the world. Applying international research and educational models, the university integrates the best Russian scientific traditions with twenty-first century entrepreneurship and innovation.

 

If you like to participate and for further information or questions, please Liliya Abaimova
We look forward to seeing you.

Share on VK