Scientists developed a nanometer scale light bulb from a monolayer MoS2

A group of scientists, led by Professor Thomas Mueller from University of Vienna with a theoretical support provided by Professor Vasili Perebeinos from Skolkovo Institute of Science and Technology (Skoltech), reported that they have demonstrated a visible light source using an atomically thin monolayer MoS2. They attached small strips of a monolayer MoS2 to metal electrodes, put them in vacuum and passed a current through the filaments to cause them to heat up and produce light.

Layered transition metal dichalcogenide semiconductors, such as MoS2 and WSe2, exhibit a range of fascinating properties and are currently being explored for a variety of electronic and optoelectronic devices. These properties include low thermal conductivity and a large Seebeck coefficient, which make them promising for thermoelectric applications as well. Moreover, transition metal dichalcogenides undergo an indirect-to-direct bandgap transition when thinned down in thickness, leading to large electron-hole binding and strong photo- and electroluminescence in monolayers. In the new research, scientists demonstrated that a MoS2 monolayer sheet, freely suspended in vacuum over a distance of 150 nm, emits visible light as a result of Joule heating. Due to the poor transfer of heat to the contact electrodes, the electron temperature can reach 1600 K.

 Prof. Perebeinos said. “This new type of light emitters of 50 nm length, we created, can be integrated into chips and will pave the way towards the realization of atomically thin, flexible, and transparent displays and on-chip optical communications based on dichalcogenide semiconductors.”

The results of the study have been published in the scientific journal Advanced Materials.

Contact information:
Skoltech Communications
+7 (495) 280 14 81

Tweet about this on Twitter0Share on Facebook0Pin on Pinterest0Share on Tumblr0Share on VK